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Abstract. Since their popularization in the late 1970s and early 1980s, multigrid methods have
been a central tool in the numerical solution of the linear and nonlinear systems that arise from the
discretization of many PDEs. In this paper, we present a local Fourier analysis (LFA, or local mode
analysis) framework for analyzing the complementarity between relaxation and coarse-grid correction
within multigrid solvers for systems of PDEs. Important features of this analysis framework include
the treatment of arbitrary finite-element approximation subspaces and overlapping multiplicative-
Schwarz type smoothers. The resulting tools are demonstrated for the Stokes, curl-curl, and grad-div
equations.

1. Introduction. First envisioned as a technique for solving Poisson-type prob-
lems with optimal complexity, multigrid and other multilevel algorithms have become
the methods of choice for solving the matrix equations that arise in a wide variety of
applications. In this paper, we are concerned with the design and analysis of multi-
grid algorithms for the solution of discretized systems of partial differential equations.
While general principles exist that can aid in developing multigrid techniques for an
application area, the optimal choices for its components are often difficult to deter-
mine beforehand. Many approaches to multigrid theory have been investigated in the
last 30 years (see, for example, [8, 17, 22, 33]); among these, the technique of local
Fourier analysis (LFA, or local mode analysis), first introduced in [9], has remained
very successful, providing accurate predictions of performance for a variety of prob-
lems, including for systems of PDEs.

The primary advantage of LFA is that it allows quantitative prediction of multi-
grid convergence factors under reasonable assumptions. The word, local, in LFA
indicates a focus on the character of an operator in the interior of its domain, where
it is assumed to be represented by a constant discretization stencil. The Fourier
symbols of such operators can easily be computed. A further insight in [41] was
that all of the components in a multigrid method can be analyzed in this fashion,
leading to a block-diagonal representation in a Fourier basis. LFA helped, for ex-
ample, in the understanding of SOR as a smoother for moderately anisotropic and
high-dimensional problems [50] and the solution of the biharmonic equation with ef-
ficiency similar to that of Poisson [46]. Recent advances in LFA include LFA for
high-dimensional problems [52], for multigrid as a preconditioner [47], for triangu-
lar and hexagonal meshes [19, 51], optimal control problems [5], and discontinuous
Galerkin discretizations [23]. The LFA monograph and related software of Wienands
and Joppich [46] focus on LFA for collocated discretizations, providing an excellent
tool for experimenting with Fourier analysis.

In this paper, we present a framework for performing the local Fourier analysis
for state-of-the-art finite-element discretizations of systems of PDEs. In particular,
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we show that the LFA ansatz is still valid when using overlapping multiplicative
smoothers, such as were proposed in [2], for the grad-div and curl-curl equations, and
in [28,43] for the Stokes equations. Analysis of the additive versions of these smoothers
was conducted in [4, 39]; however this form of analysis does not extend to cover the
multiplicative case. LFA for overlapping multiplicative smoothers has been, to our
knowledge, performed in only two cases, for the staggered finite-difference discretiza-
tion of the Stokes and Navier-Stokes equations [40], and for a mixed finite-element
discretization of Poisson’s equation [34]. We also apply this analysis to the well-known
multigrid solvers for the grad-div, curl-curl, and Stokes equations, providing quanti-
tative predictions of the performance of multigrid methods based on these smoothers,
in contrast to the non-predictive proofs of convergence offered in [2,32]. In the case of
the Stokes equations, in particular, quantitative estimates have been notably missing
from the literature [31].

The remainder of this paper is organized as follows. First, in Section 2, we pro-
vide some background on the motivating PDE systems for this work. LFA smoothing
analysis is discussed in Section 3, with a focus on the treatment of overlapping multi-
plicative smoothers. A detailed example is presented in Section 4. Section 5 presents
two-grid LFA, focusing on the issue of multigrid grid transfers for staggered discretiza-
tions. Finally, Section 6 presents the application of these techniques to appropriate
discretizations of the Stokes, grad-div, and curl-curl equations. There, we focus on
the impact of the choice of transfer operators and on the choice of smoother and
under-relaxation parameters on the two-grid LFA convergence.

2. Multigrid and Finite Elements for PDE Systems. The discretization
of systems of PDEs must be done with care, to avoid the introduction of unstable
modes in the resulting discrete system. In finite elements, this typically results in
choosing different finite-element subspaces for different components of the system, to
satisfy known inf-sup conditions, leading to the use of Raviart-Thomas, Nédélec, or
Taylor-Hood elements, for example. For a thorough treatment of these issues in the
finite-element context, see [6, 12].

We shall refer to the finite-element discretizations that we treat here collectively
as ”staggered discretizations”, indicating that the nodes associated with the discrete
degrees of freedom are not aligned on the same grid for each component of the PDE
system. The techniques developed here are applicable to arbitrary staggered dis-
cretizations of systems of PDEs, including the “trivial” case of a collocated discretiza-
tion.

2.1. Multigrid for Systems of Equations. Many standard discretizations of
systems of PDEs (including those described below) do not guarantee that the result-
ing matrices are diagonally dominant (or even that they are definite) either because
of the properties of the continuum operators themselves, or because of necessary con-
straints on the discretizations. In these cases, expensive relaxation techniques may
be used to reestablish effective multigrid convergence. Unfortunately, these relax-
ation techniques are no longer algebraic black boxes, like the Jacobi and Gauss-Seidel
iterations. Instead, the details of these techniques are determined by those of the
underlying PDEs.

A first indication for the appropriate choice of relaxation method for a system of
equations can be derived from the systems’ determinant. Interestingly, the determi-
nant of the discrete operator may also give us valuable information about the stability
of the discretizations used for a system. The direct relation between effectiveness of
smoothing and the determinant of the discrete system is by means of the h-ellipticity
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concept [10,42]. For unstable discretizations, which give rise to unphysical oscillations
in the numerical solutions, there is no chance that we can set up efficient local, i.e.,
pointwise, smoothing methods.

An obvious choice in the case of strong off-diagonal operators in the differential
system (also indicated by the determinant) is collective smoothing: All unknowns in
the system at a certain grid point or grid cell are updated simultaneously. While the
use of these smoothers leads to efficient multigrid approaches for systems of PDEs,
collective relaxation is not the only possible approach. The main alternative is the
use of distributive smoothers [10, 20, 24], which take their name from a distribution
operation; the discrete (or continuum) equations are transformed by right matrix
multiplication into a block triangular matrix that is amenable to pointwise relaxation.
Simple pointwise relaxation is performed on this block triangular system and, then,
the resulting update is distributed (based on the transformation matrix) back to the
original matrix problem.

While distributed smoothers are often found to be more efficient than overlap-
ping smoothers [20], their applicability is limited by the need to find an effective
distribution matrix; this is often difficult to do for problems with unstructured grids
or variable coefficients. Thus, distributed relaxation may be difficult to implement
in a general and purely algebraic fashion, as would be necessary for use within an
algebraic multigrid iteration. Furthermore, the proper treatment of boundary con-
ditions in distributive relaxation may not be trivial, as typically the operator of the
preconditioned system is of higher order than the original operator, thus requiring
additional (possible nonphysical) boundary conditions within smoothing. Substantial
effort has however been put into successfully extending the distributed smoother of
Hiptmair [24] to algebraic multigrid algorithms for the curl-curl equation [3, 27, 38].
In this paper, we focus exclusively on collective relaxation approaches.

2.2. Discretizing Systems of PDEs. As a first pair of examples, we consider
the gradient-divergence (grad-div) and curl-curl equations,

−∇(a∇ · U) + U = F , inΩ, (2.1)

and

∇× (a∇× U) + U = F , inΩ, (2.2)

with parameter a > 0, where Ω is an open domain in Rd. These operators appear
frequently in the formulation of mathematical models in physics and engineering,
particularly for problems related to electro-magnetics or fluid and solid mechanics
(see, for example, [2, 20,25] for more details).

In the finite-element framework, face elements, such as the Raviart-Thomas el-
ements, have been proposed for accurate discretization of (2.1) [37], while edge ele-
ments, such as the Nédélec elements [35] are commonly used for (2.2), see Figure 2.2.
The difficulty in achieving efficient multigrid treatment of the resulting discrete linear
systems comes from the fact that the eigenspace associated with the minimal eigen-
value of the discrete operator contains many eigenvectors (for large enough parameter
a). For Equation (2.1), this arises because any divergence-free vector is an eigenvector
corresponding to this minimal eigenvalue, while a similar difficulty occurs with curl-
free vectors in (2.2). In both cases, these components can be arbitrarily oscillatory
and can neither be reduced by standard (pointwise) smoothing procedures, nor be
well represented on coarse grids [2].
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Fig. 2.1. Placement of unknowns with Raviart-Thomas FE for grad-div operator (left), and
Nédélec edge elements for curl-curl (right).

A remedy for (2.1) proposed in [45] builds upon local div-free functions and their
orthogonal complements in the finite-element space. In [1], a multigrid preconditioner
was presented for a discretization with the lowest-order Raviart-Thomas finite-element
spaces on triangles. A distributive smoothing technique in multigrid to handle the
troublesome div-free components was proposed in [26]. These techniques were ex-
tended for the curl-curl equations in [2, 25]. Here, we will quantitatively analyze the
multiplicative collective smoother introduced in [2], known as the AFW smoother.
This smoother can be motivated by thinking about the different treatment given by
the grad-div or curl-curl operator to components of U that look like gradients and
those that look like curls. As the dominant part of these operators doesn’t act on one
component of the solution, it is important that the relaxation technique can accurately
resolve these components on all scales.

The Stokes equations are central to the simulation of certain viscous fluid-flow
problems. They are represented by a saddle point problem,

−∆U +∇P = F (2.3)
∇ · U = 0 (2.4)

for velocity vector, U , and scalar pressure, P, of a viscous fluid.The weak form of the
Stokes equations is found by multiplying by test functions, V andQ, and integrating by
parts. Writing this system in terms of the bilinear forms, a11(U ,V) =

∫
Ω

∑d
i=1(∇Ui) ·

(∇Vi)dΩ and a12(V,P) = −
∫
Ω
(∇ · V)PdΩ, we have

a11(U ,V) + a12(V,P) =
∫

Ω

F · VdΩ (2.5)

a21(U ,Q) = 0, (2.6)

with a12(·, ·) = a21(·, ·), and vector-valued functions U ,V : Rd → Rd. Notice that U
and P lie in different spaces; typically, U ∈ V ⊂ (H1(Ω))d, while P ∈W ⊂ L2(Ω). In
proving uniqueness of the pressure component of the solution, P, a natural condition
[6, 12,14] arises,

inf
P∈W

sup
V∈V

a12(V,P)
‖P‖‖V‖

= β > 0. (2.7)

This condition is known by many names, including the Ladyzhenskaya-Babuška-Brezzi
(or LBB) condition, and the inf-sup condition.

Similar considerations apply to the discrete problem attained by restricting the
functions to finite-dimensional subspaces Uh,Vh ∈ Vh and Ph,Qh ∈ Wh, leading to a
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discrete version of the inf-sup condition. A natural discretization, representing both
Uh and Ph with bilinear basis functions does not satisfy the necessary inf-sup condition
[18] and, so, we are forced to consider higher-order basis functions for Equations
(2.3) and (2.4), such as the Taylor-Hood elements [6, 21] where Uh is represented by
biquadratic basis functions and Ph is represented by bilinears.

The development of efficient smoothers for the Stokes equations was originally
performed in the staggered finite-differences setting. There, the concepts of collective
and distributive relaxation were developed, by Vanka [43] and Brandt and Dinar [10,
11], respectively. These smoothers were later accompanied by quantitative analysis,
based on LFA. For FE discretizations, work on efficient smoothers for the Stokes and
Navier-Stokes equations includes that by Braess and Sarazin [7], which is based on an
approximate factorization of (2.3) and (2.4), as well as that by John and others [28,29,
31, 49], which focuses on a variety of smoothers including those of collective (Vanka)
type.

It was the FE setting especially that drove the rapid development of the algebraic
multigrid method in the nineties (of the last century), with the recognition of its
impressive efficiency, often for completely unstructured meshes. Quantitative theory
for methods on this type of meshes is not available, unfortunately. To bridge the gap
between the fully understood case of finite differences on structured grids and the
case of finite elements on completely unstructured grids, we develop here quantitative
analysis for FE discretizations on structured quadrilateral meshes in 2D, still leading
to stencil-based discretizations.

3. Analysis of relaxation with LFA. A quantitative, predictive theoretical
framework, such as LFA, allows significant algorithmic development independent of
an implementation. Here and in Section 5, we review the ideas behind two-grid local
Fourier analysis; first, we focus on the analysis of the smoothing step in Fourier
space. We consider the solution of a linear system of equations, Ahuh = fh, where the
subscript, h, serves to remind us that the origins of matrix Ah are in the discretization
of a PDE on a uniform quadrilateral grid with meshsize h (or, possibly, with meshsizes
h = (hx, hy, . . .)T that are not uniform across dimensions).

Given an approximation, vh, to the solution of Ahuh = fh, the residual equation
relates the error, eh = uh−vh, in that approximation to the residual, rh = fh−Ahvh,
as Aheh = rh. Thus, for a given approximation, vh, we can express the true solution
as uh = vh+A−1

h rh. Choosing Mh to be an approximation to Ah that is easily inverted
leads to an update iteration that can be analyzed in terms of its error-propagation
operator

eh ←
(
I −M−1

h Ah

)
eh.

A complete analysis of the convergence properties of the error propagation opera-
tor arises in terms of its eigenvectors, {φ(j)}, and eigenvalues, {λj}. Any initial error,
e(0)

h , can then be expanded into the basis given by the eigenvectors of I −M−1
h Ah,

and the error after k iterations of relaxation is given by e(k)
h =

∑
j σjλ

k
j φ(j), where

the coefficients, {σj}, are defined so that the expansion is valid for the initial error,
e(0)

h . The effectiveness of the relaxation on the component of the error in the direc-
tion of a given eigenvector, φ(j), is then given simply by the eigenvalue, λj . If λj is
small (e.g., |λj | ≤ 0.5), errors in the direction of φ(j) are quickly attenuated by the
iteration. For large λj , such that |λj | ≈ 1, the errors in the direction of φ(j) are slow
to be reduced and, after a few steps of the iteration, these errors will dominate the
remaining difference between uh and vh.
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Finding the eigenvectors and eigenvalues of I −M−1
h Ah for this analysis can be

quite difficult, depending on the matrices, Ah and Mh. For general matrices there
may be little relation between the eigenvectors and eigenvalues of Ah and those of
relaxation, unless Ah and Mh are assumed to have more structure than is typically
expected, such as being circulant. Such structure is strongly affected by boundary
conditions on the PDE; while the rows of the matrix corresponding to degrees of
freedom in the interior of the PDE domain may have a natural Toeplitz structure
(representing a discrete PDE on a structured grid), imposition of boundary conditions
usually results in a set of rows that have quite different values. The key idea behind
local Fourier analysis is to ignore the effect of these boundary conditions, by extending
the operator and relaxation stencils from the interior of the domain to infinite-grid
Toeplitz matrices that can both be diagonalized by a Fourier basis. Any infinite-grid
Toeplitz matrix is diagonalized by the matrix of Fourier modes, Φh, where we index
the columns of Φh by a continuous index, θ ∈

(
−π

2 , 3π
2

]d, and the rows by their spatial
location, x, and write φh(x, θ) = eıθ·x/h. In this setting, LFA has provided effective
predictions of the performance of multigrid cycles based on many common smoothers,
including Gauss-Seidel [42], SOR [50], and ILU [48].

LFA for systems of PDEs is based on a simple extension of the assumptions of LFA
for scalar PDEs. In the systems case, we assume that the matrix, Ah, is now a block-
matrix, where each block is an infinite-grid Toeplitz matrix. Under this assumption,
each block in Ah may be diagonalized by left and right transformations with Fourier
matrices, Φh, although possibly using different nodal coordinates on the left and right
for the off-diagonal blocks.

3.1. LFA for overlapping smoothers. Here, we focus on the LFA of overlap-
ping coupled multiplicative smoothers. Overlapping smoothers require only knowledge
of the element structure, which may be easily retained on coarse scale through element
agglomeration or AMGe techniques [13,15,30,44].

We identify a collective relaxation scheme as one that partitions the degrees of
freedom of Ah into regular subsets, Si,j , whose union provides a cover for the set of
degrees of freedom. By saying that these subsets are regular, we mean that there
is a one-to-one correspondence between the degrees of freedom in any two subsets,
Si,j and Sk,l; each subset has the same size, and the same number of each “type” of
degree of freedom that comes from discretizing different unknowns of the continuum
system. The partitioning need not be disjoint; an overlapping coupled smoother
occurs when some collection of the degrees of freedom appears in multiple subsets,
typically associated with some adjacent indices. In collective relaxation, updates are
computed (sequentially or in parallel) by solving the local system (or another non-
singular auxiliary system) associated with each subset, Si,j , with the most recent
residual restricted to Si,j as a right-hand side.

If the subsets Si,j are mutually disjoint, then a collective relaxation scheme is sim-
ply a block-wise Jacobi or Gauss-Seidel scheme and can be analyzed as such. If the
blocks overlap, however, so that certain degrees of freedom are updated multiple times
over the course of a single sweep of relaxation, classical LFA techniques fail. In a rela-
tively unknown paper [40], Sivaloganathan analyzed the Vanka smoother [43], a mul-
tiplicative form of overlapping collective relaxation for the staggered finite-difference
discretization of the Stokes equation; unfortunately, this paper includes several mis-
prints, which make the results difficult to appreciate. Independently, Molenaar ana-
lyzed a similar collective smoother for a mixed finite-element discretization of Pois-
son’s equation [34]. Two important questions are, however, left unanswered in [34,40]:
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Fig. 3.1. Partitioning of degrees of freedom into overlapping subsets based on cells

whether the Fourier ansatz is justified for coupled overlapping smoothers and whether
these techniques can be generalized for other PDE problems and discretizations.

LFA for non-overlapping relaxation succeeds because, in the infinite-grid Toeplitz
setting, the matrix, Ah, is split into two Toeplitz pieces, Ah = Mh − Nh, where
Mh and Nh are also both Toeplitz. Thus, all three matrices (and, in particular, the
error-propagation operator, M−1

h Nh) are diagonalized by a similarity transformation
with the Fourier matrix, Φh (or, in the case of systems, a block matrix consisting of
disjoint Fourier matrices). It is not apparent that the same is true for overlapping
relaxations, because the error-propagation operator is not easily written in terms of
a matrix splitting.

To illustrate, we consider the (most common) case of cell-wise relaxation; for each
node, (i, j), associated with the grid-h mesh, we define a cell of size h × h adjacent
to, or including node (i, j), and simultaneously solve for updates to all degrees of
freedom that fall within or on the boundary of this cell, see Figure 3.1. Relaxation
is then defined in a lexicographical Gauss-Seidel manner, sequentially solving for the
unknowns associated with cell (i, j), going first across the mesh from left to right,
then up the mesh. Note that, using this definition of the collections, Si,j , each degree
of freedom located at the corner of cell (i, j) is included in four subsets, while those
on the edges of cell (i, j) are included in two subsets, and degrees of freedom in the
interior of a cell are included in only the subset corresponding to the cell. By a similar
count, if there are k degrees of freedom at each cell corner, lx and ly degrees of freedom
along the x and y edges of a cell, respectively, and m interior degrees of freedom, then
4k + 2(lx + ly) + m degrees of freedom are included in the subset, Si,j .

Considering the (hypothetical) elements in Figure 3.1, two possible definitions
of the subsets, Si,j , are highlighted. One possibility, using the element boundaries
(solid lines) to define the cells yields subsets that overlap both at the corners of the
elements and along one of the element boundaries, while there is a unique interior
node in each subset that belongs only to Si,j . Another possibility, using the dual-
element boundaries (marked by the dashed lines), has overlap only at the element
edges, with two interior nodes for each subset, Si,j .

In order to use the Fourier ansatz, that the error-propagation operator for coupled
(overlapping) relaxation is diagonalized by the Fourier matrix, Φh, we need to know
that this is true, regardless of the distribution of degrees of freedom within Si,j . This
is proven in the following result.

Theorem 3.1. Assume that Ah is a block matrix with infinite-grid Toeplitz
blocks, corresponding to the discretization of a two-dimensional PDE on a regular
grid with meshsize, h, and let k index the variables within the collections, Si,j, of
variables to be updated simultaneously. Let the initial error (before the beginning of
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the relaxation sweep) for each unknown, U (k), be given by a single Fourier mode,

E(k)
i,j = α(k)eıθ·x(k)

i,j /h, where x(k)
i,j is the location of the discrete node corresponding to

unknown U (k) associated with relaxation subset Si,j. Let the update for the degrees of
freedom in each subset Si,j be calculated as

Unew
i,j = Uold

i,j + B−1Rold
i,j ,

where Rold
i,j is the residual at the nodes in Si,j evaluated before these unknowns are

updated by the relaxation for cell Si,j, Uold
i,j and Unew

i,j are the approximations to Ui,j

before and after the relaxation sweep, and B is some nonsingular approximation of
Ai,j, the diagonal block of Ah corresponding to the subset Si,j.

Consider a partial lexicographical relaxation sweep, at the stage where the cor-
rection to cell Si,j is to be computed. Suppose that, for all degrees of freedom, kn,
located at nodes of the cells, S`,m (so that x(kn)

`,m is the lower-left corner of the cell
associated with S`,m), the once-corrected, twice-corrected, three-times-corrected, and
four-times-corrected errors satisfy

E(kn,1)
`,m = α(kn,1)eıθ·x(kn)

`,m /h for m ≤ j, or m = j + 1 and ` ≤ i,

E(kn,2)
`,m = α(kn,2)eıθ·x(kn)

`,m /h for m ≤ j, or m = j + 1 and ` < i,

E(kn,3)
`,m = α(kn,3)eıθ·x(kn)

`,m /h for m < j, or m = j and ` ≤ i,

E(kn,4)
`,m = α(kn,4)eıθ·x(kn)

`,m /h for m < j, or m = j and ` < i.

Further, suppose that for all degrees of freedom, kh, located on the horizontal edges of

the cells, S`,m (so that x(kh)
`,m lies on the bottom edge of the cell associated with S`,m),

the once-corrected and twice-corrected errors satisfy

E(kh,1)
`,m = α(kh,1)eıθ·x(kh)

`,m /h for m ≤ j, or m = j + 1 and ` < i,

E(kh,2)
`,m = α(kh,2)eıθ·x(kh)

`,m /h for m < j, or m = j and ` < i.

Similarly, suppose that for all degrees of freedom, kv, located on the vertical edges of

the cells, S`,m (so that x(kv)
`,m lies on the left edge of the cell associated with S`,m), the

once-corrected and twice-corrected errors satisfy

E(kv,1)
`,m = α(kv,1)eıθ·x(kv)

`,m /h for m < j, or m = j and ` ≤ i,

E(kv,2)
`,m = α(kv,2)eıθ·x(kv)

`,m /h for m < j, or m = j and ` < i.

Finally, suppose that for all degrees of freedom, ki, located strictly in the interiors of
the cells, S`,m, the once-corrected errors satisfy

E(ki,1)
`,m = α(ki,1)eıθ·x(ki)

`,m /h for m < j, or m = j and ` < i.
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Then, after the corrections have been computed for the degrees of freedom in Si,j,

E(kn,1)
i+1,j+1 = α(kn,1)eıθ·x(kn)

i+1,j+1/h, E(kn,2)
i,j+1 = α(kn,2)eıθ·x(kn)

i,j+1/h,

E(kn,3)
i+1,j = α(kn,3)eıθ·x(kn)

i+1,j/h, E(kn,4)
i,j = α(kn,4)eıθ·x(kn)

i,j /h,

E(kh,1)
i,j+1 = α(kh,1)eıθ·x(kh)

i,j+1/h, E(kh,2)
i,j = α(kh,2)eıθ·x(kh)

i,j /h,

E(kv,1)
i+1,j = α(kv,1)eıθ·x(kv)

i+1,j/h, E(kv,2)
i,j = α(kv,2)eıθ·x(kv)

i,j /h,

E(ki,1)
i,j = α(ki,1)eıθ·x(ki)

i,j /h.

Proof. Consider a single degree of freedom, k, in Si,j . The residual, r
(k)
i,j , as-

sociated with k before the relaxation on cell Si,j can be expressed as a function of
the Fourier coefficients corresponding to the errors (both original and updated), as

r
(k)
i,j = (AhE)(k)

i,j . In particular, for any i, j, we can write r
(k)
i,j = f (k)({α})eıθ·x(k)

i,j /h,
where {α} denotes the set of all Fourier indices, as described in the statement of the
theorem. Note that f (k)({α}) depends only on the Fourier coefficients and the identity
of the degree of freedom, k, within Si,j and, in particular, is independent of the cell
indices, i, j, under consideration. This is because the update states of the variables
around each cell move in a consistent way as the relaxation proceeds, so that each cell
sees the same types of updated errors in its neighborhood when the relaxation sweep
for Si,j begins. Based on this, we notice that, before relaxation on Si−1,j ,

r
(k)
i−1,j = f (k)({α})eıθ·x(k)

i−1,j/h = f (k)({α})eıθ·x(k)
i,j /he−ıθ1 = e−ıθ1r

(k)
i,j .

As this is true for all degrees of freedom, k, in Si,j , we can write

e−ıθ1Rold
i,j = Rold

i−1,j . (3.1)

Now consider the update equations,

B
(
Unew

i−1,j − Uold
i−1,j

)
= Rold

i−1,j , (3.2)

B
(
Unew

i,j − Uold
i,j

)
= Rold

i,j . (3.3)

After relaxing on cell Si−1,j and before relaxing on cell Si,j , Equation (3.2) holds,
giving a relationship between the various Fourier coefficients (as given in the statement
of the theorem). During relaxation over cell Si,j , Equation (3.3) is solved to update
the solution at the nodes in Si,j .

In Equation (3.2), we can express the difference, Unew
i−1,j − Uold

i−1,j , for each node k

in terms of the Fourier coefficients for the errors, E(k)
i,j , based on the expansions given

in the assumptions. For example, a degree of freedom, ki, in the interior of the cell
associated with Si−1,j ,

U (ki,new)
i−1,j − U (ki,old)

i−1,j = E(ki,old)
i−1,j − E(ki,new)

i−1,j = (α(ki) − α(ki,1))eıθ·x(ki)
i−1,j/h,

= e−ıθ1(α(ki) − α(ki,1))eıθ·x(ki)
i,j /h. (3.4)

In Equation (3.3), we can express only one term in the difference, Unew
i,j −Uold

i,j , in terms
of the Fourier coefficients for the errors, Ei,j . If we again consider the node, ki, in the
interior of the cell associated with Si,j , we can express the error in the approximation
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to U (ki)
i,j before relaxation as α(ki)eıθ·x(ki)

i,j /h. Let the error in the approximation after

relaxation be β(ki)eıθ·x(ki)
i,j /h. Then,

U (ki,new)
i,j − U (ki,old)

i,j = E(ki,old)
i,j − E(ki,new)

i,j = (α(ki) − β(ki))eıθ·x(ki)
i,j /h,

Substituting (3.1) and (3.4) into (3.2), the terms of e−ıθ1 that appear on both
sides of the equation for each vector component cancel fully. We can then rewrite
(3.2) as

B
(
Vi,j − Uold

i,j

)
= Rold

i,j ,

where Vi,j is determined by the updated Fourier coefficients, as appear in Equation
(3.4). As this system has the same system matrix and right-hand side as (3.3), it
must also have the same solution, which implies that Vi,j = Unew

i,j (and, for example,
β(ki) = α(ki)), which gives the result stated in the theorem.

Theorem 3.1 states, in essence, that the Fourier modes that are eigenfunctions
of any pointwise relaxation that updates all nodes in the same pattern are also the
eigenfunctions for any coupled relaxation (overlapping or not) that partitions the
degrees of freedom into self-similar collections of degrees of freedom that are treated
consistently. This, in turn, means that we can attempt to analyze these techniques
using classical multigrid smoothing and two-grid Fourier analysis tools to measure the
effectiveness of the resulting multigrid cycles. The generalization of this result to 3D
is straightforward.

Analysis of the error-propagation operators in this context was done by Sivalo-
ganathan [40] for Vanka relaxation [43] for the standard, staggered finite-difference
discretization of the Stokes Equations in two dimensions and by Molenaar for the
mixed finite-element discretization of Poisson’s equation using Raviart-Thomas ele-
ments [34]. This technique can be generalized to apply to any overlapping relaxation
that satisfies conditions such as those in Theorem 3.1: that Ah is a block-diagonal
matrix with infinite-grid Toeplitz blocks (corresponding to the discretization of a two-
dimensional PDE on a regular grid with meshsize, h), that the relaxation subsets, Si,j

are determined also by an infinite-grid with meshsize h, and that the update matrix,
B, is nonsingular. Under these conditions, Equation (3.3) can be rewritten to give
the transformation of the Fourier coefficients through the relaxation sweep.

Each equation in (3.3) can be rewritten to give an equation relating the set of
updated Fourier coefficients to the Fourier coefficients before the sweep (by moving
the appropriate terms from the residual to the left-hand side, and those from the
update equations to the right). The resulting system of equations can be written as
Lαnew = Mαold, where L is a (4k + 2(lx + ly) + m) × (4k + 2(lx + ly) + m) matrix,
while M is (4k + 2(lx + ly) + m)× (k + lx + ly + m) matrix. Computing L−1M gives
the error propagation operator that maps from the error before the sweep to each of
the partially updated Fourier coefficients, as well as to the fully updated coefficients,
α(kn,4), α(kh,2), α(kv,2), and α(ki,1). Taking the (k + lx + ly + m)× (k + lx + ly + m)
submatrix that corresponds to the rows of L−1M associated with the fully updated
Fourier coefficients gives the error-propagation operator for relaxation as a whole.
The next section gives a detailed example of this approach.

4. Overlapping-Schwarz relaxation for the Poisson equation. We explain
the LFA for multiplicative smoothers in detail for Poisson’s equation with a bilinear
finite-element discretization, using an element-wise overlapping-Schwarz relaxation.
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For this discrete operator, this (somewhat involved) smoother is not really necessary,
as basic pointwise relaxation is sufficient. This smoother could, however, be useful
for the Poisson operator in a discontinuous Galerkin context. For the bilinear (Q1)
discretization, a typical equation of the linear systems is

9
3
ui,j −

1
3

1∑
α=−1

1∑
β=−1

ui+α,j+β = fi,j .

By element-wise overlapping, we mean that the relaxation traverses the grid element
by element, updating the four nodes at the corners of the element at each step.
Subset Si,j is taken to be the four nodes to the North and East of (i, j): Si,j =
{(i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1)}. Thus, before we relax on Si,j , the variables
that appear in the equations for Si,j are in the following states, gathered by the
number of times they have been updated prior to considering Si,j :

Four times: (i− 1, j − 1), (i, j − 1), (i + 1, j − 1), (i + 2, j − 1),
(i− 1, j)

Three times: (i, j)
Twice: (i + 1, j), (i + 2, j), (i− 1, j + 1)
Once: (i, j + 1)
Not updated: (i + 1, j + 1), (i + 2, j + 1), (i− 1, j + 2), (i, j + 2),

(i + 1, j + 2), (i + 2, j + 2)
At this stage, we introduce the Fourier expansions for each mode, in terms of the

number of updates: ek,l = α′′′′eıθ·xk,l/h, ek,l = α′′′eıθ·xk,l/h, ek,l = α′′eıθ·xk,l/h, ek,l =
α′eıθ·xk,l/h, ek,l = αeıθ·xk,l/h, for four, three, two, one, and no updates, respectively.

We substitute these expansions into the residual equations associated with the
four nodes before the relaxation on Si,j , where rk,l and ek,l are the residual and error,
respectively, in the approximation to uk,l for each node (k, l),

ri,j =
(

8
3
α′′′ − 1

3

(
α′′′′e−ı(θ1+θ2) + α′′′′e−ıθ2 + α′′′′eı(θ1−θ2) + α′′′′e−ıθ1 + α′′eıθ1

+α′′eı(−θ1+θ2) + α′eıθ2 + αeı(θ1+θ2)
))

eıθ·xi,j/h

ri+1,j =
(

8
3
α′′ − 1

3

(
α′′′′e−ı(θ1+θ2) + α′′′′e−ıθ2 + α′′′′eı(θ1−θ2) + α′′′e−ıθ1 + α′′eıθ1

+α′eı(−θ1+θ2) + αeıθ2 + αeı(θ1+θ2)
))

eıθ·xi+1,j/h

ri,j+1 =
(

8
3
α′ − 1

3

(
α′′′′e−ı(θ1+θ2) + α′′′e−ıθ2 + α′′eı(θ1−θ2) + α′′e−ıθ1 + αeıθ1

+αeı(−θ1+θ2) + αeıθ2 + αeı(θ1+θ2)
))

eıθ·xi,j+1/h

ri+1,j+1 =
(

8
3
α− 1

3

(
α′′′e−ı(θ1+θ2) + α′′e−ıθ2 + α′′eı(θ1−θ2) + α′e−ıθ1 + αeıθ1

+αeı(−θ1+θ2) + αeıθ2 + αeı(θ1+θ2)
))

eıθ·xi+1,j+1/h

A weighted overlapping multiplicative Schwartz relaxation sweep can be written
in terms of its update equation. Substituting the appropriate Fourier expansions for
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the errors before and after relaxation at the nodes in Si,j gives

1
3


8 −1 −1 −1
−1 8 −1 −1
−1 −1 8 −1
−1 −1 −1 8




1
ω (α′′′ − α′′′′)eıθ·xi,j/h

1
ω (α′′ − α′′′)eıθ·xi+1,j/h

1
ω (α′ − α′′)eıθ·xi,j+1/h

1
ω (α− α′)eıθ·xi+1,j+1/h

 =


ri,j

ri+1,j

ri,j+1

ri+1,j+1

 . (4.1)

Now, this system of four equations can be rearranged into a system of equations
directly for the four updated Fourier coefficients, α′′′′, α′′′, α′′, α′. This is simply
accomplished by expanding each equation in terms of the Fourier expansions (using the
expressions for ri,j , ri+1,j , ri,j+1, ri+1,j+1 derived above), then collecting terms that
multiply each of the Fourier coefficients. The common factors of 1

3 and eıθ·xk,l/h can
be directly canceled to simplify the calculation. For this example, the first equation
may be rewritten as(
− 8

ω
+ e−ı(θ1+θ2) + e−ıθ1 + e−ıθ2 + eı(θ1−θ2)

)
α′′′′ +

(
8
ω
− 8 +

1
ω

eıθ1

)
α′′′

+
((

1− 1
ω

)
eıθ1 +

1
ω

eıθ2 + eı(−θ1+θ2)

)
α′′ +

((
1− 1

ω

)
eıθ2 + eı(θ1+θ2)

)
α′

=
(

1
ω
− 1

)
eı(θ1+θ2)α,

with similar expressions resulting from the other three equations. These equations
may then be solved collectively, expressing (α′′′′, α′′′, α′′, α′)T = L−1Mα, where L is
a four-by-four matrix and M is a four-by-one matrix. The first entry in (the vector)
L−1M is the amplification factor for the complete sweep, mapping the initial error
coefficient for the Fourier mode given by θ into that after a sweep of the element-wise
overlapping multiplicative Schwarz relaxation.

Based on these amplification factors, we can then perform classical MG smoothing
analysis, as in [9,41], for the overlapping smoothers. Figure 4.1 shows the amplification
factors as a function of the Fourier angles, θ, for both pointwise Gauss-Seidel (left) and
element-wise overlapping multiplicative Schwarz relaxation (right). Computing the
smoothing factors, µ = max

θ∈[−π
2 , 3π

2 ]2\[−π
2 , π

2 ]2 µ(θ), where µ(θ) is the amplification

factor for relaxation for a given Fourier mode, θ, for these two approaches, we see that,
for pointwise Gauss-Seidel, µ = 0.43, while for the overlapping relaxation, µ = 0.24,
or that one sweep of the overlapping relaxation reduces high-frequency errors about
the same amount as 1.7 sweeps of pointwise relaxation.

Furthermore, we can combine this smoothing analysis with the well-known LFA
two-grid analysis for scalar PDEs [41,42] of the coarse-grid correction for this system,
using bilinear interpolation and full-weighting restriction, coupled with a Galerkin
coarse-grid operator. The largest-magnitude eigenvalue predicted by the two-grid
LFA for pointwise relaxation is 0.073, while it is 0.024 for the overlapping Schwarz
relaxation in a (1,1)-cycle. One cycle of multigrid with the overlapping relaxation
brings about the same total reduction in error as 1.4 cycles using pointwise relax-
ation. Thus, the overlapping relaxation yields a better solver, but the extra cost of
the overlapping relaxation likely doesn’t pay off (unless it can be implemented very
efficiently). As a comparison, we consider the true performance of multigrid V(1,1)
and W(1,1) cycles using both pointwise Gauss-Seidel and element-wise overlapping
multiplicative Schwarz smoothers, shown in Table 4.1. Here, we see that the two-grid
LFA accurately predicts the W-cycle multigrid convergence rates for both smoothers,
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Fig. 4.1. Amplification factors for pointwise Gauss-Seidel relaxation (at left) and element-wise
overlapping multiplicative Schwarz (at right) for a Q1 discretization of the Poisson equation on a
mesh with h = 1

128
, as a function of the Fourier mode, θ.

Pointwise Gauss-Seidel Overlapping Schwarz
grid V(1,1) W(1,1) V(1,1) W(1,1)

128× 128 0.101 0.068 0.032 0.022
256× 256 0.103 0.068 0.034 0.023
512× 512 0.103 0.068 0.034 0.023

Table 4.1
Average convergence factor over 50 iterations for multigrid cycles based on pointwise and over-

lapping relaxation schemes.

but is a noticeable underestimate for the V-cycle convergence rates. This is typical of
LFA, because the two-grid analysis is based on exact solution of the first coarse-grid
problem; a multigrid W-cycle, where this level is visited twice per iteration is a much
better approximation of this than a V-cycle, which uses much less relaxation.

5. Two-grid local Fourier analysis. We here discuss the basics of two-grid
LFA in order to deal with systems of PDEs on staggered FEM grids. We focus on
two-grid analysis, but multilevel analysis is also possible using inductive arguments.

In general, two-grid methods can be represented by error-propagation operators
with form

E
(TG)
h =

(
I −M−1

h Ah

)ν2 (
I − PH

h B−1
H Rh

HAh

) (
I −M−1

h Ah

)ν1
, (5.1)

where H denotes the mesh size of the coarse scale, Rh
H is the restriction operator from

grid h to grid H, PH
h is the interpolation operator from grid H to grid h, and BH

represents some discretization on the coarse scale.
Writing the eigenvector matrix for the error-propagation operator associated with

relaxation as Φh =
[
φ(1), φ(2), . . . , φ(N)

]
, we know that I −M−1

h Ah is diagonalized by
a similarity transformation with Φh,

(Φh)−1 (
I −M−1

h Ah

)
Φh = Λ,

where Λ is the diagonal matrix of eigenvalues of relaxation, Λii = λi. We can di-
agonalize E

(TG)
h , also using Φh in a similarity transformation. Taking ΦH to be the

matrix of eigenvectors of BH , we can then write

Φ−1
h E

(TG)
h Φh = Λν2

(
I −

(
Φ−1

h PH
h ΦH

)
Γ−1

(
Φ−1

H Rh
HΦh

) (
Φ−1

h AhΦh

))
Λν1 , (5.2)
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(I, J)

(I, J + 1) (I + 1, J + 1)

(i4, j4)(i3, j3)

(i1, j1) (i2, j2)

(I + 1, J)

Fig. 5.1. Nesting of fine-grid nodes relative to the coarse grid for nested (collocated) grids.

where Γ = Φ−1
H BHΦH is also a diagonal operator.

Under the LFA assumptions for smoothing, that Ah and Mh are infinite-grid
Toeplitz matrices, Φ−1

h AhΦh is also a diagonal matrix. If we additionally take BH to
correspond to the discretization of a PDE on an infinite grid with fixed mesh-size, H,
with a stencil that does not vary with position, then the difficulty in analyzing (5.2)
comes from the intergrid-transfer operators, Φ−1

H Rh
HΦh and Φ−1

h PH
h ΦH . The trans-

formation of Rh
H and PH

h in terms of the coarse-grid and fine-grid Fourier matrices,
ΦH and Φh, depends on the relationship between the two mesh sizes, H and h. Tak-
ing H = 2h, as is commonly the case in geometric multigrid, then a constant-stencil
restriction operator, Rh

H , for a two-dimensional mesh maps four fine-grid frequencies
into one coarse-grid function. These four functions, known as the Fourier harmon-
ics, are associated with some base index, θ0,0 ∈

(
−π

2 , π
2

]2, and three more-oscillatory
modes, associated with frequencies

θ1,0 = θ0,0 +
(

π
0

)
, θ0,1 = θ0,0 +

(
0
π

)
, and θ1,1 = θ0,0 +

(
π
π

)
.

The action of a constant-coefficient restriction operator, Rh
2h, on a fine-grid resid-

ual, rh, can be written in terms of a set of restriction weights, {wk,l}, as(
Rh

2hrh

)
I,J

=
∑
k,l

wk,lri+k,j+l, (5.3)

where (i, j) is the fine-grid index corresponding to coarse-grid index (I, J), so (i, j) =
(2I, 2J). Similarly, we can write the action of a constant-coefficient interpolation
operator, P 2h

h , on a coarse-grid correction, e2h, in terms of several sets of interpolation
weights, {w(m)

K,L}, (
P 2h

h e2h

)
i,j

=
∑
K,L

w
(m)
K,LeI+K,J+L, (5.4)

where the additional superscript, m, is used to denote the position of node (i, j)
relative to the coarse node, (I, J), see Figure 5.1. Notice that these weights are
independent of the absolute location of the underlying nodes, but do depend on the
staggering of the nodes relative to the coarse grid, (i− 2I, j − 2J).

The set of modes, φ2h(x, 2θ0,0) for θ0,0 ∈
(
−π

2 , π
2

]2, is a complete set of Fourier
modes on the coarse grid and thus, by assumption, diagonalize the Toeplitz operator,
B2h. As such, the spaces of harmonic frequencies become invariant subspaces for the
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(δ1, δ2) = (0, 1
2 )

x
xx

x(η1, η2) = ( 1
3 , 2

3 )x

Fig. 5.2. Nesting of fine-grid nodes relative to the coarse grid for non-nested grids, with
(δ1, δ2) = (0, 1

2
) and (η1, η2) = ( 1

3
, 2
3
).

coarse-grid correction process and for the two-grid cycle as a whole. From the similar-
ity transformation representation given in Equation (5.2), we can then compute the
eigenvalues of the two-grid error-propagation operator by computing the eigenvalues
of Φ−1

h E
(TG)
h Φh. This matrix is easily permuted into block-diagonal form with, at

most, 4× 4 blocks corresponding to the spaces of harmonic modes.

5.1. LFA for Systems. For systems of PDEs, the LFA analysis does not diago-
nalize Ah through the Fourier-mode similarity transformation but, rather, transforms
the m×m block matrix, Ah, into a matrix that can be permuted into a block-diagonal
form with dense m × m blocks, by diagonalizing each block within Ah. The block
coupling of the operator resulting from the full similarity transformation will have
larger dense blocks than 4×4, as we must also account for the m×m coupling within
Ah (and relaxation) that arises because of the systems form of Ah. Thus, LFA for
systems in 2D results in coupled 4m× 4m blocks of harmonics (with 4 harmonics for
each of the m scalar unknowns of the PDE) for each base frequency, θ0,0 ∈

(
−π

2 , π
2

]2.
Aside from this difference, the analysis below proceeds in the same manner as in scalar
case.

5.2. Grid transfers for staggered systems. An added challenge in the multi-
grid treatment of a system of PDEs is that each different variable type may be stag-
gered in its own way.

If the different variable types do not interact in interpolation and restriction (so
that each variable type only restricts to and interpolates from a coarse-grid variable
with the same staggering pattern), then the LFA for interpolation for the whole system
can be done treating each variable type, in turn, as a scalar problem. If, on the other
hand, there is a need for inter-variable interpolation or restriction in the treatment of
the system, we must modify the method for the scalar case to account for the different
staggering on the two grid levels. As in Figure 5.2, we now take (δ1, δ2) to describe
the staggering of a fine-level variable, rh (either to be restricted from or interpolated
to), and (η1, η2) to describe the staggering of a coarse-level variable, e2h.

Lemma 5.1. Let θ0,0 ∈
(
−π

2 , π
2

]2 and (I, J) be a coarse-grid node index, identi-
fied with fine-grid node index (i, j) = (2I, 2J). Then, any constant-coefficient restric-
tion operator, as defined by Equation (5.3), maps the four Fourier harmonic modes,
φh(x, θ0,0), φh(x, θ1,0), φh(x, θ0,1), and φh(x, θ1,1), on the grid with shift (δ1, δ2) into
the single coarse-grid mode, φ2h(x, 2θ0,0), on the grid with shift (η1, η2).

Proof. Considering a fine-grid residual, rh, that is a linear combination of the
15



four harmonic frequencies,

ri,j = c0,0φh(((i + δ1)h, (j + δ2)h), θ0,0) + c1,0φh(((i + δ1)h, (j + δ2)h), θ1,0)
+ c0,1φh(((i + δ1)h, (j + δ2)h), θ0,1) + c1,1φh(((i + δ1)h, (j + δ2)h), θ1,1)

=c0,0e
ıθ0,0·(i+δ1,j+δ2) + c1,0e

ıθ1,0·(i+δ1,j+δ2) + c0,1e
ıθ0,1·(i+δ1,j+δ2) + c1,1e

ıθ1,1·(i+δ1,j+δ2)

=
(
c0,0 + c1,0e

ıπieıπδ1 + c0,1e
ıπjeıπδ2 + c1,1e

ıπ(i+j)eıπ(δ1+δ2)
)

eıθ0,0·(δ1,δ2)eıθ0,0·(i,j).

As the nodes are numbered based on their cell, node (I, J) on grid 2h can be
identified with node (i, j) on grid h for i = 2I and j = 2J . We seek to represent the
restricted residual on the coarse grid, Rh

2hrh, as a multiple of the coarse-grid harmonic
function, φ2h((I+η1)(2h), (J+η2)(2h), 2θ0,0) = eı2θ0,0·(I+η1,J+η2). Thus, we can write
the restriction of rh to a differently staggered coarse-grid variable in cell (I, J), where
(i, j) = (2I, 2J), as(

Rh
2hrh

)
I,J

=
∑
k,l

wk,lri+k,j+l

= eı2θ0,0·(I+η1,J+η2)

∑
k,l

wk,le
ıθ0,0·(k,l)eıθ0,0·(δ1−2η1,δ2−2η2)

(
c0,0 + c1,0e

ıπkeıπδ1 + c0,1e
ıπleıπδ2 + c1,1e

ıπ(k+l)eıπ(δ1+δ2)
)]

Lemma 5.2. Let θ0,0 ∈
(
−π

2 , π
2

]2 and (I, J) be a coarse-grid node index. Let
(i1, j1), (i2, j2), (i3, j3), and (i4, j4) be four fine-grid node indices, as identified in
Figure 5.2. Then, any constant-coefficient interpolation operator on the shifted grid
maps coarse-grid mode φ2h(x, 2θ0,0) into the four fine-grid harmonics, φh(x, θ0,0),
φh(x, θ1,0), φh(x, θ0,1), and φh(x, θ1,1).

Proof. The Fourier analysis for interpolation can be derived by similarly account-
ing for the different staggering of a coarse-grid variable, e2h, staggered on grid 2h
with (η1, η2), and its fine-grid interpolant, staggered on grid h with (δ1, δ2). Choosing
eI,J = φ2h(((I + η1)(2h), (J + η2)(2h)), 2θ0,0), we get (taking (i1, j1) = (2I, 2J))

(
P 2h

h e2h

)
i1,j1

=

∑
K,L

w
(1)
K,Leı2θ0,0·(K,L)eıθ0,0·(2η1−δ1,2η2−δ2)

 eıθ0,0·(i1+δ1,j1+δ2). (5.5)

Similarly, we can derive the staggered interpolation relations for the other 3 node
points in coarse-grid cell (I, J) as

(
P 2h

h e2h

)
i2,j2

=

∑
K,L

w
(2)
K,Leıθ0,0·(2K−1,2L)eıθ0,0·(2η1−δ1,2η2−δ2)

 eıθ0,0·(i2+δ1,j2+δ2),

(
P 2h

h e2h

)
i3,j3

=

∑
K,L

w
(3)
K,Leıθ0,0·(2K,2L−1)eıθ0,0·(2η1−δ1,2η2−δ2)

 eıθ0,0·(i3+δ1,j3+δ2),

(
P 2h

h e2h

)
i4,j4

=

∑
K,L

w
(4)
K,Leıθ0,0·(2K−1,2L−1)eıθ0,0·(2η1−δ1,2η2−δ2)

 eıθ0,0·(i4+δ1,j4+δ2).
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Making the ansatz that P 2h
h e2h can be written as a linear combination of the four

Fourier harmonics, now on the shifted grid, we have(
P 2h

h e2h

)
i,j

= c0,0e
ıθ0,0·(i+δ1,j+δ2) + c1,0e

ıθ1,0·(i+δ1,j+δ2)

+ c0,1e
ıθ0,1·(i+δ1,j+δ2) + c1,1e

ıθ1,1·(i+δ1,j+δ2)

=
(
c0,0 + c1,0e

ıπ(i+δ1) + c0,1e
ıπ(j+δ2) + c1,1e

ıπ(i+j+δ1+δ2)
)

eıθ0,0·(i+δ1,j+δ2).

Equating terms for (i1, j1) = (2I, 2J) gives

c0,0 + c1,0e
ıπδ1 + c0,1e

ıπδ2 + c1,1e
ıπ(δ1+δ2) = c1(θ0,0),

for c1(θ0,0) given by the expression in Equation (5.5). With similar equations for the
other interpolation nodes, we have


c0,0

c1,0e
ıπδ1

c0,1e
ıπδ2

c1,1e
ıπ(δ1+δ2)

 = ε̂


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1




∑
K,L w

(1)
K,Leı2θ0,0·(K,L)∑

K,L w
(2)
K,Leıθ0,0·(2K−1,2L)∑

K,L w
(3)
K,Leıθ0,0·(2K,2L−1)∑

K,L w
(4)
K,Leıθ0,0·(2K−1,2L−1)

 ,

with ε̂ = eıθ0,0·(2η1−δ1,2η2−δ2)/4.

6. Numerical Examples. In this section, we give several smoothing and two-
grid LFA estimates for systems of PDEs within the framework of multiplicative col-
lective smoothers of Vanka-type. These smoothers, which explicitly deal with the
large nullspaces that appear, are the only collective smoothers that give satisfactory
performance for the operators of interest. We do not investigate the impact of the
ordering of the cells in the present paper and stay with a lexicographical ordering of
the relaxation subsets.

To take LFA from its infinite-grid setting and get a predictive analysis tool, we
need to introduce a second discretization into the analysis, going from a continuous
parameter, θ0,0, to a discrete mesh in θ0,0, upon which a convergence prediction can
be made. Thus, the results presented here have two step-size parameters: h, the
spatial grid size, which is directly reflected in the coefficients of the discrete operators
to which we apply LFA, and hθ, the mesh size for the discrete lattice of θ used to
make a quantitative prediction based on LFA.

A discrete set of the 4 × 4 Fourier blocks is then analyzed, corresponding to a
discrete choice of angles, θ0,0 ∈

(
−π

2 , π
2

]2, given by a tensor product of an equally
spaced mesh over the interval of length π with itself, with mesh-spacing hθ. Because
the infinite-grid fine-grid and coarse-grid operators, Ah and B2h, are often singular,
with the constant functions, φh(x, (0, 0)) and φ2h(x, (0, 0)), in their nullspaces, we
choose the mesh in θ0,0 so that θ0,0 = (0, 0) does not appear. A prediction of the
performance of the multigrid algorithm is made by measuring the largest eigenvalue
of the transformed operators over this discrete space. All of the numbers quoted here
result from this process, for h = 1

64 and hθ = π
32 . The impact of finer meshes in either

space or Fourier frequency was negligible in the examples considered here.

6.1. The grad-div and the curl-curl operators. We first consider the dis-
cretization of the gradient-divergence and the curl-curl equations, (2.1) and (2.2),
respectively. As the stencils, multigrid methods, and smoothers, as well as their LFA
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performance estimates are very similar for the two equations, we discuss them in one
section.

For the grad-div equation (2.1), we use first-order Raviart-Thomas (face) elements
for the vector field U = (u, v)T , as already discussed in Section 2.2. The discrete
degrees of freedom for this discretization are the values of u at the midpoints of mesh
edges that are parallel to the y-axis, and the values of v at the midpoint of mesh edges
that are parallel to the x-axis. The resulting stencil, for u, reads, 1 −1

−1 2 −1
−1 1


h

.

The contribution of the mass matrix is added, in the form of a one-dimensional addi-
tion [h2/6 2h2/3 h2/6], with the central stencil element incremented by 2h2/3. The
resulting, rotated, stencil for the v components is similar.

As mentioned earlier, we choose the Nédélec edge elements [35] to discretize the
weak curl-curl operator in (2.2), for unknown U = (u, v)T . The resulting stencil for
the u-component is 

−1
−1 1

2
1 −1
−1


h

,

while, for v, we find an identical, but rotated, stencil. It is clear that the resulting
stencils for the grad-div and curl-curl operators are identical, but rotated. So, we
focus on the discussion of the smoother for grad-div, as the one for curl-curl is similar
and produces identical LFA results.

The overlapping smoother, in particular for the grad-div operator, was proposed
in [1,2], where the degrees of freedom along the faces (edges) adjacent to a node were
chosen to be relaxed simultaneously, see Figure 2.2. We refer to this as a node-wise
smoothing procedure.

We choose Si,j = {ui,j− 1
2
, ui,j+ 1

2
, vi− 1

2 ,j , vi+ 1
2 ,j}, and introduce in the local sys-

tem for smoothing the Fourier expansions for the errors in u and v, before relaxation,
αueiθ·x/h, αveiθ·x/h, after the first correction, α′

ueiθ·x/h, α′
veiθ·x/h, and after the sec-

ond correction, α′′
ueiθ·x/h, α′′

veiθ·x/h as in Section 3. We can then write the update
equations in terms of the Fourier coefficients:

2h2

3 +2λ 0 λ −λ

0 2h2

3 +2λ −λ λ

λ −λ 2h2

3 +2λ 0
−λ λ 0 2h2

3 +2λ




δui,j+ 1
2

δui,j− 1
2

δvi+ 1
2 ,j

δvi− 1
2 ,j

 =


ru
i,j+ 1

2

ru
i,j− 1

2

rv
i+ 1

2 ,j

rv
i− 1

2 ,j

 ,

and convert this system into a system for α′′
u, α′′

v , α′
u, α′

v in terms of αu and αv, as
explained for Equation (4.1).

In the numerical LFA smoothing and two-grid experiments here, we vary the
transfer operators in the algorithms. We compare the usual six-point restriction op-
erators, based on the fine grid residuals at the six nearest fine grid locations of the
corresponding unknown, with the two-point restriction operator. These operators are
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dictated by the staggered arrangement of the unknowns. For the prolongation oper-
ators we compare the transpose of the six-point restriction, i.e., the six-point inter-
polation, with a twelve-point interpolation and a two-point interpolation. We denote
these transfer operators by 6r, 2r, 6p, 12p and 2p, respectively. See [36] or [42, §8.7.1]
for details on these transfer operators. In the experiments, we fix the smoother to
be the lexicographical AFW smoother; the corresponding smoothing factor, based
on one smoothing iteration, is µ = 0.44. Further, the Galerkin coarse-grid operator
is chosen. Table 6.1 presents the corresponding two-grid LFA results. Results here
are shown for the grad-div (and curl-curl) parameter a = 106. However, for values
of a ranging from 106 to O(1), we find identical LFA results; that is, no sensitivity
to the value of the parameter a is observed. The results in Table 6.1, however, do
demonstrate a sensitivity to the choice of transfer operators, as with the two-point
restriction operator even divergence of the solver is observed.

Table 6.1
Two-grid LFA factors for different sets of transfer operators. Grad-div and curl-curl results

with a multiplicative AFW smoother.

restriction prolongation ρ2g , (1, 1)− cycle

6r 6p 0.134
6r 12p 0.134
2r 6p DIV
6r 2p 0.53

The algorithm with the commonly chosen six-point transfer operators, however,
shows an excellent two-grid factor for these problems. Very similar results are ob-
tained with finite difference multigrid experiments for the grad-div operator in [20].
These results can be labeled textbook multigrid efficiency, and an increasing number
of smoothing steps further decreases the two-grid factors. LFA smoothing analy-
sis, as well as actual numerical multigrid experiments, indicate that an element-wise
multiplicative smoothing method, updating unknowns around the element center si-
multaneously, does not provide any smoothing for this type of problem.

6.2. Stokes Equations. For the Taylor-Hood (Q2-Q1) elements on quadrilat-
eral grids, there are many possible collections of unknowns that can be used to define
the relaxation subsets, Si,j . Vanka’s original choice for the staggered finite-difference
discretization of the Stokes equations [43] can be viewed both as being an element-wise
choice, as each relaxation subset consisted of the four velocity unknowns and single
pressure unknown on each grid cell, and also as being a pressure-wise choice, as these
relaxation subsets also correspond to the complete set of velocities that appear in the
divergence equation at a given pressure node plus that pressure node itself. For this
finite-element discretization, however, the element-wise and pressure-wise relaxation
subsets are distinct. Further choices are also possible, such as the larger collections
analyzed in [32]. As first noted (without explanation) in [28], difficulties arise in using
element-wise smoothing for the Taylor-Hood discretization. LFA confirms this, with
substantial under-relaxation necessary to achieve a smoothing factor that is less than
one. For this reason, we focus here on the pressure-wise smoothing algorithm.

Table 6.2 displays both two-grid LFA convergence factors, ρ2g, and LFA smooth-
ing factors, µ, for the full Vanka smoother using pressure-wise relaxation. Two types
of under-relaxation are considered: under-relaxation on only the velocities (as first
suggested by Vanka [43]) and full under-relaxation, where the corrections to velocities
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Velocity under-relaxation Full under-relaxation
ω ρ2g µ ρ2g µ
1.0 0.77 0.76 0.77 0.76
0.9 0.67 0.74 0.58 0.67
0.8 0.58 0.71 0.43 0.61
0.7 0.48 0.68 0.37 0.60
0.6 0.38 0.65 0.45 0.67
0.5 0.36 0.60 0.54 0.74

Table 6.2
Two-grid LFA convergence factors, ρ2g, and smoothing factors, µ, for the full Vanka smoother

for the Q2-Q1 discretization of Stokes with pressure-wise relaxation groups. In the left two columns,
under-relaxation is used only on the velocity variables, while it is used on all variables (with the
same under-relaxation parameter) in the right two columns.

Fig. 6.1. At left, the amplification factor for the full pressure-wise Vanka smoother with no
under-relaxation for the Q2-Q1 discretization of the Stokes equations on a mesh with h = 1

64
, as a

function of the Fourier mode, θ. At right, the spectrum of the two-grid error-propagation operator
using this smoother with biquadratic interpolation for the velocities and bilinear interpolation for
the pressure.

and pressure are weighted equally. Both types of under-relaxation are shown to yield
significant improvement in both the smoothing and two-grid convergence factors. Fig-
ures 6.1 and 6.2 depict the amplification factors for relaxation as a function of the
Fourier mode and the spectrum of the two-grid operator (sampled on a 64× 64 mesh
in the Fourier domain

[
−π

2 , 3π
2

]2) for no under-relaxation (in Fig. 6.1), and under-
relaxation in velocity only with a factor of ω = 0.5 (in Fig. 6.2). Note that in the
under-relaxed case, the amplification factor near (π, π) is greater than 0.5; however,
in this case, the reduction of error in the Fourier modes with frequencies near (π, π)
by two steps of relaxation is in balance with the reduction in the smooth modes by the
coarse-grid correction process, leading to a much more efficient cycle than is achieved
with no weighting of the relaxation process.

Because of the expense of inverting the full velocity submatrix associated with
the relaxation subsets, a cheaper alternative to the full Vanka smoother using only
the diagonal of this matrix is often considered [28, 31]. Table 6.3 gives two-grid LFA
convergence factors, ρ2g, and smoothing factors, µ, for this variant, known as the
diagonal Vanka smoother. Here, we see that without under-relaxation, the smoother
is mildly divergent; however, under-relaxation quickly resolves this and leads to a
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Fig. 6.2. At left, the amplification factor for the full pressure-wise Vanka smoother with under-
relaxation with parameter ω = 0.5 used for the velocities only with the Q2-Q1 discretization of the
Stokes equations on a mesh with h = 1

64
, as a function of the Fourier mode, θ. At right, the spectrum

of the two-grid error-propagation operator using this smoother with biquadratic interpolation for the
velocities and bilinear interpolation for pressure.

Velocity under-relaxation Full under-relaxation
ω ρ2g µ ρ2g µ
1.0 1.41 1.22 1.41 1.22
0.9 1.10 1.08 0.71 0.89
0.8 0.83 0.95 0.52 0.75
0.7 0.59 0.84 0.56 0.70
0.6 0.56 0.77 0.61 0.74
0.5 0.61 0.78 0.64 0.78

Table 6.3
Two-grid LFA convergence factors, ρ2g, and smoothing factors, µ, for the diagonal Vanka

smoother for the Q2-Q1 discretization of Stokes with pressure-wise relaxation groups. In the left
two columns, under-relaxation is used only on the velocity variables, while it is used on all variables
(with the same under-relaxation parameter) in the right two columns.

smoother that is much less expensive than, but also less effective than the full Vanka
smoother. The amplification factor for this smoother and the spectrum of the two-
grid iteration matrix using under-relaxation on all variables with parameter ω = 0.8
are shown in Figure 6.3.

If we ignore the inf-sup condition (2.7) when discretizing Equations (2.5) and
(2.6), one appealing discretization would be to represent the velocities by bilinear
basis functions and pressure as a piece-wise constant function on each element. While
it is well-known that such an approach (without the addition of a stabilization term)
sacrifices significant accuracy in the resulting solution [16,18], it is equally important
to note the difficulty in designing an efficient solver for this discretization. Figure 6.4
shows the amplification factor for element-wise Vanka smoothing for this discretiza-
tion (which is, in this case, the same as the pressure-wise smoother) at left, and
the spectrum of the two-grid error-propagation operator for a (1,1)-cycle at right.
Adding under-relaxation to the velocities has little effect on these results, with an
LFA smoothing factor of 0.995 for ω = 0.6, 0.7, 0.8, 0.9, and 1.0. Of particular inter-
est is the large amplification factor associated with the Fourier mode at (π, π), which
is also the same mode that leads to the instability in the discretization.
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Fig. 6.3. At left, the amplification factor for the diagonal pressure-wise Vanka smoother with
under-relaxation on all variables with parameter ω = 0.8 for the Q2-Q1 discretization of the Stokes
equations on a mesh with h = 1

64
, as a function of the Fourier mode, θ. At right, the spectrum of

the two-grid error-propagation operator using this smoother with biquadratic interpolation for the
velocities and bilinear interpolation for pressure.

Fig. 6.4. At left, the amplification factor for the element-wise (overlapping) Vanka smoother for
the Q1-P0 discretization of the Stokes equations on a mesh with h = 1

64
, as a function of the Fourier

mode, θ. At right, the spectrum of the two-grid error-propagation operator using this smoother with
bilinear interpolation for the velocities and piece-wise constant interpolation for pressure.

7. Conclusion. In this paper, we present a theoretical analysis of the validity
of LFA for multigrid methods in which staggered grid transfers and multiplicative
overlapping smoothers are included. The LFA for these smoothers had been per-
formed before in two specific instances, but fundamental insight into the validity of
the exponential Fourier functions as eigenfunctions of these smoothers has not been
found in the literature. We focus on systems of PDEs discretized by state-of-the-art
finite elements: the grad-div equation with Raviart-Thomas elements, the curl-curl
equation with Nédélec edge elements, and the Stokes equation with Taylor-Hood el-
ements. We show that the analysis for overlapping smoothers, as developed for fluid
mechanics problems, can easily be applied to the model equations in electromagnet-
ics. The corresponding multiplicative smoothers give rise to solvers with textbook
multigrid efficiency. In this way, we extend the LFA and related software to arbitrary
finite-element discretizations.
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