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Abstract. Standard (single-level) incomplete factorization preconditioners are known to success-
fully accelerate Krylov subspace iterations for many linear systems. The classical modified incomplete
LU (MILU) factorization approach improves the acceleration given by (standard) ILU approaches,
by modifying the nonunit diagonal in the factorization to match the action of the system matrix
on a given vector, typically the constant vector. Here, we examine the role of similar modifications
within the dual-threshold ILUT algorithm. We introduce column and row variants of the modified
ILUT algorithm and discuss optimal ways of modifying the columns or rows of the computed factors
to improve their accuracy and stability. Modifications are considered for both the diagonal and off-
diagonal entries of the factors, based on one or many vectors, chosen a priori or through an Arnoldi
iteration. Numerical results are presented to support our findings.
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1. Introduction. As physical models become ever more complex, they often re-
sult in the need to solve linear systems that are not only much larger than in the past
but also intrinsically more difficult. Due to their larger sizes, these systems cannot
practically be solved by direct methods, and this increases the demand for reliable
forms of iterative methods that can be substituted for direct solvers. Iterative tech-
niques based on a combination of a preconditioner and a Krylov subspace accelerator
are the most common alternatives to direct methods, as they offer a good compromise
between cost and robustness. Much of the recent research effort on solving sparse lin-
ear systems by iterative techniques has been devoted to the development of effective
preconditioners that scale well while offering good reliability.

In this regard, multilevel methods that rely on incomplete LU (ILU) factorizations
have been advocated by many authors in recent years [1, 5, 6, 7, 20, 22, 24, 25, 26,
32, 35]. While multigrid techniques [12, 38] and their algebraic counterparts (AMG)
[31, 39] are known to be optimally efficient for solving some classes of discretized
partial differential equations on regular meshes, they may become ineffective when
faced with more general types of sparse linear systems. However, the “multilevel”
or “multistage” ingredient of multigrid can be easily married with general-purpose
qualities of ILU preconditioners to yield efficient, yet more general-purpose, solvers.

This paper does not aim at exploring new methods within the multilevel ILU
class of techniques. It focuses instead on improving the basic component of ILU-based
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MODIFIED ILUT A49

preconditioners, namely, the ILU factorization itself. Among the various options of
ILU considered in the literature is the modified ILU factorization (MILU) proposed by
Gustafsson [19] for the symmetric case (modified incomplete Cholesky or MIC). Note
that for five-point matrices, MIC(0), where the nonzero pattern of the resulting factors
is restricted to match that of the original matrix, is equivalent to the method proposed
in 1968 by Dupont, Kendall, and Rachford [16]. The modification in the MIC(0)
technique consists of, for every row, tracking the entries dropped in the factorization
and adding their sum to the diagonal entry of that same row. This has the same effect
as adding to the diagonal entry before computing the factorization, a process known
as shifted incomplete LU (or shifted incomplete Cholesky) factorization [23, 27].

The result of the modified ILU process is that the product of the factors, LU ,
and the original matrix, A, give the exact same result when applied to a vector
with constant entries. This rationale is derived from a continuity argument: the
matrix, LU , that approximates A should be exact on constants in the domain when
A corresponds to the discretization of an elliptic PDE. It can be observed that for
matrices arising from such PDEs, MILU may be vastly superior to a standard ILU, and
this improvement comes at virtually no extra cost. The method has been extensively
analyzed and has given rise to a few variants; see, for example, [14, 15, 19, 29, 40].
However, most of the work on these so-called diagonal compensation techniques, to
which MILU belongs, has been devoted to matrices arising from PDEs, as the analysis
for the case of general sparse matrices is difficult. For the same reason, the use of
these techniques for the threshold-based factorization, ILUT, has been avoided.

The focus of this paper is on combining modification strategies with threshold-
based factorization, leading to new modified ILUT (MILUT) algorithms. Standard
threshold-based incomplete LU (ILUT) factorization algorithms (both row-based and
column-based) are reviewed in section 2. Section 3 presents three approaches that can
be used to improve standard modification procedures. First, in section 3.1, we exam-
ine the question of relaxed compensation, where the modification process is tempered
with the goal of improving the stability of the resulting LU factors. Here, we propose
a strategy that aims to balance the accuracy of the MILUT factors with their stability.
Second, section 3.2 extends this approach using complex-valued modifications, par-
ticularly in the context of indefinite operators; such approaches have been examined
in many recent papers aimed at the numerical solution of the Helmholtz equation
(see, for example, [3, 18, 30, 41]). Finally, section 3.3 examines the question of which
vector, or vectors, should be used to guide the modification procedure, and how clas-
sical diagonal compensation strategies can be extended for matching multiple vectors.
Here, a new “adaptive” modification scheme is proposed, where the modification vec-
tors are chosen based on an Arnoldi iteration, rather than being prespecified as in
typical MILU strategies; this is analogous to the family of adaptive algebraic multi-
grid methods that have been recently established in the literature [8, 9, 10, 11, 37].
Numerical results for these methods are given in section 4. Section 5 presents some
concluding remarks.

Throughout the paper, superscript H is used to denote the Hermitian transpose,
as we consider matrices and vectors that may be complex valued. In the case of real
arithmetic, superscript T is used instead.

2. ILU factorization with thresholds. A common way to define a precon-
ditioner is through an ILU factorization obtained from an approximate Gaussian
elimination process. When Gaussian elimination is applied to a sparse matrix, A, a
large number of nonzero elements in the factors, L and U , may appear in locations
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A50 S. MACLACHLAN, D. OSEI-KUFFUOR, AND Y. SAAD

occupied by zero elements in A. These fill-ins often have small values and, therefore,
they can be dropped to obtain a sparse approximate LU factorization, referred to as
an incomplete LU (ILU) factorization. The simplest of these procedures, ILU(0) is
obtained by performing the standard LU factorization of A and dropping all fill-in
elements generated during the process. Thus, the factors, L and U , have the same
pattern as the lower and upper triangular parts of A (respectively).

In the early work on ILU preconditioners, it was understood that ILU(0) could be
ineffective and that more accurate factorizations could be needed. Such factorizations,
denoted by ILU(k) and IC(k) (for incomplete Cholesky in the symmetric case), were
initially derived by adopting a strategy to drop fill-ins according to their so-called
levels-of-fill, first defined in the reservoir simulation literature [42]. Level-1 fill-ins,
for example, are generated by products of level-zero fill-ins (at most); ILU(1), then,
arises by keeping all fill-ins that have level zero or one and dropping any fill-in whose
level is higher.

Because the level-of-fill concept was founded on properties of M -matrices, alter-
native techniques were soon developed for general sparse matrices. One of the first
contributions along these lines is by Munksgaard [28], who defined an ILU factor-
ization that uses a drop tolerance. Another method in the same class is ILU with
threshold (ILUT) [34]. ILUT is a procedure based on a form of Gaussian elimination
in which the rows of L and U are generated one by one. This row-wise algorithm is
based on the so-called IKJ (or delayed update) Gaussian elimination process, whereby
the ith step computes the ith rows of L and U , see Algorithm 1.

Algorithm 1. IKJ-ordered Gaussian Elimination.
0. For i = 1 : n, do:
1. w = Ai,1:n

2. For k = 1 : i − 1, do:
3. wk := wk/uk,k

4. wk+1:n := wk+1:n − wk · Uk,k+1:n

5. Enddo
6. For j = 1, . . . , i− 1, li,j = wj (li,i = 1)
7. For j = i, . . . , n, ui,j = wj

8. Enddo
Here, and in all following discussion, ai,k, li,k, and ui,k represent the scalar entries

at the ith row and kth column of the matrices A, L, and U , respectively, Ai,1:n denotes
the complete ith row of A (transposed as a column vector), while A1:n,j denotes the
jth column of A, wk+1:n denotes the last n − k entries in the vector w, Uk,k+1:n

denotes the last n − k entries in the kth row of U (transposed as a column vector),
Li,1:i−1 denotes the first i − 1 entries in the ith row of L (transposed as a column
vector), and so forth. Of note in Algorithm 1 is that at the ith step, the ith row of
A is modified by previously computed rows of U , while the later rows of A and U are
not accessed. The incomplete version of this algorithm is based on exploiting sparsity
in the elimination and dropping small values according to a certain “dropping rule.”

The dropping strategy in [34], which we follow in this paper, uses two parameters.
The first parameter is a drop tolerance, τ , which is used mainly to avoid doing an
elimination if the pivot, wk, is too small. The second parameter is an integer, p, which
controls the number of entries that are kept in the ith rows of L and U . Details can be
found in [34, 36]. An illustration of the elimination process is shown in Figure 2.1(a),
and a sketch of the general structure of the algorithm is given next as Algorithm 2.

As shown in Figure 2.1(a) and in Lines 3 and 4 of Algorithm 2, the pivot, wk, is
computed and compared with the dropping parameter, τ , and dropped if it is smaller
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(a) Row-based ILUT

li1 li2 w

column j

not accessed

(b) Column-based ILUT

Fig. 2.1. Illustration of the row-based (at left) and column-based (at right) ILUT algorithms.

relative to some scaling parameter. Otherwise, operations of the form w = w−wkuk

are performed to eliminate the entry associated with the pivot entry wk. In lines 8
and 10, the threshold, τ , is invoked again to drop small terms; then the largest p
entries in the resulting ith rows of L and U are kept, and the others are dropped.

Algorithm 2. IKJ-ordered ILUT.
0. For i = 1 : n, do:
1. w = Ai,1:n

2. For k = 1 : i − 1 and if wk �= 0, do:
3. wk = wk/uk,k

4. Apply first dropping rule to wk

5. If wk is not dropped, wk+1:n = wk+1:n − wk · Uk,k+1:n

6. Enddo
7. For j = 1, . . . , i− 1, li,j = wj (li,i = 1)
8. Apply second dropping rule to Li,1:i−1

9. For j = i, . . . , n, ui,j = wj

10. Apply second dropping rule to Ui,i+1:n

11. Enddo
The above algorithm is row-based; for column-oriented programming paradigms

(when using compressed-sparse column formatting, such as within MATLAB), how-
ever, a column-based approach is more efficient. Furthermore, the triangular solves
involving the L and U factors can be efficiently computed using a column-oriented
data structure. For the column version of ILUT, at a given step j, the initial jth col-
umn of A, aj , is transformed by zeroing out entries above the diagonal element. As
in the row version, operations of the form w := w−wklk are performed to eliminate
entries of w from top to bottom, until all entries strictly above the diagonal are zeroed
out. In the ILU case, only a few of these eliminations are performed. An illustration
is shown in Figure 2.1(b), and the complete algorithm is given in Algorithm 3. The
elimination steps can be written in equation form as

(2.1) aj − w1l1 − w2l2 · · · − wj−1lj−1 = ŵ + εU + εL,

where lk is a column of L with k < j and wk is the coefficient used for the elimination
of pivot akj . In order to avoid confusion in the notation, we introduce ŵ as the
version of the transformed w with zero entries in positions 1, . . . , j− 1. Furthermore,
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for the sake of simplifying notation, we write (2.1) for dense columns, so the scalars
wk are understood to be zero except for a few. The column εU contains the terms, wk,
which were dropped by the first dropping rule. The column εL contains the entries
dropped by the post-dropping on w, which is achieved by the second dropping rule.
The resulting column, ŵ, which now has zeros above position j, is divided by its
diagonal entry and becomes the jth column of L, while the scalars wk, representing
the eliminated pivot akj , will constitute the jth column of U . Dropping in lines 3, 7,
and 9 of Algorithm 3 may be handled in the same way as the row variant described
in Algorithm 2.

Algorithm 3. Left-looking or JKI ordered ILUT.
0. For j = 1 : n, do:
1. w = A1:n,j

2. For k = 1 : j − 1 and if wk �= 0, do:
3. Apply first dropping rule to wk

4. If wk is not dropped, wk+1:n = wk+1:n − wk · Lk+1:n,k

5. Enddo
6. For i = j + 1, . . . , n, li,j = wi/wj (lj,j = 1)
7. Apply second dropping rule to Lj+1:n,j

8. For i = 1, . . . , j, ui,j = wi

9. Apply second dropping rule to U1:j−1,j

10. Enddo

3. Modifying ILUT. Two important considerations must be addressed when
constructing an incomplete factorization (or, indeed, any other) preconditioner. Of
primary importance from a theoretical point of view is the accuracy of the precondi-
tioner. This is typically expressed in terms of the spectral equivalence of the precon-
ditioner, B, to the system matrix, A, expressed by conditions such as

(3.1) αxTBx ≤ xTAx ≤ βxTBx ∀x,
when A and B are both symmetric and positive definite. Here, the performance of the
Krylov accelerator may be bounded in terms of the spectral equivalence bound, β

α ,
and this bound may be sharp if the spectrum of B−1A is roughly evenly distributed
between α and β. If, however, the spectrum is significantly clustered, this bound may
be insufficient, since only an upper bound is guaranteed by the theory. On the other
hand, of significant importance from a practical (or computational) point of view is
the stability of the preconditioner. For incomplete factorization preconditioners, this
was first observed by Elman [17], who defined the term and showed that disastrous
situations can arise wherein the norm of U−1L−1 can be huge, even though A is
(relatively) well-behaved. Later, Bollhöfer [4] defined rigorous dropping strategies
with a goal of specifically making the inverse factors, L−1 and U−1, not too large.

The argument behind these robust ILUs is based on writing the matrix, A, as
a sum of the preconditioner plus an error term, A = B + E, and then considering
the resulting preconditioned matrix, B−1A = I + B−1E. When an iterative method
is applied to this preconditioned system, what matters is how well I + B−1E ap-
proximates the identity matrix. In exact arithmetic, all that matters is the spectral
equivalence condition in (3.1); however, for practical computation, the boundedness
in norm of B−1A (or, equivalently, of B−1E) is also important. In many ways, the
stability of a preconditioner is measured directly by ‖B−1E‖ in the L1 or L∞ norm.
For many practical cases, this norm can be much larger than the spectral radius of the
preconditioned system, and this mismatch leads to significant differences between the
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theoretical and actual performance of the preconditioned Krylov iteration. Indeed,
ILUT is quite prone to this type of instability for indefinite problems; it is possible to
construct examples where ‖B−1‖1 is arbitrarily large for simple matrices, A.

Here, we aim to look at the role of modification of the triangular factors within
threshold-based incomplete factorizations from the point of view of both stability and
accuracy. In particular, we consider three questions:

1. Can we extend the classical modified ILU idea, based on diagonal compensation
techniques, to safeguard the stability of the modified ILUT factorization?

2. For indefinite problems, can we use the ideas of complex-valued (and purely
imaginary) perturbations to improve stability of the modified ILUT preconditioners?

3. Can we improve the modified ILUT schemes by adaptively choosing an ap-
propriate vector (or set of vectors) to be used to satisfy the matching constraint?
Furthermore, what modification condition(s) should be imposed when building the
ILUT factorization?

Choosing a vector or set of vectors to match may be motivated primarily by ac-
curacy considerations, which constrain the spectral properties of the preconditioners.
Choosing the conditions to impose on the factorization, on the other hand, amounts
to selecting coefficients so that LU matches A in some optimal way. In all cases,
this is done primarily from the perspective of maintaining stability; a modification
strategy that leads to small diagonal or large off-diagonal coefficients is expected to
harm stability, while one that improves the relative conditioning of coefficients within
a row or column will improve stability.

3.1. Optimal spreading for modified ILUT. In this subsection, we discuss
an extension to the classical modified ILU idea by considering an optimal way of
distributing the compensation term among the nonunit diagonal as well as the L
part of the factorization. Here and in section 3.2, we focus on the column version of
ILUT given as Algorithm 3, while section 3.3 follows the row version of ILUT given
as Algorithm 2.

Recall that from (2.1), ŵ is the vector that results from eliminating nonzeros in
positions 1 through j − 1 in the jth column of A, aj . In the modified version of
ILUT, this column undergoes another modification before it is stored as a column of
L. Specifically, we write the modification as the addition of a column s, giving

(3.2) aj − w1l1 − w2l2 · · · − wj−1lj−1 − (ŵ + s) = εU + εL − s.

We then obtain the diagonal entry of U by setting uj,j = ŵj + sj and the jth column
of L as lj = (ŵ + s)/wj .

Before discussing the choices of s, we note an important practical consequence of
the effect of post-dropping in the U part of w. By this, we mean dropping further
entries among w1, . . . , wj−1 after elimination step j is complete (i.e., after line 5
of Algorithm 3). If, at this stage, any entry, wk for 1 ≤ k ≤ j − 1, is dropped
(i.e., assigned a value of 0), then the resulting correction to (2.1) becomes more
complicated, as it is not just wk but the column wklk that must be accounted for in
(3.2). This means ε = εU + εL will be modified by the addition of wklk, which can
lead to significant additional fill-in elements. This suggests that it is reasonable to
avoid post-dropping in U when we base our analysis on (3.2) and, so, we adopt this
strategy here. An analogous strategy is possible for the lower-triangular factor in the
row-based algorithm; however, since we do not make use of (3.2) in section 3.3, we
do not investigate this possibility for the row-based scheme.
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Following (3.2), we consider the modified vector

(3.3) ŵ + s =

⎛
⎝0
η
l

⎞
⎠+

⎛
⎝0
σ
z

⎞
⎠ ,

where, as discussed above, we choose s to affect only the lower-triangular part of the
factorization. In (3.3), η represents the diagonal entry of the column after elimination
(but before scaling), σ is a perturbation to this diagonal entry, the column vector l
represents the strict lower part of the corresponding (unmodified) column in L, and
z is the perturbation to l.

In the classical modified ILU factorization, we simply take z to be the zero vector
and ask that the inner product of the error vector, ε−s, and a given vector, t, be zero.
In the most common case, t = 1 ≡ (1, 1, . . . , 1)T , giving 1T (ε− σej) = 0 (where ej is
the jth column of the identity), or σ = 1T ε, i.e., the sum of the dropped entries. We
refer to this approach as modified ILU with exact diagonal compensation, since the
exact sum of the dropped entries is added back onto the diagonal. We shall denote this
optimal (exact) compensation, which satisfies the matching constraint with respect
to the vector t, as σ∗. The more general scenario, where t is an arbitrary vector with
no zero elements, leads to

(3.4) tH(ε− σej) = 0 → σ∗ =
tHε

tHej
.

3.1.1. Relaxed compensation. As mentioned earlier, ILUT behaves quite dif-
ferently from the usual ILU(k) strategies and, in particular, exact diagonal compen-
sation may affect the factors in a negative manner when the modified diagonal term,
η+σ, is closer to zero than η, decreasing the diagonal dominance of the row or column
under consideration.

To motivate our proposed strategy, we begin by equation (3.2). Consider the
general situation where the “compensation column,” s, is any column which has at
most the same sparsity pattern as ŵ. Note that ε (the vector of dropped entries) and ŵ
are structurally orthogonal and, therefore, so are s and ε. Thus, ‖ε−s‖22 = ‖ε‖22+‖s‖22,
which suggests that, from the point of view of accuracy, we should keep ‖s‖2 small.
Regarding (3.3), however, we would like to add a portion of the dropped entries to ŵ
with the goal of making the scaled column of L as “stable” as possible. This means
that, from the point of view of stability, we want to modify the diagonal entry of ŵ+s
(i.e., the diagonal entry of U) and, possibly, the lower part as well so that (cf. (3.3))

(A) |η + σ| is not small,
(B) ‖l+ z‖2 is as small as possible.
Considering (A) alone, we must balance the contrasting requirements of accuracy

and stability. Although it is desirable to make the modified diagonal entry |η+σ| large
relative to other entries, one should note that choosing σ to be arbitrarily large would
result in a factorization that poorly approximates the original matrix, A. Thus, it is
necessary to control the size of σ. However, simply applying the exact compensation
by choosing σ = σ∗ as prescribed in (3.4) can adversely affect stability by taking the
diagonal term closer to zero when η and σ have opposite signs. Hence, considering
(A), one option is to add a fraction, α > 0, of σ∗ so that σ = ασ∗.

Considering (B), we aim to choose z, a sparse column with the same sparsity
pattern as l, to simultaneously minimize ‖z‖2 (the additional discarded fill-in) and
‖l+ z‖2, relative to η+ σ (the resulting column of L). However, it is difficult to solve
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this optimization problem, particularly where both unknowns (σ and z) are considered
at the same time. Thus, we formulate an optimization strategy that handles conditions
(A) and (B) above with z as the only unknown; subsequently, we exploit the solution
of this optimization problem as a guide for choosing σ.

So, fixing σ, we pose the optimization problem of

min
z

‖l+ z‖22
|η + σ|2 subject to the constraint |σ|2 + ‖z‖22 ≤ γ2,

where the constraint, |σ|2 + ‖z‖22 ≤ γ2 (for γ > 0), is used to safeguard the accuracy
of the factorization as an approximation to the original matrix, A. We introduce the
penalty term, μ ≥ 0, and solve instead the penalized problem,

min
z

(
1

|η + σ|2 (l
H l+ 2zH l+ zHz) + μ

(|σ|2 + zHz− γ2
))

,

whose minimum is reached when

(3.5) z =
−1

(1 + μ|η + σ|2) l.

From the KKT conditions, complementary slackness implies that μ(|σ|2 + zHz−
γ2) = 0. Recall that μ ≥ 0 and notice that if μ = 0, then the constraint is inactive.
Hence, for μ > 0, we have

zHz = γ2 − |σ|2,
which gives (by substitution of z from (3.5))

|η + σ|4μ2 + 2|η + σ|2μ+

(
1− lHl

γ2 − |σ|2
)

= 0.

We can then solve for μ as

(3.6) μ =
1

|η + σ|2
(
−1 +

√
lH l

γ2 − |σ|2
)
.

To obtain a valid solution for μ, two conditions need to be satisfied. First, we need
μ > 0, implying that

lHl

γ2 − |σ|2 > 1 ⇒ |σ|2 > γ2 − lH l.

Notice that since |σ|2 > 0 and γ2 may be less than lH l, we can express the above
inequality, without loss of generality, as

|σ| >
√
max(γ2 − lH l, 0),

where max(a, b) simply returns the maximum of a and b. While this gives a lower
bound for σ, we also need to ensure that σ is not too large, so that μ remains real-
valued. We further require that

lHl

γ2 − |σ|2 > 0 ⇒ |σ| < γ.
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Putting these two inequalities together, we get that√
max(γ2 − lHl, 0) < |σ| < γ.

In real arithmetic, this reduces to

(3.7) −γ < σ < −
√
max(γ2 − lT l, 0) or

√
max(γ2 − lT l, 0) < σ < γ.

3.1.2. Choice of σ. The parameter γ controls the size of the modifications,
‖s‖22 = |σ|2 + ‖z‖22, and hence must be carefully chosen. Choosing γ = |σ∗|, the
exact diagonal compensation factor from (3.4) naturally lends itself to the modified
ILUT scheme, since it guarantees that σ will be a fraction of the weighted sum of the
dropped terms. For the special case of σ∗ = 0 (when there are no dropped terms or,
more generally, when tHε = 0), the choice of γ > 0 can be based on a default value,
such as the drop tolerance, τ , used in ILUT. When γ > 0, the sign of σ is chosen
to match that of the exact diagonal compensation factor. Thus, in real arithmetic,
if σ∗ < 0, then σ is chosen to satisfy −γ < σ < −√max(γ2 − lT l, 0); otherwise,√
max(γ2 − lT l, 0) < σ < γ.

It remains to pick the size of σ within the interval (
√
max(γ2 − lH l, 0), γ), given

that the optimization problem provides no further guidance. We propose a criterion
based on choosing σ within its allowable interval in order to address the stability of
the resulting factors. Thus, our choice is guided by the size and sign of the resulting
perturbations. For simplicity, we assume real arithmetic in our analysis and provide
a generalization to complex arithmetic afterward.

First note that when l = 0, the optimization problem clearly attains a minimum
with z = 0. Furthermore, extending the inequalities in (3.7) gives |σ| = γ. Thus, we
must consider the choice of σ only when l �= 0. In this case, we have a nontrivial
range of possible values of σ and must choose whether |σ| should be closer to γ or√
max(γ2 − lT l, 0). To make this decision, we return to criterion (A), which states

that |η+σ| should not be “small.” Thus, if η and σ are of different signs, it is sensible
to select |σ| to be close to the lower bound

√
max(γ2 − lT l, 0), so that |η + σ| is

not made smaller than necessary. Assuming this choice of σ is small enough, then
from (3.6) we see that μ is not too large (since γ2 − σ2 is larger) and, hence, z is
a significant modification on l. In other words, adding σ to the diagonal improves
the matching condition, whereas z serves to stabilize the column (balancing out the
negative effect of σ). However, if η and σ are of the same sign, then it makes sense
to choose |σ| to be close to the upper bound, γ, to benefit from both improving the
matching condition as well as stabilizing the column. Notice that this choice of |σ|
increases the magnitude of μ and hence decreases the norm of z.

The choice for σ is then formally defined as

(3.8) σ =

⎧⎨
⎩
0 if lT l = 0,

sgn(σ∗)× (
√
max(γ2 − lT l, 0) + β × ρ) if sgn(η) = sgn(σ∗),

sgn(σ∗)× (
√
max(γ2 − lT l, 0) + ε× ρ) otherwise,

where sgn(.) is the signum function, ρ = γ − √max(γ2 − lT l, 0) is the width of
the interval for choosing σ, ε ∈ (0, 1) is small, and β ∈ (0, 1) is not small. For
general sparse matrices, we propose setting ε to be equal to the drop tolerance, τ ,
of the ILUT factorization and β to be equal to the “diagonal dominance ratio” of
the column, given by β = |aj,j|/‖aj‖1. If the jth column of the original matrix, A,
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is diagonally dominant, then β is closer to one, making σ large. As a result, μ is
also large, which makes the modification with z small. Since the column is already
diagonally dominant, the modification with z need not be significant. On the other
hand, if the jth column of A is not diagonally dominant, then β is small, and the
resulting modification with z is not too small.

For matrices with complex coefficients, (3.8) takes the more general form

σ =

⎧⎪⎪⎨
⎪⎪⎩
0 if lHl = 0,

sgn(σ∗)× (
√
max(γ2 − lH l, 0) + β × ρ) if

sgn(Re(η)) = sgn(Re(σ∗)) and
sgn(Im(η)) = sgn(Im(σ∗)),

sgn(σ∗)× (
√
max(γ2 − lH l, 0) + ε× ρ) otherwise.

The main difference between this form and (3.8) is that the sign comparison between
η and σ∗ takes into account both the real and imaginary parts of the complex term.
Also, note that since the sgn(σ∗) = σ∗/|σ∗| is complex, σ will take on a complex
value as well.

3.2. Complex modification. While the above modification strategy offers an
improvement on unmodified ILUT, even for some very poorly conditioned systems
(see section 4.1), we still observe poor performance when the original system matrix is
very indefinite. This is not altogether surprising, as indefinite linear systems generally
require a more accurate factorization or complicated preconditioning approach, such
as those in [3, 18, 41]. However, simply improving the accuracy of the factorization
(by decreasing the drop tolerance) can yield factors that are even more unstable than
the original system matrix, making the factorization ineffective as a preconditioner.
Diagonal compensation techniques have been proposed to handle this issue [3, 23, 30].
However, real-valued perturbations to the diagonal have been found to be not very
effective, and most of the successful methods have relied on the use of complex (or
imaginary) perturbations instead.

Previous work, such as in [18, 23, 30, 41], has shown that purely imaginary shifts
of symmetric and indefinite problems have the effect of clustering eigenvalues on a
circle in the right half-plane, with an accumulation point near one. This results in a
more stable factorization, which leads to a more effective ILU-based preconditioner.
The approach in these papers is based on shifting the diagonal entries by an ap-
propriate perturbation prior to performing the ILU factorization (shifted ILU). This
is somewhat different from the classical modified ILU approach, which is based on
matching the effect of the preconditioning matrix and the original matrix on some
vector. Nonetheless, ideas from the former approach can be incorporated into the
modified ILU scheme.

If a uniform perturbation σ is used to modify the diagonal in the modified ILUT
scheme and is known prior to the factorization, then the resulting factorization has
the same effect as the shifted ILU scheme. Thus, to motivate the use of a complex σ,
we consider the following simplified analysis. Let A be a Hermitian matrix,

B = A+ σIn,

σ = ν + iθ for some real numbers ν, θ ≥ 0. Suppose that we use the exact LU
factorization of B as the preconditioner, M = LU(B). Then, the eigenvalues of the
preconditioned matrix M−1A satisfy

(3.9) μj =
λj

(λj + ν) + iθ
=

λj(λj + ν)

(λj + ν)2 + θ2
− i

λjθ

(λj + ν)2 + θ2
,
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Fig. 3.1. Spectrum of the preconditioned matrix M−1A, where M = LU(B) for B = A + σIn
and σ = ν + 0.25i.

where the λj are the eigenvalues of A, and the μj are the eigenvalues of the precon-
ditioned matrix, M−1A. From the above equation and the identity λj = 1

2 (λj + ν +
iθ + λj − ν − iθ), we obtain

(3.10)

∣∣∣∣μj − 1

2

∣∣∣∣ = 1

2

|(λj − ν)− iθ)|
|(λj + ν) + iθ)| .

We observe from (3.10) that for ν = 0, all eigenvalues μj of the preconditioned
system lie on the circle centered at 1/2 + 0i with radius 1/2. This, however, is not
true for ν > 0, where a (real) positive λj will be mapped to a complex number within
a distance of 1/2 from the center of this circle, whereas a negative λj will be mapped
to a complex number beyond a distance of 1/2 from the center. Figure 3.1 shows the
spectrum of the preconditioned matrix, M−1A, using the exact LU factors of B = A+
σIn, whereA is obtained from shifting the matrix for the finite-difference discretization
of the Laplace operator, −Δ, on a 25× 25 grid. The discretization assumes a scaling
based on the mesh size parameter, h, so that the resulting matrix initially has 4 on
the diagonal and four off-diagonal entries of −1 each. The matrix is then shifted
by adding a negative shift of −1.0 to the diagonal, to make it indefinite. Note that
(because of the scaling by h2) this shift is quite severe and makes it a challenge
to iterative methods to solve a linear system involving this matrix. The resulting
matrix has size n = 625, with 49 negative eigenvalues (smallest is λ1 = −0.9708 and
largest is λ625 = 6.9708). The figure shows plots of the preconditioned spectrum
with σ = ν + 0.25i, for different values of ν. We observe a better clustering of the
eigenvalues for smaller values of ν. Note, however, that the resulting preconditioner
based on A + σIn will be both indefinite and non-Hermitian; hence, MINRES is no
longer usable as the Krylov solver, and GMRES or BiCGStab must be used instead.

3.2.1. Imaginary perturbations for modified ILUT. While the shifted ILU
(and also shifted multigrid) approaches have been shown to improve on unshifted
preconditioners for indefinite, Helmholtz-type problems, modified approaches based
on similar reasoning offer better control of the perturbation and so more accurate
preconditioners for these problems. In what follows, we present an approach for

D
ow

nl
oa

de
d 

11
/0

5/
13

 to
 1

30
.6

4.
79

.4
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MODIFIED ILUT A59

using imaginary perturbations similar to the compensation strategy described above
to improve the quality of the modified ILUT factorization. To do so, the above
optimization problem is solved replacing σ by iσ (where σ ∈ R). In other words, we
rewrite the problem as

min
z

(
1

|η + iσ|2 (l
H l+ 2zH l+ zHz) + μ( |σ|2 + zHz− γ2)

)
.

Following the same approach as before yields

z =
−1

(1 + μ|η + iσ|2) l.

Note that the penalty term, μ, remains essentially the same as in (3.6), giving the
optimal ranges for σ as

−γ < σ < −
√
max(γ2 − lHl, 0) or

√
max(γ2 − lHl, 0) < σ < γ.

In this approach, the sign of σ is chosen to match the sign of the imaginary part
of the diagonal term, η (if η is complex; if η is real, the sign can be chosen arbitrarily).
This improves |η+ iσ|, making the factorization more diagonally dominant. We then
need to decide whether to take σ to be close to its lower or upper bound within this
interval. As before, choosing |σ| to be close to the lower bound leads to smaller values
of μ and, thus, a larger correction in z. Choosing a larger |σ| (close to the upper
bound), on the other hand, gives a smaller correction in z. This latter option is more
appealing, since the increase in the diagonal entries from the imaginary perturbation
is offset by the more accurate (less perturbed) modification of the rest of ŵ. This
gives

σ = s×
(√

max(γ2 − lHl, 0) + β × ρ

)
,

where ρ is the size of the interval as before, β is close to 1 (e.g., β = 1 − τ , where τ
is the ILUT drop tolerance), and the sign s is defined as

s =

{
1 if Im(η) > 0,
−1 otherwise.

3.2.2. The modified ILUT algorithm with relaxed compensation. Algo-
rithm 4 formally describes the column version of the modified ILUT scheme discussed
above.

Algorithm 4. Left-looking or JKI ordered MILUT.
0. Select a vector, t, for matching
1. For j = 1 : n, do:
2. w = A1:n,j

3. Initialize γ = 0
4. For k = 1 : j − 1 and if wk �= 0, do:
5. Apply first dropping rule to wk

6. If wk is not dropped, wk+1:n = wk+1:n − wk · Lk+1:n,k

7. Else, γ = γ + wk · tj
8. Enddo
9. Apply second dropping rule to wj+1:n
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10. For k = j + 1, . . . , n, if wk is dropped, update γ = γ + wk · tj
11. Do relaxed compensation on wj and wj+1:n with parameter γ
12. For i = j + 1, . . . , n, li,j = wi/wj (lj,j = 1)
13. For i = 1, . . . , j, ui,j = wi

14. Enddo
The above algorithm extends Algorithm 3 by tracking the dropped terms to satisfy

the matching condition. At line 9 of the above algorithm, we prune the L part of w
by applying the second dropping rule prior to performing the modification. This
is necessary because we need to scale the resulting (modified) column of L by the
(modified) diagonal. Furthermore, notice that we avoid post-dropping in U . The
only dropping in U is handled by the first dropping rule (at line 5 of the algorithm).

Note that the updates to the size parameter, γ, accumulate terms of the form wktj
and not, as is usually done in a row-based calculation, wktk. Although we calculate
the ILU factorization in a columnwise manner, the matching condition is always a
row-wise condition, that (At)i = (LUt)i. Accumulating γ, however, is a columnwise
calculation. Thus, we use row-wise values of wk, the dropped fill-in entries, but fix tj
based on the column that we are considering.

3.3. Row-based modification. Finally, we turn our attention to the choice
of t and a generalization where multiple vectors are chosen. Because of the natural
disconnect between row-based matching criteria and column-based factorizations, this
subsection follows a row-based ILUT approach, as given in Algorithm 2.

3.3.1. Choice of vectors. The original modified incomplete Cholesky algo-
rithm [16, 19] may be seen as a modification of the standard incomplete Cholesky
factorization by adjusting the diagonal coefficient to match the constant vector. For
the discretizations of elliptic PDEs considered there, the constant vector is a reason-
able choice from an accuracy point of view as it yields small Rayleigh quotients for
these matrices and, as such, can easily lead to large spectral equivalence ratios, β

α , if
1TB1 is much larger than 1TA1. If A is a symmetric and positive-definite M-matrix,
then the theory of modified incomplete factorizations may be extended based on M-
matrix properties and matching (or nearly matching) a given positive vector (such as
the eigenvector of the M-matrix, A, corresponding to its smallest eigenvalue) [2].

The attraction of modifying the preconditioner B to match the action of A on a
space associated with the eigenvectors corresponding to its small eigenvalues is a nat-
ural one from the perspective of accuracy. Consider the spectral equivalence bound,

αxTBx ≤ xTAx ≤ βxTBx,

for a unit-length vector x that yields a (relatively) small Rayleigh quotient xTAx
xTx =

xTAx ≈ λmin(A). If the action of B on x is far from that of A, it may lead to
either a very small lower equivalence bound α (if xTBx � xTAx) or a large upper
equivalence bound β. Because α and β are relative quantities (the extrema of the gen-

eralized Rayleigh quotient xTAx
xTBx ), they are strongly influenced by inaccuracies when

the numerator is either very small or very large. In particular, a fixed (absolute) error
in xT (B−A)x will most strongly affect the bound for small values of the numerator;
thus, the classical modifications applied for M-matrices make intuitive sense from the
accuracy viewpoint.

Motivated by accuracy, then, the question of which vector (or set of vectors) to
choose for the modification is answered by considering the spectral properties of A.
In the case where A comes from the discretization of a differential equation, these
vectors may be chosen based on the known properties of the differential operator.
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For second-order scalar elliptic differential equations, for example, the constant and
linear functions are in the null-space of the dominant differential operator and so are
good candidates for vectors to be matched. For the equations of linear elasticity, the
so-called rigid body modes of translation and rotation in two or three dimensions
would make good candidates for modification (just as they make good candidates on
which to base the prolongation operator within smoothed-aggregation type multigrid
methods [39]).

If the origins of the matrix A are not as well known, due to either an unknown
discretization process or incomplete knowledge of the original problem, then choosing
such vectors a priori may be difficult or impossible. Instead, an estimate of the extreme
eigenvectors ofAmay be made to use in constraining the preconditioner (similar to the
use of prototypical error vectors in adaptive multigrid algorithms [9, 10, 11]). Using
a limited number of steps of the Arnoldi algorithm, for example, can give good ap-
proximations to the extremal eigenvalues of A, along with the associated Ritz vectors.
Analogously to the classical modified incomplete factorization approach, an estimate
of the smallest eigenvalue of a symmetric and positive-definite matrix, A, can be
made and the preconditioner modified to match the associated approximate eigenvec-
tor. More generally, however, for a fixed (and small) Krylov subspace, estimates of the
eigenvalues ofA closest to zero may be obtained, along with the corresponding approx-
imate eigenvectors; these (approximate) eigenvectors can be used in the modification.

3.3.2. Choice of coefficients. To apply modification to Algorithm 2 after each
row of L and U is computed (including all dropping steps), the computed coefficients
must be modified to match the chosen vector or vectors. When only a single vector,
x, is chosen to be matched, an obvious choice is to modify the nonunit diagonal
(of U) so that LUx = Ax as in the column-based approach discussed above, so
long as this does not make the diagonal entry unduly small. As above, modifying
more coefficients may, however, lead to better stability. When several vectors have
been chosen to be matched, however, only a poor overall matching is possible when
modifying only a single coefficient. In this case, modifying several coefficients allows
a better (and possibly perfect) match of a set of vectors and may also be used to
improve stability.

The choice of which coefficients to modify, however, may greatly affect both the
accuracy and stability of the factorization. If the chosen set forces some large co-
efficients to become small, or small off-diagonal coefficients in L and U to become
large, then the accuracy of the overall preconditioner may suffer. If, in particular, the
nonunit diagonal entry in row i of U is forced to become quite small in comparison to
the off-diagonals in row i, then stability of the computation will be negatively affected,
as discussed above. A simpler strategy than that proposed above for choosing which
coefficients to modify is to choose a subset of the largest coefficients of the L and U
factors. If the misfit for each vector x to be matched is relatively small (((A−LU)x)i
is small compared to xj for j such that li,j and ui,j will be modified), then small mod-
ifications (relative to the size of li,j and ui,j) will be sufficient to match the vectors.
Thus, the stability of the factorization will not be negatively affected by the modifi-
cations, and the accuracy is not expected to suffer significantly either. Alternately,
modification could be used on indices where entries in L and U are expected to be
large based on the pattern of the matrix A. For example, modification of li,j or ui,j

if ai,j �= 0 or if |j − i| is not too large.
Let nv be the number of (linearly independent) vectors to be matched and nc

be the number of coefficients to be modified. Given li,� and ui,�, the ith rows of L
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and U computed within ILUT, we look to modify these rows so that the resulting
factorization satisfies (L̃Ũx(k))i = (Ax(k))i for k = 1, . . . , nv. Writing l̃i,j = li,j + δi,j
and ũi,j = ui,j + δi,j , the matching condition for vector x(k) can be rewritten as∑

j<i

(li,j + δi,j)(Ux(k))j +
∑
j≥i

(ui,j + δi,j)x
(k)
j = (Ax(k))i

or
∑
j<i

(Ux(k))jδi,j +
∑
j≥i

x
(k)
j δi,j = ((A− LU)x(k))i.

So, the updates to the coefficients in row i of L and U can be found by solving
the linear system Xδ = r, where each row in the system matrix X corresponds to
a given vector x(k) with the first i − 1 columns taking values of (Ux(k))j and the

last n − i + 1 columns taking values of x
(k)
j , and each entry in the residual r given

by the misfit rk = ((A − LU)x(k))i. As only a subset of the entries in row i of L
and U will be considered for modification, X can be restricted from n columns to nc

columns, corresponding only to those weights selected for modification. As the rank
of X is at most nv, it is possible for this system to be overdetermined, have a unique
solution, or be underdetermined. In the overdetermined case, a least-squares solution
is considered, minimizing ‖Xδ− r‖. In the underdetermined case, the solution which
results in the smallest changes, δ, to the coefficients in L and U is chosen.

3.3.3. The generalized MILUT algorithm. Algorithm 5 gives the overall
algorithm for computing the modified ILUT factorization of a given matrix A using
the scheme proposed in this section.

Algorithm 5. IKJ-ordered MILUT algorithm.
0. Select nv vectors for matching, x(k), k = 1, . . . , nv

1. For i = 1, . . . , n, do
2. w = Ai,1:n

3. For k = 1, . . . , i− 1 and if wk �= 0,
4. wk = wk/ukk

5. Apply a dropping rule to wk

6. If wk is not dropped, wk+1:n = wk+1:n − wk · Uk,k+1:n

7. Enddo
8. For k = i+ 1, . . . , n, apply a dropping rule to wk

9. For j = 1, . . . , i− 1, li,j = wj

10. Apply a dropping rule to li,�
11. For j = i, . . . , n, ui,j = wj

12. Apply a dropping rule to ui,�

13. For k = 1, . . . , nv, compute rk = ((A − LU)x(k))i
14. For k = 1, . . . , nv, do
15. For mj < i, Xk,mj = (Ux(k))mj

16. For mj ≥ i, Xk,mj = x
(k)
mj

17. Enddo
18. Solve Xδ = r
19. For mj < i, li,mj = li,mj + δi,j
20. For mj ≥ i, ui,mj = ui,mj + δi,j
21. Enddo
The added computational cost for the modification algorithm need not be sig-

nificant. Considering only the costs within the factorization, added steps include
the computation of the residuals rk, computation of the entries in X , solving the
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system for δ, and updating the weights. Computing the residuals and matrix X
may be accelerated by computing the products Ax(k) in line 0 when the vectors x(k)

are chosen and by computing (and storing) the partial vectors Ux(k) as each row
in U is finalized. Note that no extra storage is needed to store the partial prod-

ucts Ux(k) as the entries x
(k)
j for j < i are not needed at stage i of the algorithm

and so may be overwritten. Thus, matrix X may be assembled at no cost (other
than nc × nv memory accesses). To compute the residuals, the partial matrix-vector

product
∑

j<i li,j(Ux(k))j +
∑

j≥i ui,jx
(k)
j must be evaluated. However, in the ILUT

algorithm, dropping in lines 10 and 12 is typically done so that each row of L and U
is allowed no more than a fixed factor times the average number of nonzeros in each
row of A. Thus, the total cost of all these computations is no more than that factor
times the total number of nonzeros in each row of A. Solving the system at line 18
may be efficiently done using either LQ or QR factorization of X .

4. Numerical results. In what follows, we present some numerical results of the
modified ILUT schemes described in the previous section. These results are obtained
from applications governed by the standard two-dimensional (2D) finite-difference
Laplacian, some shifted and scaled problems, and the Helmholtz equation.

4.1. Results for MILUT with relaxed compensation. We present some
numerical results for the relaxed compensation strategy for MILUT, obtained from
the solution to the minimization problem described in section 3.1.1. The tests shown
here are run with the column version of the MILUT algorithm, programmed in C, on
a dual-core AMD Opteron 1 GHz machine with 4 GB of RAM.

In the first set of examples, we test the relaxed compensation strategy on systems
that are symmetric and positive definite, but poorly conditioned. The base problem
is a 2D finite-difference discretization of the Laplace operator −Δ on a uniform grid
using centered differences. As before, the discretization assumes a scaling based on
the mesh size parameter h so that the resulting matrix initially has 4 on the diagonal,
and four off-diagonal entries of −1. This is then shifted by a small negative term
� to make it indefinite. We then construct the normal matrix A = V TV from the
resulting indefinite matrix V . Note that although A is now symmetric and positive
definite, solving a linear system involving A can still be quite challenging, due to its
large condition number. Furthermore, shifting V to make it indefinite can result in a
cluster of eigenvalues close to zero for the normal matrix A, which makes it a more
challenging problem for solution by Krylov methods. The right-hand side vectors
b are constructed by choosing the entries of the solution vector x from the uniform
distribution on [0, 1] and computing b = Ax. Since these vectors are chosen randomly,
the results displayed in the tables below are obtained from averaging several runs of
the same problem for each test case. The condition numbers of the resulting matrices
range from 3 × 108 to 1011 but do not correlate strongly with problem size or shift,
due to the formation of the normal equations.

In what follows, we compare the performance of the relaxed compensation scheme
proposed in this paper against that of shifted ILU(0) on solving the system Ax = b.
For the shifted ILU(0) preconditioner, the diagonal of matrix A is perturbed by a
small shift before performing the incomplete factorization. This shift serves to improve
the quality of the ILU(0) factorization and makes it a more effective preconditioner
[13, 27, 36]. Finding the optimal shift is not trivial; hence, for our tests, we run the
same problem for several different diagonal shifts within the interval [0, 1], using an
increment of 0.1, and select the shift yielding the best result for shifted ILU(0).
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Table 4.1

Results for shifted ILU(0) on preconditioning the system Ax = b, where A = V T V and V is a
shifted Laplace matrix with the shift � = −0.05,−0.1,−0.5.

� grid nnz cF #iters time ||(LU)−11||2 ||A− LU ||F

−0.05

100 × 100 128004 1.0 99 0.92s 4.77e+ 03 137.94
150 × 150 289504 1.0 107 2.23s 7.55e+ 03 208.48
200 × 200 516004 1.0 113 3.95s 1.03e+ 04 279.00
300 × 300 1164004 1.0 97 7.60s 1.59e+ 04 420.00

−0.1

100 × 100 128004 1.0 109 0.99s 1.08e+ 03 128.65
150 × 150 289504 1.0 98 2.02s 1.65e+ 03 194.16
200 × 200 516004 1.0 127 4.36s 2.22e+ 03 259.66
300 × 300 1164004 1.0 109 8.18s 3.37e+ 03 390.68

−0.5

100 × 100 128004 1.0 169 1.44s 4.48e+ 02 142.44
150 × 150 289504 1.0 156 3.20s 6.77e+ 02 215.17
200 × 200 516004 1.0 150 5.44s 9.06e+ 02 287.89
300 × 300 1164004 1.0 144 10.47s 1.36e+ 03 433.34

Table 4.2

Results for MILUT with relaxed compensation on preconditioning the system Ax = b, where
A = V TV and V is a shifted Laplace matrix with the shift � = −0.05,−0.1,−0.5.

� grid nnz cF #iters time ||(LU)−11||2 ||A− LU ||F

−0.05

100 × 100 128004 1.82 59 0.74s 1.67e+ 03 25.49
150 × 150 289504 1.83 65 2.05s 2.52e+ 03 38.15
200 × 200 516004 1.83 77 3.93s 3.78e+ 03 50.88
300 × 300 1164004 1.84 69 7.46s 5.09e+ 03 76.42

−0.1

100 × 100 128004 1.82 62 0.79s 1.52e+ 03 25.91
150 × 150 289504 1.83 60 1.68s 2.28e+ 03 38.11
200 × 200 516004 1.83 67 3.25s 3.03e+ 03 51.79
300 × 300 1164004 1.84 63 6.78s 4.54e+ 03 77.82

−0.5

100 × 100 128004 1.61 83 1.05s 4.24e+ 02 25.47
150 × 150 289504 1.61 83 2.30s 6.10e+ 02 38.08
200 × 200 516004 1.61 81 3.61s 7.96e+ 02 50.73
300 × 300 1164004 1.61 82 8.09s 1.17e+ 03 76.15

Table 4.1 details the numerical results for this shifted ILU(0) strategy. Here and
in all the tests in this subsection, we use restarted GMRES with a restart dimension of
100 and an initial guess x(0) = 0. The maximum number of outer GMRES iterations
for these tests is fixed at 500. We assume convergence of the iteration when the �2-
norm of the residual is reduced by a relative factor of 107. We introduce the quantity
||(LU)−11||2 which represents a lower bound estimate of the conditioning of the inverse
LU factors as a measure of the stability of the factorization. We also introduce the
quantity ||A− LU ||F as a measure of the accuracy of LU as an approximation to A.
To measure the cost of the storage and computation of matrix-vector products with
the preconditioner, we define the fill-factor as cF = (nnzL+nnzU−n)/nnz, where n is
the dimension of the problem, nnz is the number of nonzeros of the original matrix A,
and nnzL and nnzU are the number of nonzeros in the L and U matrices, respectively.
Since the unit diagonal of L is not stored, it is compensated for by subtracting n in
the equation. We also report the total time needed for the computation of the factors
and solution of the linear system. For this set of examples, we fix the matching vector,
t, used to constrain the MILUT method, to be the vector of all ones.

Table 4.2 shows results for the MILUT method with relaxed compensation on this
example. The results from these tables indicate superior performance for the modified
ILUT method over the shifted ILU(0) method. We observe that the modified ILUT
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Table 4.3

Results for standard ILUT (although with a modified dropping rule) on preconditioning the sys-
tem Ax = b, where A = V TV and V is a shifted Laplace matrix with the shift � = −0.05,−0.1,−0.5.

� grid nnz cF #iters time ||(LU)−11||2 ||A− LU ||F

−0.05

100 × 100 128004 1.75 183 2.22s 2.26e+ 02 38.15
150 × 150 289504 1.76 186 5.03s 3.38e+ 02 57.47
200 × 200 516004 1.76 212 9.94s 4.50e+ 02 76.78
300 × 300 1164004 1.76 198 21.70s 6.72e+ 02 115.40

−0.1

100 × 100 128004 1.75 157 1.87s 2.17e+ 02 39.66
150 × 150 289504 1.76 149 3.96s 3.23e+ 02 59.88
200 × 200 516004 1.76 186 8.71s 4.29e+ 02 80.09
300 × 300 1164004 1.76 177 20.32s 6.41e+ 02 120.52

−0.5

100 × 100 128004 1.60 130 1.86s 1.26e+ 02 62.91
150 × 150 289504 1.60 154 3.88s 1.86e+ 02 94.90
200 × 200 516004 1.61 141 6.23s 2.46e+ 02 127.04
300 × 300 1164004 1.61 138 15.30s 3.66e+ 02 190.94

method yields factors that are often more stable and always more accurate and that
the iteration based on MILUT converges in fewer iterations for all the test cases.

For these structured-grid problems, the memory efficiency of ILU(0) is difficult to
beat, particularly since threshold-based ILU strategies generally require some fill-in
(beyond the zero level-of-fill) in order to get a good approximation by the precon-
ditioner. Nonetheless, the resulting added computational cost in the modified ILUT
factorization (due to fill-in) is made up for by the good iteration counts. As shown
in Tables 4.1 and 4.2, the iteration count for the MILUT method is on average about
1.5 times better than that of the shifted ILU(0) method. This savings in iterations
is multiplied because we are using GMRES. Since GMRES converges faster with the
MILUT preconditioner, fewer Arnoldi vectors need to be stored and orthogonalized,
resulting in even more savings than just by the simple ratio of iterations.

The standard ILUT, using the same dropping criteria as the MILUT method
with relaxed compensation, yields poor and unstable factors for these problems. This
leads to convergence failure of the restarted GMRES iterations. However, adjusting
the dropping rule so that it is based on comparing the size of the fill-in entry or
column update (wk · Lj,k, j = k + 1, . . . , n, in line 3 of Algorithm 3) to some scaling
parameter related to the drop tolerance yields factors that were “good enough” to
handle the problem. Notice that this dropping rule differs from the approach discussed
in section 2 (see Algorithms 2 and 3), where the comparison is directly between
the pivot element, wk, and the scaling parameter. Results for this approach are
shown in Table 4.3. For a fair comparison with the results in Table 4.2, we aim to
attain similar fill-factors for both the standard ILUT method and the MILUT method.
Comparing the results in Tables 4.2 and 4.3, we see that the MILUT method shows
better performance than the standard ILUT method, particularly in terms of the
iteration counts, computational times, and accuracy. Nonetheless, we observe that
the standard ILUT method shows better stability measures than the MILUT method.
This may be attributed to the new dropping rule imposed to help the convergence of
the standard ILUT method.

One interesting observation is that as more fill-in is allowed in the factorization,
the performance of the standard ILUT method deteriorates. We further observe that
small decrements in the drop tolerance τ often result in sudden (significant) jumps
in the fill-factor cF (sometimes by an order of magnitude). From the standard ILUT
algorithm (Algorithm 2 or 3), we see that the method can be prone to generating
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dense columns during the factorization. For instance, if the dropping rule is such that
very few or no fill-in is dropped during the elimination of a particular column, then
the L and U parts of the column may become dense. This is undesirable because
the dense column can very easily be propagated across the remaining columns yet
to be eliminated, making them dense as well (leading to large fill-factors). Further,
suppose that during the elimination of a subsequent column, a pivot entry is judged
small enough and hence discarded by the dropping rule. Then the resulting error in
the column (and hence in the factorization) is a factor of the dense column, which
can be significant. As such, the resulting L and U factors could be of poor quality,
even though they may be dense (fill-factor may be large).

MILUT with relaxed compensation, on the other hand, is less susceptible to
these problems. Adding the compensation σ to the diagonal promotes dropping in L,
making it less likely to be dense. Furthermore, recall from section 3.1.1 that the choice
of the modification z is based on stability considerations. However, it turns out that
it may also have some implications on the accuracy of the factorization, particularly
when z is small. The error in the column, induced by dropping the pivot entry, may
be reduced by adding the column z to l, leading to a more accurate factor for the L
part of the factorization.

4.2. Results for imaginary compensation. In what follows, we present some
numerical results on an acoustic wave diffraction problem, governed by the Helmholtz
equation. We compare the performance of standard ILUT with that of MILUT, where
the modification is by an imaginary term as discussed earlier in section 3.2.

The physical problem models a plane wave propagating along the x-axis and an
incident on a bounded obstacle in the form of a disk of radius 0.5 meters. The com-
putational domain is discretized by the Galerkin least-squares finite-element method,
using an isoparametric discretization over quadrilateral elements, on a 161×361 grid.
An artificial boundary condition is imposed at a distance 1.5 meters from the obstacle,
using the Dirichlet-to-Neumann technique, to satisfy the Sommerfeld radiation condi-
tion [21]. The resulting system has size n = 57960, with 516,600 nonzero entries and
is complex, symmetric (but not Hermitian), and indefinite. We use restarted GMRES
with a restart dimension of 100 and an initial guess x(0) = 0. The maximum number
of GMRES iterations is fixed at 500, and we assume convergence when the �2-norm
of the residual is reduced by a relative factor of 107. The right-hand side is artificially
created by assuming the entries of the solution vector are chosen from the uniform
distribution on [0, 1]. We solve the system for increasing values of the wavenumber k;
because we consider a fixed grid, this makes the overall mesh resolution (measured in
number of points per wavelength, ppw) decreasing as we increase k (from the highest
of 160 ppw for k = 2π to a low of 10 ppw for k = 32π), leading to more indefinite and
challenging problems. For each value of k, we run the problem several times, and the
results shown are averaged over the runs.

The fill level parameter p for the factorization is fixed at 1000 for both standard
ILUT and MILUT, and the drop tolerance τ is adjusted so that the fill-factor is similar
for both methods. As before, the dropping rule for standard ILUT is adjusted so that
it is based on the size of the fill-in (update) entry rather than on the pivot entry in
order to yield “good” factors.

From Table 4.4, we observe a remarkable performance for the MILUT scheme,
compared to standard ILUT. For high values of the wavenumber, the standard ILUT
factorization can become unstable. For this set of examples, ILUT requires less fill-
in in order to produce stable factors. However, this implies that the preconditioner

D
ow

nl
oa

de
d 

11
/0

5/
13

 to
 1

30
.6

4.
79

.4
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MODIFIED ILUT A67

Table 4.4

Results for ILUT and MILUT with imaginary modification on the Helmholtz problem with
different values of the wavenumber k.

k cF #iters total time ||(LU)−11||2 ||(A− LU)1||2

ILUT

2π 2.67 135 23.54s 1.92e+ 03 10.38
4π 2.68 156 31.93s 2.06e+ 03 10.53
8π 2.74 198 32.37s 2.94e+ 03 11.25
16π 2.42 > 500 75.90s 1.88e+ 04 21.30
32π ∗ ∗ ∗ ∗ ∗

MILUT

2π 2.61 114 21.15s 2.38e+ 03 18.82
4π 2.65 121 22.56s 2.61e+ 03 18.90
8π 2.64 134 20.40s 3.32e+ 03 22.05
16π 2.48 206 31.68s 2.44e+ 03 37.26
32π 3.86 182 34.01s 3.03e+ 02 36.02

is poorly approximated, which makes it difficult for the solver to converge. This is
evident for the example with wavenumber k = 16π, where the solver fails to converge
within the required number of iterations with ILUT as preconditioner. If more fill-in
is allowed, the resulting factors become unstable, with values of ||(LU)−11||2 on the
order of 10100 or larger. This renders the factors useless as preconditioners for any
iterative method. Comparing the results for ILUT with those of MILUT, we see that
MILUT is more efficient and robust on the Helmholtz problem. By using imaginary
perturbations to modify the diagonal, the resulting factors from the MILUT scheme
are quite stable and yield good results for the problem, even at high wavenumbers.

For the test problem with wavenumber k = 32π, ILUT shows no signs of con-
vergence. Even when fill-in is reduced so that the fill-factor cF is ≈ 1.0, the value of
||(LU)−11||2 for the resulting LU factors is of the order of 10144. MILUT, however,
produces stable factors and was successful in solving the problem. These results agree
quite well with the results in [30], where imaginary perturbations were used to con-
struct a shifted ILUT preconditioner for the Helmholtz problem. Numerical results
showed that the resulting preconditioner was effective on the Helmholtz problem at
relatively high wavenumbers and low mesh resolutions. It is worth noting that the
approach used in [30] differs from the optimal strategy discussed in this paper. The
focus of [30] is on improving the quality of the preconditioner by improving the diag-
onal dominance of the rows of the matrix prior to performing the ILUT factorization.
The compensation strategy that defines the imaginary shift relies on two heuristics,
both aimed at improving diagonal dominance entirely through diagonal compensa-
tion. Here, we use a different approach to define the imaginary shift, by solving an
optimization problem with stability and accuracy constraints, during the ILUT fac-
torization. The resulting compensation is active not only on the diagonal entry but
also on the entries in the L-part of the corresponding column.

4.3. Results for the row-based MILUT scheme. In what follows, we present
some numerical results for the row-based MILUT scheme. In these results, we have
implemented Algorithm 5 as a modification of the ILUT routine from SPARSKIT [33],
a Fortran-77 toolkit for working with sparse matrices. The implementation includes
an Arnoldi algorithm for computing the matching vectors, based on a given size of the
Krylov subspace. Both the Arnoldi algorithm and the MILUT algorithm are tightly
coupled to the LAPACK and BLAS packages. All results are computed on a dual-
processor 3.0 GHz Xeon machine with 2 GB of RAM. For all results in this subsection
with ILUT and MILUT, the maximum fill-in is limited by allowing up to 20 nonzero
elements in each row of L and U (not counting the unit diagonal).
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Table 4.5

Performance of ILUT on 2D finite-difference Laplacian with drop tolerance of 0.01.

Grid n nnz cF tsetup tsolve # iters.
65× 65 3969 19593 2.88 0.005 0.03 17

129× 129 16129 80137 2.94 0.02 0.18 29
257× 257 65025 324105 2.97 0.07 1.33 47
513× 513 261121 1303561 2.99 0.30 12.15 74

Table 4.6

Performance of ILU(k) on 2D finite-difference Laplacian with levels of fill k = 3, and k = 4.

Grid n nnz k cF tsetup tsolve # iters.
65× 65 3969 19593 3 2.54 0.004 0.03 18

129× 129 16129 80137 3 2.57 0.02 0.18 31
257× 257 65025 324105 3 2.59 0.07 1.28 46
513× 513 261121 1303561 3 2.59 0.29 12.49 78
65× 65 3969 19593 4 3.30 0.006 0.03 15

129× 129 16129 80137 4 3.35 0.03 0.17 25
257× 257 65025 324105 4 3.37 0.11 1.05 37
513× 513 261121 1303561 4 3.39 0.43 8.98 61

4.3.1. 2D Laplacian. First, we consider the (unshifted) 2D finite-difference
Laplacian with Dirichlet boundary conditions on a uniform grid of the unit square.
As the dropping strategy within the incomplete factorization preconditioners con-
sidered here is not symmetric, we consider the performance of these strategies as
preconditioners for GMRES. The system matrix is created in the standard way; then
a random vector x (with each entry xi independently chosen from a uniform distribu-
tion on [0, 1]) is chosen as the solution, and the right-hand side b = Ax is computed.
We choose a random solution as for this problem we expect the matching vector cho-
sen in the modification process to have significant structure (e.g., the constant vector)
and do not want this structure to impact the performance of the Krylov space method.

As a baseline for comparison, we consider the performance of the standard ILUT
algorithm [34] as a preconditioner for GMRES. Fixing the drop tolerance as 0.01 yields
the results reported in Table 4.5. Setup and solve times, tsetup and tsolve (resp.), are
also reported (rounded to the nearest hundredth of a second unless less than 0.01), as
are the number of iterations needed to reduce the �2-norm of the residual by a relative
factor of 107.

Performance can also be compared to a level-of-fill-based strategy, ILU(k) [36,
section 10.3.3]. Because the control over the complexity of the resulting preconditioner
is less precise (as only integer levels of fill may be chosen), it is not possible to closely
match the preconditioner complexities of Table 4.5. Thus, in Table 4.6, we give
results for levels of fill (k) of three and four, with slightly smaller and slightly larger
overall complexities. Here, as expected, performance is slightly worse than that of
ILUT when the preconditioner complexity is smaller and somewhat better when the
preconditioner complexity is larger. If memory requirements do not pose a constraint,
we see that ILU(4) outperforms both ILUT and ILU(3) in terms of iteration counts
and solution time on all grids.

We begin testing the MILUT algorithm in the setting of classical modified ILU,
i.e., with the diagonal entries of the U factor modified so that LU1 = A1, where 1 is
the vector of all ones. Table 4.7 shows the results of these tests, first for the same drop
tolerance τ = 0.01 as used for ILUT in Table 4.5 and then with the drop tolerance
adjusted so that the preconditioner complexities cF nearly match those of ILUT.
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Table 4.7

Performance of MILUT based on the constant vector on 2D finite-difference Laplacian.

Grid n nnz τ cF tsetup tsolve # iters.
65× 65 3969 19593 0.010 3.15 0.01 0.03 16

129× 129 16129 80137 0.010 3.35 0.06 0.17 26
257× 257 65025 324105 0.010 3.47 0.22 1.25 43
513× 513 261121 1303561 0.010 3.54 0.92 12.39 75
65× 65 3969 19593 0.016 2.78 0.01 0.03 14

129× 129 16129 80137 0.016 2.89 0.05 0.13 19
257× 257 65025 324105 0.017 2.92 0.20 0.72 26
513× 513 261121 1303561 0.017 2.96 0.78 4.62 38

The results in Table 4.7 are somewhat surprising. As expected, we see some im-
provement in the performance of MILUT over that of ILUT for the same fixed drop
tolerance. In part, this is expected because of the well-known theoretical analysis of
modified incomplete factorizations, but it is also to be expected because the precon-
ditioner complexities are somewhat larger than those for ILUT. What is surprising
is that when the drop tolerance is raised (so that fewer nonzero entries are kept in
the preconditioner), the performance of the modified preconditioners uniformly im-
proves. While unexpected, this is not impossible, as the modification of the diagonal
entries in early rows of the matrix (which, of course, depends on the drop tolerance)
has a significant effect on the construction of the preconditioner for the later rows
of A. Thus, extra dropping may result in a better spectral equivalence between the
preconditioner and A, even though they are further apart in an elementwise sense.

If a good vector for use in the modification process is not known beforehand, then
it is possible to expose a good candidate through an Arnoldi process. On the left of
Figure 4.1, the number of iterations required to reduce the residual by a relative factor
of 107 using the resulting modified ILUT-preconditioned GMRES algorithm based on
the vector corresponding to the smallest Ritz value is shown. Here, the drop tolerance
was fixed at 0.01. For both the 1282 and 2562 grids, we see significant variation in
the number of iterations required for convergence, until the size of the Arnoldi space
approaches the number of cells in one direction of the mesh. The Arnoldi iterations
were started with a vector whose entries were chosen using a pseudo-random number
generator with a uniform distribution on [0, 1] (and the same vector was used as the
starting vector for Arnoldi for all tests on a given grid). On the right of Figure 4.1,
we see that even though there is significant variation in the performance of the re-
sulting preconditioners, the Rayleigh quotient of the selected vectors is monotonically
decreasing toward the smallest eigenvalue of the matrix (as expected).

As seen in Figure 4.1 for the finite-difference Poisson matrix, the number of steps
of the Arnoldi process needed to guarantee good solver performance is, unfortunately,
proportional to (the square root of) the matrix dimension. Thus, for fixed size of the
Arnoldi subspace, we expect the performance of preconditioners defined in this way
to degrade as problem size increases. In Table 4.8, 30 steps of the (unpreconditioned)
Arnoldi iteration on A are performed with the vector corresponding to the smallest
Ritz value used in the modification. Results are given for both a fixed drop tolerance
τ and with drop tolerances adjusted so that the preconditioner complexities are close
to those of Table 4.5. In both cases, we see preconditioner performance that degrades
with problem size (as expected). For fixed τ = 0.01, performance is similar to that of
unmodified ILUT or ILU(k), in terms of both number of iterations and total time to
solution, and for variable τ performance is closer to that achieved by MILUT based on
the constant vector. However, in comparison to the results in Table 4.7, we see that the
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Fig. 4.1. Number of iterations of the resulting modified ILUT-preconditioned GMRES required
to reduce residual by a relative factor of 107 for increasing dimension of Arnoldi process (left) and
Rayleigh quotient of the vector associated with the smallest Ritz value used in this modification
(right).

Table 4.8

Performance of MILUT based on the vector associated with the smallest Ritz value after 30
steps of the Arnoldi iteration on 2D finite-difference Laplacian.

Grid n nnz τ cF tsetup tsolve # iters.
65× 65 3969 19593 0.010 3.14 0.04 0.03 14

129× 129 16129 80137 0.010 3.34 0.16 0.18 27
257× 257 65025 324105 0.010 3.46 0.86 1.25 43
513× 513 261121 1303561 0.010 3.53 4.30 15.38 78
65× 65 3969 19593 0.016 2.81 0.04 0.03 15

129× 129 16129 80137 0.017 2.85 0.15 0.15 24
257× 257 65025 324105 0.017 2.92 0.83 0.89 33
513× 513 261121 1303561 0.017 2.96 4.20 7.14 53

setup times alone for computing the Arnoldi vectors and the MILUT factorization are
comparable to the minimum total times required for ILUT with modification based on
the constant vector. Thus, even though improved preconditioner performance may be
realized, it is difficult to justify the added expense of computing the large Krylov sub-
spaces necessary to gain better spectral accuracy starting from a random initial guess.

The potential to achieve better performance, however, suggests that the MILUT
approach coupled with Arnoldi iteration may be viable for determining a better pre-
conditioner than arises from classical MILU approaches. For the Poisson problem, it
is known that the constant vector is “close to” the eigenvector belonging to the small-
est eigenvalue of A (where closeness is measured in terms of the Rayleigh quotient).
This is, in fact, often the case, where some properties of the discrete operator are
known a priori. Figure 4.2 shows how the number of iterations required of GMRES
to reduce the residual by a relative factor of 107 varies with the number of Arnoldi
steps and how the Rayleigh quotient of the vector associated with the smallest Ritz
value changes when starting from the vector of all ones. Again, we see that while the
Rayleigh quotient of this vector steadily decreases, there is some significant variation
in the GMRES iteration count, although it is not as significant as in the case of a
random starting vector for the Arnoldi iteration (shown in Figure 4.1).

4.3.2. 2D Helmholtz. Here, we consider the same Helmholtz matrices as were
considered in section 4.2; however, because we use only the row-based modifica-
tion strategy without imaginary compensation, we consider only the two smallest
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Fig. 4.2. Number of iterations of the resulting MILUT preconditioned GMRES required to
reduce residual by a relative factor of 107 for increasing dimension of Arnoldi process started using
the constant vector (left) and Rayleigh quotient of the vector associated with the smallest Ritz value
used in this modification (right).

Table 4.9

GMRES iteration counts and preconditioner complexities for row-based ILUT with specified
dropping tolerance τ (ILUT(τ)) applied to the Helmholtz problem with wavenumber k = 2π.

ILUT(0.001) ILUT(0.002) ILUT(0.003) ILUT(0.004) ILUT(0.005)

Iters. 178 194 213 227 260
cF 4.38 4.08 3.78 3.36 3.10

Table 4.10

GMRES iteration counts and preconditioner complexities for row-based level-of-fill ILU
(ILU(k)) applied to the Helmholtz problem with wavenumber k = 2π.

ILU(3) ILU(4) ILU(5) ILU(6) ILU(7)

Iters. 281 241 215 191 173
cF 2.33 2.77 3.21 3.65 4.09

wavenumber problems, k = 2π and k = 4π. The factorization and compensation
strategies used here are very different from those discussed in section 3.2; thus, these
represent two challenging test problems without those approaches, and the results we
report here are generally worse than those obtained using imaginary compensation or
even using the column-based factorization and dropping strategy used in section 4.2.
Thus, for reference, Tables 4.9 and 4.10 provide preconditioned GMRES iteration
counts for solution (reducing the residual by a relative factor of 107) and precondi-
tioner complexity cF for the Helmholtz problem with wavenumber k = 2π. In both
cases, we see the expected behavior; as more fill-in is allowed within the ILU factors,
the precondioners improve (when measured purely in terms of the GMRES iteration
counts).

Figure 4.3 presents the results for a range of tests of the MILUT strategy applied
to the problem with wavenumber k = 2π, where the vectors are selected by taking
those with Ritz values closest to zero (in modulus) after applying 40 Arnoldi steps to
a random initial guess. The plot of GMRES iteration counts shows several interesting
results. First, as expected, a smaller dropping tolerance τ often (but not always)
leads to a lower iteration count and always leads to a larger preconditioner complex-
ity (although not by uniform increments). For a fixed number of modifications per
row, using more vectors (looking from left-to-right within each group of results) is
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Fig. 4.3. GMRES iteration counts and preconditioner complexities for row-based MILUT ap-
plied to the Helmholtz problem with wavenumber k = 2π. In both plots, the data are organized by
the number of coefficients modified in each row, from 1 (the nonunit diagonal) through 6. For each
group, the four columns show results for using one through four vectors to guide the modification
from left to right, also highlighted by color (green for one vector, blue for two, red for three, and
magenta for four). Within each column, results for four different dropping tolerances are shown, ×
for τ = 0.005, � for τ = 0.006, © for τ = 0.008, and � for τ = 0.01. Failure to converge is denoted
by 500 iterations.

sometimes useful, but not always. Indeed, there seems to be no large-scale trend in
the effect of using more vectors; when four modifications per row are used, matching
four vectors (so that the modification is uniquely determined) is never successful, but
when using only two modifications per row, using four vectors is always best, and
three vectors is always better than using only one or two. In many but not all cases,
iteration counts improve when modifying more coefficients with a fixed number of
vectors and dropping tolerance; however, the effects are not uniform. When matching
only a single vector, the best results are achieved when modifying four, five, or six co-
efficients per row, depending on the dropping tolerance used. The best preconditioner
from this set of tests is achieved with a single vector, modifying four coefficients with
τ = 0.008, taking 175 iterations. This preconditioner has a complexity cF = 3.48.
Achieving comparable iteration counts using either standard ILUT or ILU(k) requires
preconditioner complexities of over 4, showing some notable improvement using this
modification strategy.

The Helmholtz problem with wavenumber k = 4π is significantly more difficult
for this family of preconditioners. Results for classical ILUT and ILU(k) approaches
are shown in Tables 4.11 and 4.12. We note that for drop tolerances τ > 0.05 and
levels of fill k < 5, we see uniformly poor convergence without reaching the relative
residual tolerance within 500 GMRES iterations. Plots for the MILUT strategy are
shown in Figure 4.4, where we now vary both the drop tolerance and the size of the
Arnoldi space. Here, we see that many of the attempted sets of parameters lead to
failure of GMRES to converge within 500 iterations. In one case, with τ = 0.008 and
80 Arnoldi steps, the problem using two vectors to modify two coefficients leads to a
failure in solving for the modification in one row of the factorization due to the linear
system for the modification being of less than full rank; in practice, this could be
addressed by recognizing this upon failure of the LAPACK routine dgels and retrying
with a smaller but full rank system, but we do not follow this approach here as such
failures are, in our experience, very rare.
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Table 4.11

GMRES iteration counts and preconditioner complexities for row-based ILUT with specified
dropping tolerance τ (ILUT(τ)) applied to the Helmholtz problem with wavenumber k = 4π.

ILUT(0.001) ILUT(0.002) ILUT(0.003) ILUT(0.004) ILUT(0.005)

Iters. 365 388 424 475 > 500
cF 4.39 4.15 3.86 3.44 3.18

Table 4.12

GMRES iteration counts and preconditioner complexities for row-based level-of-fill ILU
(ILU(k)) applied to the Helmholtz problem with wavenumber k = 4π.

ILU(4) ILU(5) ILU(6) ILU(7) ILU(8)

Iters. > 500 486 430 385 350
cF 2.77 3.21 3.65 4.09 4.53
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Fig. 4.4. GMRES iteration counts and preconditioner complexities for row-based MILUT ap-
plied to the Helmholtz problem with wavenumber k = 4π. In both plots, the data are organized by
the number of coefficients modified in each row, from 1 (the nonunit diagonal) through 6. For each
group, the four columns show results for using one through four vectors to guide the modification
from left to right, also highlighted by color (green for one vector, blue for two, red for three, and
magenta for four). Within each column, results for different dropping tolerances and sizes of the
Arnoldi subspace are shown, × for τ = 0.005 with 120 Arnoldi steps, � for τ = 0.008 with 120
Arnoldi steps, © for τ = 0.008 with 80 Arnoldi steps, � for τ = 0.008 with 40 Arnoldi steps, and
+ for τ = 0.01 with 40 Arnoldi steps. Failure to converge is denoted by 500 iterations.

From Figure 4.4, it appears that using only a single modification per row is the
most robust strategy, although it does not lead to the most efficient preconditioner
by a substantial margin. When modifying only the nonunit diagonal, the best results
were achieved using three vectors to overdetermine the modification with τ = 0.005
and using 120 Arnoldi steps. Here, we also see the important differences between using
40, 80, or 120 Arnoldi steps to determine the modification vectors. Only when using a
single vector to make the diagonal modification is using 40 steps more successful than
using fewer; with more vectors, using more steps of Arnoldi to determine the vectors
used to guide the modification seems to be the best practice. The best results overall
from these sets of parameters occur when using two vectors to guide the modification
of six coefficients per row. With τ = 0.005, the system can be solved in 199 iterations
with a preconditioner complexity of 4.05. This is nearly half as many iterations
as the unmodified ILUT or ILU(k) approaches required with similar preconditioner
complexities. This demonstrates the potential usefulness of the generalizations of the
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standard single-vector, single-coefficient modifications of ILU that have been explored
before in the literature, although this introduces the somewhat daunting challenge of
finding the correct combination of parameters needed for a given problem.

5. Conclusions. This paper describes three procedures for defining modifica-
tions of ILU factorizations with threshold-based dropping. The first procedure, based
on the column version of ILUT, extends the standard diagonal compensation idea for
MILUT by spreading the compensation term over the nonunit diagonal, as well as
the nonzero entries in the L part of the column, in an optimal way. The technique
is further extended to exploit the use of imaginary shifts for the compensation term.
Numerical results show that these MILUT methods are robust for both ill-conditioned
and indefinite problems. By adding a compensation term to the L part of the column
as well as the nonunit diagonal, it appears that the MILUT method is less susceptible
to the problems that cause instabilities and inaccuracies in the standard ILUT factor-
ization. The third procedure uses an arbitrary set of “matching” vectors for which the
product LU is constrained to give the same product as the matrix, A. By modifying
multiple coefficients in each row of the ILUT factors based on a least-squares fitting
problem, substantially improved performance is realized.

Acknowledgments. We would like to thank Kechroud, Gowda, and Soulaimani
for providing us with the finite-element code for acoustic wave scattering, governed
by the Helmholtz equation; see [21].
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