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Abstract. Classical multigrid solution of linear systems with matrices that have highly variable entries

and are nearly singular is made difficult by the compounding difficulties introduced by these two model

features. Efficient multigrid solution of nearly singular matrices is known to be possible, provided the
so-called Brandt-McCormick (or eigenvector approximation) criterion is satisfied, which requires building

interpolation to fit the near-null-space modes with high accuracy. When these modes are known, traditional
multigrid approaches may be very effective. In this paper, we consider the case of matrices describing highly

disordered systems, such as those that arise in lattice quantum chromodynamics (QCD), where the near-null

modes cannot be easily expressed in closed form. We develop a variational adaptive reduction-based algebraic
multigrid preconditioner for such systems and present a two-level convergence theory for the approach for

Hermitian and positive-definite systems. The proposed method is applied to a two-dimensional model

known as the Gauge Laplacian, a common test problem for development of solvers in quantum dynamics
applications, showing promising numerical results. The proposed reduction-based setup uses compatible

relaxation coarsening together with a sparse approximation to the so-called ideal interpolation operator to

recursively construct the coarse spaces.

1. Introduction

In recent years, significant effort has been focused on improving the range of applicability of black-
box multigrid techniques. While there are many approaches to achieving robust linear solvers for wide
classes of matrices, adaptive multigrid methods [10–12] offer many advantages because of the efficiency they
inherit from the algebraic multigrid approaches on which they are based [31–33]. The key idea behind
adaptive multigrid algorithms is to experimentally use the multigrid relaxation process itself to expose those
error components that must be accurately accounted for in the coarse-grid correction process, the so-called
“algebraically smooth” errors that relaxation is slow to reduce. In its simplest form, this amounts to simply
iterating many times with a fixed stationary iterative (relaxation) method on the homogeneous problem,
Ax = 0, with a random initial guess. The dominant error left after many relaxation sweeps must, by
definition, reflect the algebraically smooth errors of the problem. These errors can then be built into the
coarse-grid correction process in the usual way. In practice, exposing these errors by simple relaxation alone
is very inefficient and, so, the process is accelerated by a multilevel relaxation process that exposes the local
and global characteristics of these slow-to-converge errors simultaneously.

These approaches have been shown to be successful for a wide range of problems [10–12]. An important
new class of problems that can be effectively treated by these techniques arises in numerical models of
quantum dynamics, e.g., quantum electrodynamics (QED) and quantum chromodynamics (QCD) [7,8]. The
caveat here is the large setup costs required by these “classic” adaptive solvers – the setup costs reported
in [7] are roughly equivalent to that of solving the original system with 3 or 4 different right-hand sides
using diagonally-preconditioned CG. Of course, certain QCD calculations require solves with thousands of
right-hand sides and, so, these costs can be amortized. For other calculations, e.g., evolution of the gauge
fields in a Monte Carlo process, each system needs to be solved with only a few right-hand sides, and these
methods are not yet competitive. Here, we consider an alternative reduction-based AMg set-up algorithm
for such systems.
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The linear systems arising in numerical models of these applications are very challenging for traditional
multigrid methods, due mainly to two properties of the system matrix. The first is the extremely disordered
nature of the matrix elements; each non-zero off-diagonal entry of the matrix is chosen at random from a
specific distribution function, with little correlation between neighboring coefficients. The second property
is that the system matrix is shifted so that it is very ill-conditioned (with smallest eigenvalue close to zero),
much more so than one arising from a typical discretization of an elliptic PDE. As a result, classical multigrid
assumptions are not satisfied by the discrete operator and, thus, such algorithms offer very little in terms of
improved convergence over relaxation alone.

Individually, these difficulties can be treated by the classical approach to the adaptive setup procedure
or by preconditioning CG with classical AMG, respectively. Indeed, for homogeneous but nearly singular
elliptic problems, for example the shifted-Laplace operator, while AMG fails as a standalone solver, using
AMG as a preconditioner for CG gives a very efficient and scalable solution technique [24]. Moreover, for
heterogeneous problems that aren’t nearly singular, adaptive AMG works very well, giving a good stand-
alone solver [6, 9–12, 24]. The systems encountered in numerical models of quantum field theories, however,
exhibit both these difficulties; the resulting systems are very heterogeneous, so that adaptivity is needed,
and are also nearly singular, in which case care must be taken to ensure that the computed prototypes give
a suitable local representation of the algebraically smooth error (as they are assumed to in the “classical”
adaptive process ). Here, we consider an adaptive reduction-based multigrid algorithm as a preconditioner
to CG. As a first step, we explore the applicability of these methods to a simplified Gauge Laplace system.

Multigrid methods for nearly singular problems have been considered before [2, 5, 13, 18, 19, 29], but not
in this context. Whereas for classical elliptic operators such as Poisson’s equation, accurate local fitting of
the slowest to converge mode of relaxation (or the lowest-energy mode of the system matrix) is sufficient to
ensure effective reduction of all error modes by the multigrid process, this is not the case for the extremely
disordered systems that arise in quantum dynamical systems. For these operators, the smallest eigenvalues(s)
are typically well separated from the remainder of the spectrum and, moreover, the eigenvectors associated
with these eigenvalues do not provide for a good local representation of the algebraically smooth error over the
entire domain. Attempting to solve these systems by directly applying the adaptive multigrid methodology
presents a difficult challenge, as classical multigrid wisdom [3,26] requires that modes in the near-null space
of the matrix be represented in the range of interpolation with accuracy inversely proportional to their
energy norms and, furthermore, interpolation is typically based on the single lowest eigenmode of the system
matrix. We demonstrate, however, that with careful design of the adaptive process, optimal performance
of a multigrid-preconditioned Krylov iteration can be recovered for such systems. In addition, we explore
various issues that must be considered in algorithmic development of adaptive methods for such systems.
We also prove the two-level convergence of the method for Hermitian and positive definite (HPD) systems
and extend the theory of reduction-based AMG to allow for smoothing on all variables (using, for example,
Jacobi or Gauss-Seidel smoothers) instead of only F-smoothing.

The remainder of this paper is organized as follows. First, in Section 2, we present a brief introduction into
the family of algebraic multigrid methods that we consider in this paper. Then, in Section 3, we introduce
an important model problem for the operators that appear in quantum electro- and chromo-dynamics, the
Gauge Laplacian system. In addition, we discuss some of the properties of this operator. In Section 4,
we present an adaptive reduction-based algorithm and related two-level theory for general HPD systems.
In addition, we explore several practical issues that arise in designing an adaptive AMG algorithm for
disordered nearly singular problems such as the Gauge Laplacian in Section 5. Following this, in Section
6, we present numerical results of our modified adaptive reduction based AMG (“αAMGr”) method for a
variety of configurations of the Gauge Laplacian.

2. Algebraic Multigrid

MG methods employ two complementary processes: smoothing and coarse-grid correction. In the classical
setting, for scalar elliptic problems, the smoother (or relaxation method) is a simple iterative method, such
as Gauss-Seidel, that is effective at reducing high-frequency error. The remaining low-frequency error is
then accurately represented and efficiently eliminated on coarser grids via the coarse-grid correction step.
To achieve their optimality, AMG methods employ a fixed smoother and generally exploit the character of
the error of the relaxation method. Such error is referred to as algebraically smooth and, for most AMG
relaxation schemes, is characterized by the near nullspace (near kernel) of the discrete operator: the span of
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all vectors x such that Ax ≈ 0. For simpler problems, such as scalar elliptic partial differential equations,
these methods are often optimal, since the near nullspace components are known and AMG can be designed
to resolve these types of components using a hierarchy of coarse-scale problems.

The difficulty in applying MG to matrices representing highly disordered systems like the Gauge Laplace
system (described next) is that the random fluctuations in the gauge field configuration introduce random
local oscillations in the near-kernel components of the system matrix. As such, the near-kernel components
cannot be expressed in closed form and must be calculated “on the fly”. In such situations, a viable choice
for constructing an optimal solver is given by an adaptive MG method [10–12]. Adaptive MG methods
extend the applicability of AMG methods by adapting the multigrid coarse-grid correction process based on
the approximations to the near-kernel components that are computed by this experimentation.

3. The Gauge Laplacian

The aim of this paper is to develop adaptive multigrid methods appropriate for the highly disordered
nearly singular systems that arise in numerical simulations of quantum dynamics. We consider a simplified
two-dimensional model problem called the “Gauge Laplacian”, as was done previously in [15, 20, 25]. The
inverse of the Gauge Laplacian operator is the simplest form of a propagator satisfying a gauge theory [14]
(a necessary and fundamental property for physical relevance of the calculation) and, thus, provides a good
initial test problem in the development of AMG schemes for quantum dynamics applications.

Consider a uniform N × N periodic (toroidal) quadrilateral lattice, with node points {(k, `) | k, ` =
1, . . . , N}. Such a lattice has ne = 2n edges, which can be numbered individually from 1 through ne or be
associated in pairs with the lattice nodes, connecting a node (k, `) to its “Eastern” and “Northern” neighbors,
(k + 1, `) and (k, ` + 1), respectively. On such a lattice, we are given values on each edge in the form of a
“U(1) gauge field”, U = {uj := eiθj | j = 1, . . . ne}, where the values θj are prescribed based on some known
distribution, discussed momentarily, and the “gauge links”, uj , live on the edges of the lattice. Our interest
is in the solution of systems of the form

A(U)ϕ = ψ,

where A(U) ∈ Cn×n and ϕ,ψ denote vectors from Cn. The symbol x will stand for a lattice site, i.e. a point
(k, `) of the grid, and the operations x±µ for µ = 1, 2 yield the neighboring lattice sites, i.e. x±1 = (k±1, `)
and x± 2 = (k, `± 1), where all numbers are understood to be mod N .

The gauge links on the edges (one link, uj , per edge j) act as coupling coefficients. Explicitly, the two-
dimensional Gauge Laplace matrix A = A(U) expresses a periodic nearest-neighbor coupling which, for a
pair of lattice sites x, y with corresponding matrix entry Axy, can be described using the Kronecker δ as

Axy = − 1
h2

2∑
µ=1

(
uµx δx+µ,y +

(
uµx−µ

)†
δx−µ,y

)
+ (

4
h2

+m)δx,y.(1)

Here, uµx is the gauge link defined on the edge connecting lattice sites x and x+µ and (uµx−µ)† is the complex
conjugate of the gauge link defined on the edge connecting lattice sites (x − µ) and x. As is usually the
case when considering PDEs on periodic grids, h = 1/N ; the parameter m can be interpreted physically as
a mass. It is common to explicitly scale A to have unit diagonal, yielding A = I −κD, where κ = 1

4+h2m . In
the related physics literature, the parameter κ is known as the “hopping” parameter and matrix D is known
as the hopping matrix. We will work with the scaled matrix A from now on.

To be physically relevant, the gauge links uj associated with a gauge field U are random variables from a
given Boltzmann distribution that depends on a temperature parameter, β [14]. The case of β =∞ is known
as the so-called “cold” configuration and gives uj = 1 for all j. For β = 0, the configurations are “hot”, in
which case the phases θj in uj := eiθj are uniformly distributed in [0, 2π). Physically relevant configurations
arise for β ∈ (0,∞).

The nearest-neighbor coupling that is inherent in the Gauge Laplacian suggests a further reduction of the
problem using an odd-even (or red-black) reduction. Splitting the lattice sites into two sets, O and E, by

O := {(k, `) : k + ` odd}, E := {(k, `) : k + ` even}
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Figure 1. odd-even reduction

and ordering the variables such that all odd sites appear before the even ones, the matrix A exhibits the
2× 2 block form

A =
(

I A(oe)

A(eo) I

)
.

The Schur complement of A resulting from this “odd-even” reduced system is then given by A(ee) = I −
A(oe)A(eo) .

Figure 1 illustrates the odd-even reduction: the 5-point stencil in the original system becomes a 9-point
stencil in the odd-even reduced system.
The odd-even splitting is motivated by the fact that a solution ϕ̃ of the odd-even reduced system A(ee)ϕ̃ = ψ̃
can be easily interpolated exactly to the solution ϕ of the original system by

(2) ϕ =
(
A(oe)

I

)
ϕ̃ .

Interpreting this splitting in our reduction-based algebraic multigrid framework, the exact Schur complement
will turn out to be a suitable choice for the first coarse-grid operator using the odd-even splitting. This leads
to a significant reduction in problem size with almost no additional computational cost to retrieve the solution
of the original system. For this reason, we often assume this odd-even reduction has already been performed
as a first coarsening step and work directly on the odd-even reduced system. Hereafter, we state explicitly
when such a reduction is not used.

3.1. Spectral properties of the Gauge Laplacian. From (1), it follows that the Gauge Laplacian is
Hermitian. In our tests, we vary the hopping parameter κ to generate matrices with varying condition
number. For each gauge field configuration, U , there exists a constant κcr for which the Gauge Laplacian
with κ = κcr is singular whereas, for κ < κcr, it is positive definite. In the following, we assume that κ is
chosen to be close to κcr but smaller than κcr, so that the Gauge Laplacian operator is positive definite.

An important feature to consider when developing solvers for the Gauge Laplace system is the character
of the algebraically smooth error of the system matrix, also called the near-kernel. In Figure 2, the modulus,
real, and imaginary parts of the eigenmode with smallest eigenvalue is shown for β = 5 on a 64 × 64 grid,
and the error after 50 Gauss-Seidel iterations applied to this same system with zero right-hand side and
random initial guess is shown in Figure 3. Here, we see that the algebraically smooth error varies locally,
with random behavior induced by the gauge field configuration. As these plots illustrate, the support of
the eigenmodes are local, further adding to the difficulty of defining an effective MG interpolation operator
for the Gauge Laplace system. Our reduction-based MG interpolation is defined adaptively to fit a given
relaxed vector (or some linear combination of eigenmodes), such as the computed vector shown in Figure 3.

Another important aspect to consider is the spectrum of the system matrix. As depicted in Figure 4,
the spectrum of the odd-even reduced system tends to be clustered around its upper bound and only a few
eigenvalues turn out to be small, with the smallest eigenvalue well separated from the second-smallest. Note
that from (2), it is easy to see that the eigenvalues, λ, of A come in pairs λ, 2− λ, and that

spec(A(ee)) = {λ(2− λ) : λ ∈ spec(A)}.
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Figure 2. Modulus, real and imaginary part of the eigenmode to the smallest eigenvalue
for β = 5 on a 64× 64 grid, no odd-even reduction.

Figure 3. Modulus, real and imaginary part of an algebraically smooth error after 50
Gauss-Seidel iterations for β = 5 on a 64× 64 grid, no odd-even reduction.
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Figure 4. Eigenvalues of odd-even reduced Gauge Laplacians for β = 1, 5, 10 on a 32× 32
grid. Depicted on the left hand side are the full spectra; on the right-hand side, a close-up
of the smallest 32 eigenvalues for each temperature is shown.
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When shifting the spectrum by changing the hopping parameter, κ, the relative difference between the
two smallest eigenvalues actually increases. We will see later that this property of the Gauge Laplacian (in
its odd-even reduced form) has a major influence on the adaptive setup process.

4. Theoretical considerations: two-level convergence estimates for our “modified”
AMGr solver

Consider a decomposition of Cn into two subspaces, Vc and Vf , given by a splitting of these n variables into
two sets, the coarse (C) and fine (F) variables. This decomposition induces the following block two-by-two
representation of the Hermitian and positive-definite n× n matrix A:

(3) A =
(
Aff Afc
Acf Acc

)
.

As explained in [22], from a variational point of view, the operator

P∗ =
(
−A−1

ffAfc
I

)
is the “ideal” interpolation operator, in the sense that a V (1, 0) cycle with Galerkin coarse-grid operator and
exact relaxation on F leads to a direct solver. As A−1

ff is generally dense, however, a sparse approximation
to A−1

ff is needed to define a practical interpolation operator and, thereby, a variational multigrid algorithm.
In the multigrid literature, the various multilevel iterations whose design is based on such an approximation,
are typically referred to as reduction-based AMG methods (AMGr), following [30], because of their close
relation to total-reduction approaches.

Before describing our choice for the approximation of A−1
ff and the resulting algorithm, we briefly recall the

ideas and ingredients of the adaptive AMGr method from [22]. In particular, to expose the main differences
between our “modified” AMGr solver and the AMGr method introduced in [22], we first recall the main
assumptions of the latter method.

In the following, the notation A ≤ B between Hermitian matrices A and B is meant to be with respect to
the cone of positive-semidefinite matrices, i.e., A ≤ B if and only if ϕHAϕ ≤ ϕHBϕ for all ϕ ∈ Cn, where
ϕH denotes the Hermitian transpose of the vector ϕ.

The main assumption in [22] is that there exists an easy-to-invert approximation D to Aff that can be
used in both the definition of interpolation and the F-relaxation. Interpolation is then given by

PDP
=
(
−D−1Afc

I

)
and the relaxation operator as

(4) M = ω

(
D−1 0

0 0

)
.

Sufficient conditions on D that guarantee convergence of a two-level method with error-propagation operator
given by

(5) E = (I − P (PHAP )−1PHA)(I −MA),

i.e. with one step of pre-smoothing, have been given in [22] as

(6) D ≤ Aff ≤ (1 + ε)D,

for any fixed ε > 0 and

(7) 0 ≤ AD =
(
D Afc
Acf Acc

)
.

This result also holds with an arbitrary number of pre- or post-relaxation steps. The spectral equivalence
relation (6) can be viewed as a smoothing property ofD with respect to the set of fine variables F . Compatible
relaxation [4, 6, 17, 21] or the method of greedy partitioning [23] generate splittings where the set of fine
variables, F , yields an Aff block that is well approximated by a known matrix, D. In this light, Relation
(6) states that D defines a convergent smoother on the F-variables. Relation (7), on the other hand, can be
interpreted as a requirement on the interpolation operator and, hence, the coarse-grid operator.



ADAPTIVE REDUCTION-BASED MULTIGRID 7

Under assumptions (6) and (7), and assuming ω = 2
2+ε in (4), the following estimate on the convergence

of the two-grid method was proved in [22]:

(8) ‖E‖2A ≤
ε

1 + ε

(
1 +

( √
ε

2 + ε

)2
)
.

In [22, 23], approaches for finding D were focused on satisfying (6) only. For the problems considered
here, however, enforcing (7) appears to be of equal importance. In [22], D is adaptively defined to match
the action of A−1

ff on a specific vector u. In our case, this vector and the resulting D can be complex valued;
however, assumption (7) cannot be fulfilled for such D.

Thus, we now look to generalize these conditions, by using one approximation, DR, for relaxation and
another, DP , for defining interpolation: PDP

=
(
−D−1

P Afc

I

)
. As we show below, the following requirements

on DR and DP also imply the convergence of the two-level method with a bound on the error propagation
matrix similar to that in (8):

(9) λDR ≤ Aff ≤ ΛDR ,

(10) θPH∗ AP∗ ≤ PHDP
APDP

≤ ΘPH∗ AP∗ ,

for some positive constants, λ, Λ, θ, and Θ. The proof of this convergence result uses the convergence
estimate (See [17]) for the two-grid operator, Etg, with one pre- and one post-smoothing step:

‖Etg‖A = 1− 1
K
,

where the constant K can be bounded as

K ≤ 1
1− γ2

sup
w

wHM̃sw

wHAsw

for constant γ and matrices M̃s and As defined below. This estimate adds further insight into the two-
grid convergence of AMGr methods and also leads to a proof of convergence of AMGr-based methods with
full-grid smoothers, i.e. for the case where, as opposed to (4), the block row of M corresponding to the C
variables is non-zero. For the sake of consistency, we now adopt the notation in [17].

Reduction-based AMGr methods use only smoothing in the space of fine degrees of freedom, F , and, as
such, can be interpreted as multiplicative hierarchical basis methods based on the space decomposition

V = SVs + PVc

with associated interpolation operators P : Vc → V and S : Vs → V . Note that writing V = Cn, so that
Vc = Cnc and Vs = Cns , gives P ∈ Cn×nc and S ∈ Cn×nf . In general, we assume that [S, P ] is a square
invertible matrix, so that nf +nc = n. This is obviously fulfilled in the case where P = [WI ], for W ∈ Cns×nc

and S = [ I0 ]. In this case, the splitting in (4) is direct.
In the following, we impose certain restrictions on these subspaces to define a two-grid hierarchical basis

method. First, define the coarse-grid matrix Ac and its hierarchical complement As as

Ac = PHAP, As = SHAS .

Additionally, for a given smoother, Ms : Vs → Vs for As (on Vs), define its symmetrized version,

M̃s = MH
s

(
MH
s +Ms −As

)−1
Ms,

and introduce the following variational definition of the Schur complement, SA, of A, induced by the above
space decomposition,

vHSAv = inf
w

(Sw + Pv)H A (Sw + Pv) .

Note that this definition of SA is equivalent to the usual definition, SA = Acc − AcfA−1
ffAfc (cf. [1, Thm.

3.8]).
The strengthened Cauchy-Bunyakowski-Schwarz (CBS) inequality [1, Eqn. (9.5)], which provides a bound

on the abstract angle between two subspaces, can also be used to bound the spectral equivalence between
Ac and SA, as needed in (10). Let γ ∈ [0, 1) be the smallest constant such that

〈Sw,Pu〉2A ≤ γ2‖Sw‖2A‖Pu‖2A ∀w ∈ Vs,∀u ∈ Vc .
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Due to [17, Lemma 2.1], it follows that (
1− γ2

)
Ac ≤ SA ≤ Ac

or, equivalently,

(11) SA ≤ Ac ≤
1

1− γ2
SA .

The two-grid hierarchical basis method (a symmetric two-level AMGr method) is defined by the error
propagation operator

E = I −B−1A =
(
I − SM−Hs SHA

) (
I − PA−1

C PHA
) (
I − SM−1

s SHA
)
.

Note that we assume here that the cycle uses both pre- and post-smoothing.

Theorem 4.1. Let Ms be Hermitian and positive definite, and let γ be the smallest constant such that
relation (11) holds. Assume that there exist positive constants 0 < c1 ≤ c2 < 2 such that

(12) c1Ms ≤ As ≤ c2Ms.

Then Ms is a convergent smoother for As. Furthermore, the two-grid multiplicative hierarchical-basis method
defined by E with smoother Ms satisfies

‖E‖A ≤ 1− 1− γ2

α
, where α = max

(
1

c1 (2− c1)
,

1
c2 (2− c2)

)
.

Proof. First note that c1Ms ≤ As ≤ c2Ms implies c1I ≤ M
−1/2
s AsM

−1/2
s ≤ c2I which gives (1 − c2)I ≤

I−M−1/2
s AsM

−1/2
s ≤ (1−c1)I. It follows that ρ(I−M−1

s As) = ρ(I−M−1/2
s AsM

−1/2
s ) ≤ max{|1−c1|, |c2−

1|} < 1 and, so, Ms defines a convergent smoother for As. Due to [17, Theorem 4.2], we also have that

(13) A ≤ B ≤ KA, where K ≤ 1
1− γ2

sup
w

wHM̃sw

wHAsw
.

Thus,

(14) ‖E‖A ≤ 1− 1
K

.

Note that supw
wH fMsw
wHAsw

can equivalently be defined as the smallest β for which M̃s ≤ βAs. Now,

M̃s ≤ βAs ⇔Ms (2Ms −As)−1
Ms ≤ βAs

⇔ A
− 1

2
s MsA

− 1
2

s

(
2A−

1
2

s MsA
− 1

2
s − I

)−1

A
− 1

2
s MsA

− 1
2

s ≤ βI.

From (12), 1
c2
I ≤ A−

1
2

s MsA
− 1

2
s ≤ 1

c1
I and, thus,

(15) β ∈
{

t2

2t− 1
: t ∈

[
1
c2
,

1
c1

]}
.

Note that 1
c2
> 1

2 by the hypothesis. Taking the maximum of the set in (15), we see that

β ≤ α = max
(

1
c1 (2− c1)

,
1

c2 (2− c2)

)
.

Thus, supw
wH fMsw
wHAsw

≤ α, and

(16) K ≤ α

(1− γ2)
.

Combining this with (14), we have

‖E‖A ≤ 1− 1− γ2

α
.

�
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Corollary 4.1. Let the Hermitian and positive-definite matrix Ds be given and the assumptions of Theorem
4.1 be satisfied. Further, assume that there are positive constants, λ and Λ, such that λDs ≤ As ≤ ΛDs.
Define the smoothing operator Ms as

(17) Ms =
1
σ
Ds, for σ =

2
Λ + λ

.

Then,

‖E‖A ≤ 1− 4λΛ
(Λ + λ)2

(
1− γ2

)
.

Proof. With (17), we have c1 = 2λ
Λ+λ and c2 = 2Λ

Λ+λ so that

1
α

= c1 (2− c1) = c1c2 =
4λΛ

(Λ + λ)2 .

�

The requirements in (9) and (10) are tailored to reflect the smoothing property of DR and the quality
of interpolation defined by DP compared to the ideal interpolation operator P∗. For a given choice of Ds,
the bound in (9) can be directly turned into a bound on ‖E‖A, as in (17). The relationship between (10)
and (11) arises through the strengthened Cauchy-Bunyakowski-Schwarz inequality for the coarse subspace
spanned by P and the corresponding fine subspace, measuring the abstract angle between them. A more
thorough analysis of this relation can be found in [17,28].

Following [17], we can also derive an estimate for the convergence of a two-grid method that uses full
smoothing, i.e. smoothing on both F and C, rather than smoothing on only F . Hence, this result also applies
to full-grid Jacobi or Gauss-Seidel smoothing, which are of interest in a final implementation as they tend
to yield far superior smoothing properties than F-smoothing alone.

To analyze this case, consider a two-grid method given by its error propagator,

Etg = I −B−1
tg A .

Generalizing the above approach, we can interpret the two-grid method with full smoothing in the same
framework as was used for the analysis of the F-smoothing case. Instead of using a smoother, Ms, on Vs
with ‖I −M−1

s As‖As ≤ 1, we consider a smoother M ∈ Cn×n with ‖I −M−1A‖A ≤ 1. Note, that this is
equivalent to assuming that S = I ∈ Cn×n. The two-grid preconditioner B−1

tg may than be written as

B−1
tg =

[
I P

]
B̂−1
tg

[
I
PH

]
with

B̂−1
tg =

[
I −M−HAP
0 I

] [
M̄−1 0

0 A−1
c

] [
I 0

−PHAM−1 I

]
.

Assuming that M̃ gives a convergent smoother for A with

A ≤ M̃ ≤ κA

and that P is chosen so that

Ac ≤ νSA,

then [17, Theorem 5.1] gives the bound

‖Etg‖A ≤ 1− 1
νκ

.

If ν and κ are independent of n, then this bound is independent of the problem size. For the F-smoothing
case, we can look at (17) as a refinement of the condition on M̃ , while the conditions on Ac are equivalent
in the two cases.



10 J. BRANNICK, A. FROMMER, K. KAHL, S. MACLACHLAN, AND L. ZIKATANOV

5. Implementation details and practical issues

In this section, we give a detailed discussion of the practical issues that must be addressed when designing
an effective adaptive AMGr setup algorithm for the disordered and nearly singular systems arising in lattice
gauge theories. Particular attention is paid to the two-level setup algorithm, noting that the multilevel
algorithm follows immediately from recursion. While many other approaches are possible, we consider only
a variational construction and, thus, limit our discussion to the construction of interpolation, P . In Section
6, we will consider a fixed choice of relaxation (Gauss-Seidel on the full matrix, A).

5.1. Compatible-relaxation-based coarse-grid selection. The first main task in the AMG setup al-
gorithm is the partitioning of the grid into appropriate sets of coarse and fine variables. Given a certain
localized structure of the linear operator A, as occurs in most discretizations of PDEs, a coarse-grid variable
u

(c)
k is generally defined through a weighted linear combination of fine-grid variables and “nearby” coarse-grid

variables [4]
u

(c)
k =

∑
i

µkiui .

In our approach, however, we will take the more-standard approach and assume that the coarse-grid variables
are simply a subset of the fine-grid variables.

We consider various compatible relaxation (CR) based approaches for partitioning the fine degrees of
freedom (dofs) into a coarse set, C, and its complementary set, F , the fine-level-only dofs. In its simplest
form, compatible relaxation is a relaxation scheme that is confined to the fine-grid variables keeping the
coarse-grid variables fixed. As shown in [16], the convergence rate of compatible relaxation is directly
related to the convergence of the algebraic multigrid method that incorporates the same coarse grid and
can, thus, be viewed as a quality measure of the coarse set. As such, compatible relaxation can be used to
develop a practical adaptive approach for coarse-grid selection [4, 6, 21].

In our context, fast convergence of CR can be used to show that Aff , the restriction of A to the set F ,
is well conditioned with respect to Mff , the restriction of the relaxation matrix to F , an essential condition
for bounding (12) with reasonable constants, c1 and c2. Indeed, if we consider compatible relaxation with
error-propagation operator defined by Ef = I −M−1

ff Aff and let

(18) ρ(Ef ) ≤ a < 1

and λ be any eigenvalue of M−1
ff Aff , then 1− λ is an eigenvalue of I −M−1

ff Aff . From (18), we have that

|1− |λ|| ≤ |1− λ| ≤ a, implying 1− a ≤ |λ| ≤ 1 + a.

Thus, κ(M−1
ff Aff ) ≤ (1 + a)/(1 − a). It also follows from (18) that Mff is positive definite. The smallest

eigenvalue of Aff is, then, estimated as

λmin(Aff ) = inf
ϕ6=0

ϕHAffϕ

ϕHϕ
≥
λmin(M−1/2

ff AffM
−1/2
ff )

λmax(M−1
ff )

=
λmin(M−1

ff Aff )

λmax(M−1
ff )

≥ (1− a)λmin(Mff ).

Estimating the maximum eigenvalue of Aff in a similar fashion leads to the inequality

(19) λmax(Aff ) ≤ (1 + a)λmax(Mff ).

It then follows that

κ(Aff ) ≤ κ(Mff )
1 + a

1− a
and, similarly, (1− a)Mff ≤ Aff ≤ (1 + a)Mff .

For the Jacobi relaxation scheme, this bound can be interpreted as the spectral equivalence of Aff and its
diagonal, Dff . This, then, can lead to a proof that fast convergence of CR implies a well-conditioned Aff
for certain problems that arise from PDE discretizations.

Promising adaptive coarse-grid selection techniques have been developed based on the idea of compatible
relaxation [6,9,21]. In the compatible relaxation framework, the quality of a given C/F-splitting is measured
by the convergence rate of relaxation on the F-variables with the C-variables fixed. Aiming at a specified
convergence rate a, CR approaches successively add variables to the set of coarse variables until the target



ADAPTIVE REDUCTION-BASED MULTIGRID 11

convergence factor is achieved. Starting with an empty set of C-variables, compatible relaxation exposes
variables for which relaxation convergence, when measured by the pointwise change in a known error, is slower
then a chosen threshold. Because each variable influences the convergence of variables in their neighborhood
when using a local relaxation scheme (such as Richardson, Jacobi, or Gauss-Seidel), it may not be necessary
to add all variables that are slow to converge in CR to the set C. Instead, in each cycle a maximally
independent set of slow-to-converge variables is added to C. This process is repeated until the convergence
of CR is deemed to be fast enough. A detailed description of the algorithm considered here can be found
in [6]. For completeness, we also include pseudocode for this approach in the appendix as Algorithm 1.

Results such as Theorem 4.1 and its corollary can also be useful for development of coarsening techniques
that ensure fast convergence of compatible relaxation without having to run CR iterations to test convergence,
a main cost of most CR-based coarsening procedures. In [23], one such algorithm, a greedy strategy using
a measure of diagonal dominance for coarse-grid selection, was introduced. We briefly review this approach
now, referring the reader to Algorithm 2 in the appendix for a more detailed description.

The goal of coarsening is to partition the fine-level variables into disjoint sets, F and C, such that F ∪ C
is the entire fine grid. For a given partition, the following function measures the diagonal dominance of row
i of the resulting matrix Aff :

θi =
|aii|∑
j∈F |aij |

.

Classical diagonal dominance corresponds to θi ≥ 1
2 for all i in this definition. Given a threshold, θ, the

greedy strategy from [23] tries to find the largest subset, F , of the variables, such that θi ≥ θ for all rows i
of Aff .

To do this partitioning, a third set of “undecided” variables, U is introduced to represent variables that
have not been assigned to C or F . A dynamic measure,

(20) θ̂i =
|aii|∑

j∈F∪U |aij |

tracks the diagonal dominance of each row in U . If θ̂i ≥ θ for any i ∈ U , variable i is automatically added
to the set of fine variables F . If there are no such variables, the least diagonally dominant variable, i ∈ U ,
is added to the set of coarse variables, C, and the dynamic measure is updated for all variables in the
neighborhood of i (in the grid-interpretation of the matrix A). This procedure is repeated until a splitting
of the problem domain into F and C is achieved (i.e., until U is empty).

As in [23, Theorem 4], the Aff block after the greedy coarse-grid selection satisfies

(21)
(

2− 1
θ

)
Dff ≤ Aff ≤

1
θ
Dff ,

where Dff = diag(Aff ). Clearly, the spectral equivalence of Dff and Aff gets better as θ increases. Note,
that (21) is equivalent to (9) with DR = Dff and λ = 2− 1

θ ,Λ = 1
θ . In Table 1, the performance of the greedy

coarse-grid selection with respect to the theoretical bounds from (21) and the observed best possible bounds,
which can be computed from the respective generalized eigenvalue problem, are provided. In addition, we
estimate the spectral equivalence bounds between Aff and Mff and also report the convergence rate, γCR,
of CR for these partitions. We also report on the CR convergence rates for compatible relaxation run on
these same problems, for values of a that produce similar coarsening ratios, |C||Ω| .

In general, the best possible equivalence bounds for the greedy strategy are a lot better than what the
theory predicts. In particular, for θ = 0.55 we obtain a relatively low complexity coarsening along with good
spectral equivalence between Dff and Aff . Because of the similarity between the performance of the greedy
and compatible-relaxation coarsening algorithms, we only give results using compatible relaxation in Section
6.

5.2. Adaptivity in the modified AMGr framework. As proposed in [22], we use an adaptive scheme
to define DP and, hence, the interpolation operator, PDP

. As fast-to-converge Jacobi-CR implies that Aff
can be accurately approximated by a diagonal matrix, we take DP to be diagonal. Under this assumption,
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Greedy Algorithm Performance CR Algorithm Performance
System θ Λth

λth

Λobs

λobs

|C|
|Ω| γCR

β = 1 .55 10 6.539 .299 .648
β = 1 .60 5 4.212 .418 .513
β = 1 .65 3.33 2.938 .499 .446
β = 5 .55 10 6.910 .268 .691
β = 5 .60 5 4.041 .419 .554
β = 5 .65 3.33 3.127 .478 .538
β = 10 .55 10 6.740 .267 .694
β = 10 .60 5 4.113 .421 .570
β = 10 .65 3.33 3.060 .477 .533

System a |C|
|Ω| γCR

β = 1 0.7 .304 .655
β = 1 0.65 .367 .606
β = 1 0.6 .379 .568
β = 5 0.7 .266 .675
β = 5 0.65 .419 .631
β = 5 0.6 .440 .573
β = 10 0.7 .301 .682
β = 10 0.65 .398 .643
β = 10 0.6 .427 .580

Table 1. Greedy coarsening and compatible-relaxation-based coarsening for several odd-
even reduced Gauge Laplacians on a 64× 64 grid, with all systems shifted to have the same
minimal eigenvalue, λmin = 1.0× 10−4.

we choose DP so that D−1
P matches the action of A−1

ff on a given vector u = ( uf
uc

) that corresponds to the
near-kernel; i.e., we require

(22) −D−1
P Afcuc = uf = −A−1

ffAfcuc

for a given uc. The key issue to consider when attempting to design an efficient adaptive AMGr solver
in this setting is then reduced to development of an efficient scheme for computing the prototype, u, used
to define DP . The classical adaptive methods [10–12] use repeated application of the given relaxation
scheme (or the resulting solver) to compute (or improve) the prototype. In general, the two main drawbacks
of this approach are that, first, there is no theoretically founded stopping criterion available for such an
approach that guarantees its optimality; and, second, such a classical adaptive process requires (roughly)
O(log(K)) setup iterations, where K is the condition number of the matrix, to compute a sufficiently accurate
approximation of the prototype [24]. For the Gauge Laplacian, the smallest eigenmode is often not a good
local representative of the algebraically smooth error, which further compounds the difficulty of developing
an adaptive scheme for this system. Our numerical experience suggests that developing the solver using a
setup scheme for the problem shifted to have only a mild smallest eigenvalue, or perhaps a large smallest
eigenvalue, and, then, using the resulting multigrid solver for the unshifted system provides a much more
effective preconditioner than does directly applying the setup to the problem with full shift, which typically
has much larger condition number. This seems to be mainly due to the fact that, as we shift the hopping
parameter towards its critical value, the relative gap between the smallest few eigenvalues and the remaining
ones increases. As this relative gap becomes larger, the adaptive process becomes increasingly dominated by
these few modes.

6. Numerical Results

For our numerical tests, we consider Gauge Laplacians of varying size, mass, and temperature to test
the AMGr-style method. As a benchmark for later tests of our method applied to the GL system, we first
consider the β = ∞ case with Dirichlet boundary conditions, which gives the standard 5-point discrete
shifted-Laplacian operator,

L = −∆− (2π2 −m)I,(23)

obtained using a central-difference discretization. Here, the lowest eigenmode is known and has global
support; specifically, this lowest mode is the restriction of sin(πx) sin(πy) to the grid points, and the lowest
eigenvalue can be determined by the choice of shift, m. This problem was a first test case in the development
of the original adaptive AMG setup process [24]. To illustrate the performance of the original adaptive process
for such problems, we consider this problem with the shift chosen so that the system becomes increasingly ill-
conditioned for fixed problem sizes. As the numerical results provided in Table 2 illustrate, such an adaptive
setup procedure produces an effective solver for this model problem provided that a sufficient amount of
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nrel \ λmin 10−1 10−2 10−3 10−4 10−5 10−6

5 .06 .02 .04 .37 .85 .98
25 .07 .02 .05 .05 .38 .86
50 .07 .02 .05 .05 .17 .66
100 .07 .02 .06 .06 .06 .16
500 .07 .02 .06 .06 .06 .06

exact .07 .02 .06 .06 .06 .06
Table 2. Odd-even reduced 5-pt discretization of the Laplace operator with Dirichlet
boundary conditions shifted to a fixed smallest eigenvalue. V(2, 2)-cycle asymptotic conver-
gence rates with Gauss Seidel smoother, using Gauss-Seidel relaxation applied to a positive
random initial guess in the adaptive setup phase.

work is done to expose the lowest mode of the system matrix (i.e., a sufficient amount of work is done to
ensure that the weak approximation property [3, 26] is satisfied by P , built using this computed vector for
the given shift).

Next, we report the results of this original adaptive setup applied to a highly disordered system. The
numerical results in Table 3 correspond to this scheme applied to a Gauge Laplacian with randomly configured
gauge field. Here, we take β = 5 and N = 64 and again vary the minimal eigenvalue and number of
relaxations used to approximate the lowest eigenmode of the fine-level system. As the numerical results in
Table 3 demonstrate, in contrast to the β = ∞ case, here increasing the number of relaxations used in the
adaptive process eventually leads to degradation in performance of the resulting solver based on this single
mode. Further, we see that this degradation is more severe in cases where the minimal eigenvalue is O(10−3)
or O(10−4). This is consistent in all tests, except for the last column where the minimal eigenvalue is shifted
to be O(10−6). In this case, using the exact lowest mode does provide the best overall solver. This is to
be expected as the weak approximation property implies that P must be able to reproduce this mode very
accurately. Because of the local support of the smoothest eigenvalues for this problem, we see that using the
minimal eigenvector is, in general, a suboptimal choice for the vector in the adaptive setup scheme. While
each of these modes is supported locally, their support does not, in general, overlap exactly. In such cases,
a linear combination of these modes may give a better approximation to the slow-to-converge modes of the
system matrix.

To test this approach, we consider an “artificial” adaptive process that uses a linear combination of the
eigenvectors associated with the k smallest eigenvalues of the system matrix, weighted by the reciprocal
of their eigenvalues, as the vector to be fit in the adaptive setup phase. We choose k = 10 as this gives
good performance in our numerical tests. Results for this approach are shown in Table 3 in the line labeled
“LC”. Here, we see that the performance of the stand alone MG solver based on this approach is not, in
general, better than that of the solver based on P defined using a prototype computed using relaxation.
As the lowest modes can be local, using relaxation (or a linear combination of the ten smallest eigenmodes
computed exactly) does not produce an AMGr-style P that satisfies the weak approximation property [3,26],
which requires accuracy in the computed prototype proportional to its Rayleigh Quotient. However, both
methods produce a P that leads to an effective variational MG preconditioner.

The results in Table 4 are for various problem sizes and choices of β. Here, P is defined using the prototype
computed by using relaxation and also by taking a linear combination of the ten lowest modes. As before,
we see that both solvers perform well as a preconditioner for CG. Overall, our proposed AMGr-style method,
based on a single prototype, is not expected to produce an optimal stand-alone solver for these systems. Our
numerical results suggest that the approach does, however, have potential for dramatically improving CG
performance for cases where the more expensive multiple-vector type adaptive methods (e.g., α SA) are not
applicable. An example of such setting was mentioned earlier, where only O(1) right side system solves are
needed for a given gauge field configuration.
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nrel \ λmin 10−1 10−2 10−3 10−4 10−5 10−6

5 .4 (9) .79 (15) .97 (19) .99 (21) .99 (23) .99 (25)
25 .32 (9) .53 (11) .83 (14) .98 (15) .99 (17) .99 (18)
50 .31 (8) .55 (11) .72 (12) .95 (14) .99 (15) .99 (17)
100 .28 (8) .52 (10) .65 (13) .9 (14) .99 (16) .99 (17)
300 .32 (8) .48 (10) .53 (10) .54 (10) .61 (11) .89 (13)
500 .33 (8) .5 (10) .6 (11) .6 (11) .60 (11) .62 (11)

exact .31 (8) .53 (10) .61 (12) .61 (11) .62 (12) .62 (12)
LC .35 (8) .43 (9) .67 (11) .67 (12) .62 (11) .62 (12)
CG * (44) * (75) * (107) * (231) * (343) * (435)

Table 3. Odd-even reduced Gauge Laplace operator with periodic boundary conditions
shifted to a fixed smallest eigenvalue. V(2, 2)-cycle asymptotic convergence rates with Gauss
Seidel smoother, using Gauss-Seidel applied to a complex-valued random initial guess in the
adaptive setup phase. In parentheses, we report the iteration count for preconditioned
CG to reduce the initial residual by a relative factor of 108. For the line labeled “LC”, a
linear combination of the eigenvectors associated with the ten smallest eigenvalues of the
system matrix, weighted by the reciprocal of their eigenvalues as the vector to be fit in
the adaptive setup phase. The line labeled CG contains iteration counts of the Conjugate
Gradient method applied to this system as a stand-alone solver; again the (relative) residual
is reduced to 10−8 in these tests.

β \ N 32 64 128 256
1 11 / 12 10 / 14 15 / 15 11 / 14
5 12 / 15 11/ 15 15 / 15 14 / 16
10 7 / 11 13 / 15 17 / 16 19 / 17

Table 4. Odd-even reduced Gauge Laplacians of various sizes and temperatures β, shifted
to have smallest eigenvalue 1

N2 . AMGr 2-level V(2, 2) preconditioner with Gauss-Seidel
smoothing for CG using both a linear combination of the smallest ten eigenmodes, scaled
by their associated inverse RQs to define P (shown first) as well as using relaxation to define
the prototype in the definition of interpolation (shown second).

6.1. Non-linear adaptive cycling schemes. A possible (practical) variant of the stationary adaptive
setup schemes for the GL systems is given by a non-linear iteration in which we consider integrating the
adaptive setup and solve phases into a single, non-linear, solution process. The most basic implementation of
non-linear adaptive cycling schemes is to run the solver for the homogeneous and the inhomogeneous systems
simultaneously and use the homogeneous system to improve the solver while solving the inhomogeneous
problem. If we start with an AMG method with error-propagation operator M and apply a small number
of steps of the method to both the homogeneous and inhomogeneous systems, we can adaptively tune our
approach. If the convergence of the solver measured on the homogeneous system is fast enough, we continue
to use this method for the non-homogeneous system of interest. If, on the other hand, the convergence factor
of the method on the homogeneous system is larger than a certain threshold, we incorporate the current error
computed for the homogeneous system as a new near-kernel prototype in an additional reduction-based AMG
setup process to define a new method and, then, continue the iteration using this method. Heuristically, this
method is motivated by the fact that each of these successive AMG methods removes certain components of
the near-kernel, but fails to remove others. Incorporating the evolving error into a new AMG method yields
an effective iteration for treating this error in the inhomogeneous system. To prohibit previously treated
error from reappearing in the solution, we can cycle through a set of methods created in this non-linear
adaptive process. In Figure 5, we provide a plot of the residual versus number of nonlinear adaptive AMG
iterations applied to the Gauge Laplacian with β = 1 and N = 64. We note that the number of nonlinear
iterations needed to reduce the residual by 108 is again significantly less for this adaptive scheme than it is
for the CG solver. Further, we mention that the iteration counts reported here are for the nonlinear solver
applied as a stand alone solver, as opposed to a preconditioner to CG. Combining our nonlinear scheme
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Figure 5. Performance of nonlinear adaptive solver to applied to the Gauge Laplacian with
β = 1 and N = 64.

with a flexible CG solver [27] will improve the performance of this method. Finally, we mention that our
reported results are representative of the performance of this solver for varying problem sizes, shifts and
configurations of the gauge field.

7. Concluding remarks

In this paper, we analyze and develop an adaptive reduction-based AMG algorithm for highly disordered
nearly singular systems encountered in gauge theories discretized on a lattice. We provide two-level conver-
gence theory for AMGr-type methods for HPD matrices. Using this theory, we develop practical measures
and tools for constructing an effective MG method for such systems. Further, we explore variants of this
adaptive AMGr process for a simplified two-dimensional Gauge Laplacian system and show that these ap-
proaches can provide effective preconditioners in this setting. The reduction in iteration counts of our solver
over CG, coupled with the low grid and operator complexities of this MG method that results from our
chosen form of interpolation are, thus, expected to significantly improve time to solution for this Gauge
Laplace system. Further, as the problem size increases, this improvement is expected to become even more
dramatic.

8. appendix

Algorithm 1 describes the implementation of the CR coarsening strategy. Introducing a measure for
the slowness of an F-variable and using the notation C∗ for the slow-to-converge variables, the algorithm
proceeds as follows.

Algorithm 2 describes our implementation of the greedy coarsening strategy. Defining Adj(j) = {i 6=
j|aij 6= 0} the algorithm is as follows.
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