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SUMMARY

Multigrid methods that use block-structured relaxation schemes have been successfully applied to several
saddle-point problems, including those that arise from the discretization of the Stokes equations. In this
paper, we present a local Fourier analysis (LFA) of block-structured relaxation schemes for the staggered
finite-difference discretization of the Stokes equations to analyze their convergence behavior. Three block-
structured relaxation schemes are considered: distributive relaxation, Braess-Sarazin relaxation, and Uzawa
relaxation. In each case, we consider variants based on weighted Jacobi relaxation, as is most suitable for
parallel implementation on modern architectures. From this analysis, optimal parameters are proposed, and
we compare the efficiency of the presented algorithms with these parameters. Finally, some numerical
experiments are presented to validate the two-grid and multigrid convergence factors. Copyright c⃝ 2010
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Large linear systems of saddle-point type arise in a wide variety of applications throughout
computational science and engineering. Such linear systems represent a significant challenge for
computation owing to their indefiniteness and often poor spectral properties. Saddle-point problems
are well-known and well-studied in numerical analysis [1–3]. Discretization of the Stokes equations
naturally leads to saddle-point systems, and solvers for the Stokes equations are a natural first step
in developing new algorithms for the Navier-Stokes equations and other saddle-point problems.
Two main families of preconditioners are found in the literature for saddle-point systems, such
as the Stokes equation. Block preconditioners (cf. [3] and the references therein) are commonly
used, since they can easily be constructed from standard multigrid algorithms for scalar elliptic
PDEs, such as algebraic multigrid [4]. Monolithic multigrid methods, that are applied directly to
the system in coupled form, are potentially more difficult to construct and analyse, since standard
pointwise relaxation schemes cannot be applied. Several families of relaxation schemes have,
however, been developed for monolithic multigrid methods for the Stokes equations and more
complicated saddle-point systems and have been shown to outperform block precondtioners in some
cases (see, e.g., [5]). Distributive relaxation [6–8] was the first to be proposed, using a distributive
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2 Y. HE, S.P. MACLACHLAN

operator to allow use of pointwise relaxation schemes on transformed variables. A strongly coupled
relaxation scheme was introduced by Vanka [9], based on solving a sequence of localized saddle-
point problems in a block overlapping Gauss-Seidel iteration. Two further families are based on
using block preconditioning strategies as relaxation schemes, yielding the Braess-Sarazin [10] and
Uzawa [11] approaches. Each of these families has been further developed in recent years, including
Braess-Sarazin-type relaxation schemes [5,10,12–14], Vanka-type relaxation schemes [5,9,13–18],
Uzawa-type relaxation schemes [19–22], distributive relaxation schemes [23,24] and other types of
methods [25,26]. The aim of this paper is to analyse block-structured relaxation schemes, including
distributive, Braess-Sarazin, and Uzawa relaxation.

Existing analysis of these relaxation schemes leaves several open questions. For finite-element
discretizations, variational analysis techniques have been developed for both Braess-Sarazin [27]
and Uzawa [19] relaxation. Local Fourier analysis(LFA) has been applied to all of the standard
relaxation schemes, including distributive relaxation [28], Vanka relaxation [15, 17], and Braess-
Sarazin and Uzawa-type schemes [20, 29]. However, the vast majority of the existing LFA has
been for relaxation schemes using (symmetric) Gauss-Seidel approaches. Here, in contrast, we
focus on schemes that make use of weighted Jacobi relaxation. Considering modern many-core
and accelerated parallel architectures, proper understanding of such schemes is critical to achieving
excellent parallel and algorithmic scalability.

Supporting numerical results demonstrate some key conclusions of this analysis. First, distributive
weighted-Jacobi relaxation retains the well-known advantages of distributive Gauss-Seidel. This
fact, coupled with the low cost per iteration and fine-scale parallelism, recommends this relaxation
scheme, at least in the context of the finite-difference scheme considered herein. For Braess-Sarazin
relaxation, we find that there is no degradation in predicated multigrid performance for the inexact
variant of the algorithm introduced in [27] over the exact variant originally proposed in [10,12]. The
same is not true for Uzawa relaxation, where our results show a notable gap between the predicated
performance with exact inversion of the resulting approximate Schur complement vs that with only
inexact inversion. Furthermore, we see that the assumptions made in [20] for algebraic analysis of
Uzawa-type relaxation are sufficient but not necessary for convergence.

In this paper, we consider these three families of relaxation schemes in terms of the computational
work and the optimal smoothing factors obtained. The results show that Braess-Sarazin relaxation
provides better smoothing than Uzawa in the case of finite-difference discretization. This is in
contrast to results in [19] for finite-element discretizations. The gap between finite-difference
discretization and finite-element discretization using Braess-Sarzin relaxation is a question for our
future work. However, we also see that distributive weighted Jacobi can match the performance of
Braess-Sarazin, as has been seen for Gauss-Seidel based relaxation. Extending this analysis to the
finite-element case is also a topic for future research.

The outline of the paper is as follows. In Section 2, we introduce the Marker and Cell (MAC)
finite-difference discretization of the Stokes equations in two dimensions and some definitions
of local Fourier analysis. In Section 3, we present the distributive weighted-Jacobi relaxation
schemes and the optimal smoothing factor is given by local Fourier analysis. In Section 4,
local Fourier analysis is developed for Braess-Sarazin-type relaxation and optimal parameters are
derived. In Section 5, we apply LFA to Uzawa-type relaxation to determine the optimal smoothing
factor. Furthermore, a comparison of the relaxation schemes is given. Section 6 presents some
experimentally measured two-grid and multigrid convergence factors to confirm the theoretical
results. Conclusions are drawn in Section 7.
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LFA OF BLOCK-STRUCTURED MULTIGRID RELAXATION SCHEMES FOR THE STOKES EQUATIONS 3

2. DISCRETIZATION AND LOCAL FOURIER ANALYSIS

2.1. Staggered finite-difference discretization of the Stokes equations

We consider the Stokes equations,

−△U +∇p = F , (1)
∇ · U = 0, (2)

for velocity vector, U =

(
u
v

)
, and scalar pressure, p, of a viscous fluid. Discretization of (1) and

(2) typically leads to a linear system of the form

Kx =

(
A BT

B 0

)(
Uh

ph

)
=

(
Fh

0

)
= b, (3)

where A corresponds to the discretized vector Laplacian, B is the negative of the discrete divergence

operator, and Uh =

(
uh

vh

)
.

In this paper, we consider the standard staggered finite-difference discretization in two-
dimensions, known as the Marker-and-cell (MAC) scheme (see [30, 31]). The discrete pressure
unknowns ph are defined at cell centres (×-points in Figure 1). The discrete values of uh and vh are
located at the grid cell faces in the ◦- and •-points, respectively, see Figure 1.

Figure 1. The staggered location of unknowns on mesh Gh: ×− p, ◦ − u, • − v

The discrete momentum equations read (see [30])

−△huh + (∂x)h/2 ph = F1,h, −△hvh + (∂y)h/2 ph = F2,h,

where Fh =

(
F1,h

F2,h

)
. Here, we use the standard five-point discretization for −△h (for uh on the ◦

grid and for vh on the • grid) and the approximations

(∂x)h/2 ph(x, y) =
1

h

(
ph
(
x+ h/2, y

)
− ph

(
x− h/2, y

))
,

(∂y)h/2 ph(x, y) =
1

h

(
ph
(
x, y + h/2

)
− ph

(
x, y − h/2

))
.

The discrete conservation of mass equation is given by

(∂x)h/2 uh(x, y) + (∂y)h/2 vh(x, y) = 0.

We consider uniform meshes with: hx = hy = h in this paper.
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4 Y. HE, S.P. MACLACHLAN

2.2. Definitions and notations

In order to describe LFA for staggered grids, we first introduce some terminology. More details can
be found in [30]. We consider two-dimensional infinite uniform grids Gh = G1

h

∪
G2

h

∪
G3

h with

Gj
h =

{
xj
k1,k2

:= (k1, k2)h+ δj , (k1, k2) ∈ Z2
}
,with δj =


(0, h/2) if j = 1,

(h/2, 0) if j = 2,

(h/2, h/2) if j = 3,

and Fourier functions φ(θ,xk1,k2) ∈ span
{
φ1(θ,xk1,k2), φ2(θ,xk1,k2), φ3(θ,xk1,k2)

}
on Gh, in

which

φ1(θ,xk1,k2) =
(
eiθ·x

1
k1,k2

/h 0 0
)T

, φ2(θ,xk1,k2) =
(
0 eiθ·x

2
k1,k2

/h 0
)T

,

φ3(θ,xk1,k2) =
(
0 0 eiθ·x

3
k1,k2

/h
)T

, θ = (θ1, θ2),

where T denotes the (non-conjugate) transpose of the row vectors. Since φ(θ,xk1,k2) is periodic in
θ with period 2π, we consider the domain θ ∈

[
− π

2 ,
3π
2

)2.
Let Lh be a Toeplitz operator acting on one of the components of Gh

Lh
∧
= [sκ]h (κ = (κ1, κ2) ∈ Z2);

Lhwh(x
j) =

∑
κ∈V

sκwh(x
j + κh),

with constant coefficients sκ ∈ R (or C), where wh(x
j) is a function in l2(Gj

h). Here, V is a
finite index set. Note that since Lh is Toeplitz, it is diagonalized by the Fourier modes φ(θ,xj) =

eiθ·x
j/h = eiθ1x

j
1/heiθ2x

j
2/h.

Definition 2.1
If for all grid functions φ(θ,xj),

Lhφ(θ,x
j) = L̃h(θ)φ(θ,x

j),

we call L̃h(θ) =
∑
κ∈V

sκe
iθκ the symbol of Lh.

The staggered discretization of the Stokes equations leads to the system

Lhuh =

 −△h 0 (∂x)h/2
0 −△h (∂y)h/2

−(∂x)h/2 −(∂y)h/2 0

uh

vh
ph


with stencils

−△h =
1

h2

 −1
−1 4 −1

−1

 , (∂x)h =
1

h

[
−1 0 1

]
, (∂y)h =

1

h

 1
0
−1

 .

The symbol of operator Lh is given by

L̃h(θ1, θ2) =
1

h2

 4m(θ) 0 i2h sin θ1
2

0 4m(θ) i2h sin θ2
2

−i2h sin θ1
2 −i2h sin θ2

2 0

 ,

where m(θ) = 4−2 cos θ1−2 cos θ2
4 = sin2( θ12 ) + sin2( θ22 ). Each entry in L̃h is computed as the

(scalar) symbol of the corresponding block of Lh, following Definition 2.1. Since Lh is a 3× 3
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Prepared using nlaauth.cls DOI: 10.1002/nla



LFA OF BLOCK-STRUCTURED MULTIGRID RELAXATION SCHEMES FOR THE STOKES EQUATIONS 5

block operator, its symbol is naturally a 3× 3 matrix. The error-propagation symbol for a relaxation
scheme, represented by matrix M , applied to MAC scheme is

S̃h(p, ω,θ) = I − ωM̃−1L̃h,

where p represents parameters within M , the block approximation to Lh, ω is an overall weighting
factor, and M̃ and L̃h are the symbols for M and Lh, respectively.

In this paper, we consider multigrid methods for staggered discretizations with standard geometric
grid coarsening; that is, we construct a sequence of coarse grids by doubling the mesh size in each
spatial direction. High and low frequencies for standard coarsening are given by

θ ∈ T low =
[
−π

2
,
π

2

)2

, θ ∈ T high =

[
−π

2
,
3π

2

)2 \[
−π

2
,
π

2

)2

.

Definition 2.2
The error-propagation symbol, S̃h(θ), for a block smoother Sh on the infinite grid Gh satisfies

Shφ(θ,xk1,k2) = S̃hφ(θ,xk1,k2), θ ∈
[
− π

2
,
3π

2

)2
,

for all φ(θ,xk1,k2), and the corresponding smoothing factor for Sh is given by

µloc = µloc(Sh) = max
θ∈Thigh

{∣∣λ(S̃h(θ))
∣∣ },

where λ
(
S̃h(θ)

)
is an eigenvalue of the 3× 3 matrix-valued function S̃h(θ). Throughout the rest

of this paper, the developed theory applies to discrete spaces. Therefore, except when necessary for
clarity, we drop the subscript h for simplicity.

Definition 2.3
Since the smoothing factor is a function of some parameters, let D be the set of allowable parameters
and define the optimal smoothing factor over D as

µopt = min
D

µloc.

Set D may have many parameters depending on the selection of the relaxation scheme.

3. DISTRIBUTIVE RELAXATION

Distributive Gauss-Seidel relaxation [6, 8] is well-known to be highly efficient for the MAC
discretization. The idea of distributive relaxation is as follows. To relax the equation Lx = b, we
introduce a new variable x̂ by x = Px̂ and consider the (transformed) system L∗x̂ = LPx̂ = b.
Here, P is chosen such that the resulting operator LP is suitable for decoupled relaxation with a
simple, efficient relaxation process, preferably for each of the equations (velocity and pressure) of
the transformed system separately. After each sweep of relaxation, the correction δx̂, is distributed
to the original unknowns, δx = Pδx̂. Distributive Gauss-Seidel-type relaxation has been widely
used [25, 32]. Here, we consider distributive weighted-Jacobi (DWJ) relaxation. For the Stokes
equations, the discretized distribution operator can be represented by the preconditioner

P =

Ih 0 (∂x)h/2
0 Ih (∂y)h/2
0 0 △h

 .

Then, we apply block weighted-Jacobi relaxation to the distributed operator

L∗ = LP =

 −△h 0 0
0 −△h 0

−(∂x)h/2 −(∂y)h/2 −△h

 . (4)

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
Prepared using nlaauth.cls DOI: 10.1002/nla



6 Y. HE, S.P. MACLACHLAN

Remark 3.1
For the staggered MAC discretization, if the original problem has Dirichlet boundary conditions,
then the last block operator, −△h, of L∗ is the standard 5-point stencil of the Laplacian operator
discretized at cell centers with Neumann boundary conditions [33]. If the original problem has
periodic boundary conditions, then last block operator, −△h, should have periodic boundary
conditions.

The discrete matrix form of P is

P =

(
I BT

0 −Ap

)
,

where Ap is the the standard 5-point stencil of the Laplacian operator discretized at cell centers
(see Remark 3.1). For distributive weighted-Jacobi (with weight αD) relaxation, we need to solve a
system of the form

Mδx̂ =

(
αDdiag(A) 0

B αDdiag(Ap)

)(
δÛ
δp̂

)
=

(
rU
rp

)
, (5)

then distribute the updates as δx = Pδx̂. The error propagation operator for the scheme is, then,
I − ωDPM−1L.

3.1. Distributive weighted-Jacobi relaxation

The symbol of operator L∗ is given by

L̃∗(θ1, θ2) =
1

h2

 4m(θ) 0 0
0 4m(θ) 0

−i2h sin θ1
2 −i2h sin θ2

2 4m(θ)

 ,

and the symbol of the block weighted-Jacobi operator is

M̃D(θ1, θ2) =
1

h2

 4αD 0 0
0 4αD 0

−i2h sin θ1
2 −i2h sin θ2

2 4αD

 .

It is easy to see that all of the eigenvalues of the error-propagation symbol, S̃D(αD, ωD,θ) =

I − ωDP̃M̃−1
D L̃, are 1− ωD

m(θ)
αD

.

Theorem 3.1
The optimal smoothing factor for distributive weighted-Jacobi relaxation is

µopt,D = min
(αD,ωD)

max
θ∈Thigh

∣∣λ(S̃D(αD, ωD,θ))
∣∣ = 3

5
,

and is achieved if and only if αD = 5
4ωD.

Proof
When θ ∈ T high, m(θ) = sin2( θ12 ) + sin2( θ22 ) covers the interval [ 12 , 2]. Since all of the eigenvalues

of S̃D(αD, ωD,θ) = I − ωDP̃M̃−1
D L̃ are 1− ωD

m(θ)
αD

, max
θ∈Thigh

∣∣λ(S̃D(αD, ωD,θ))
∣∣ = max

{∣∣1−
ωD

2αD

∣∣, ∣∣1− 2ωD

αD

∣∣}. In order to minimize this, setting |1− ωD

2αD
| = |1− 2ωD

αD
| obtains ωD

αD
= 4

5 and

|1− ωD

2αD
| = 3

5 .

Remark 3.2
The optimal smoothing factor for the ω-(damped) Jacobi relaxation for 5-point finite-difference
discretization of the Laplacian is 3

5 with ω = 4
5 . Thus, it is not surprising this serves as an intuitive

lower bounded on the possible performance of block relaxation schemes that include this as a piece
of the overall relaxation.
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LFA OF BLOCK-STRUCTURED MULTIGRID RELAXATION SCHEMES FOR THE STOKES EQUATIONS 7

4. BRAESS-SARAZIN-TYPE RELAXATION SCHEMES

Although the distributive weighted Jacobi-type relaxation is efficient, proper construction of the
preconditioner P , is not always possible or straightforward, especially for other types of saddle-
point problems. Considering this obstacle, we also analyse other block-structured relaxation
schemes. Braess-Sarazin-type algorithms were originally developed as a relaxation scheme for the
Stokes equations [10], requiring the solution of a greatly simplified but global saddle-point system.
As a relaxation scheme for the system in (3), one solves a system of the form

Mx =

(
αC BT

B 0

)(
δU
δp

)
=

(
rU
rp

)
, (6)

where C is an approximation of A, the inverse of which is easy to apply, for example I, or diag(A),
and α > 0 is a chosen relaxation parameter. Solutions of (6) are computed in two stages as

(BC−1BT )δp = BC−1rU − αrp, (7)

δU =
1

α
C−1(rU −BT δp).

In practice, (7) is not solved exactly; an approximate solve is sufficient [27], such as using a simple
sweep of a Gauss-Seidel or weighted Jacobi iteration. In the following, we consider two ways to
solve (7): exact and inexact methods.

4.1. Exact Braess-Sarazin relaxation

We first take C = diag(A) and analyze exact Braess-Sarazin relaxation; that is solving (7) exactly.
Denoting the corresponding M as ME , the symbol of ME is given by

M̃E(θ1, θ2) =
1

h2

 4αE 0 i2h sin θ1
2

0 4αE i2h sin θ2
2

−i2h sin θ1
2 −i2h sin θ2

2 0

 .

The symbol of the error-propagation matrix for weighted exact BSR is S̃E(αE , ωE ,θ) = I −
ωEM̃

−1
E L̃. A standard calculation shows that the determinant of L̃− λM̃E is

πE(λ;αE) =
16m(θ)αE

h4

(
λ− 1

)2
(λ− m(θ)

αE
),

thus, the eigenvalues of M̃−1
E L̃ are 1, 1,

m(θ)

αE
.

Remark 4.1
Note that 1 is an eigenvalue of M̃−1

E L̃ with multiplicity 2. This result matches with the general
results for constraint preconditioners in [34], which considers the distribution of eigenvalues of the
left preconditioned linear system, G−1Hx = G−1b.

Theorem 4.1
The optimal smoothing factor for (weighted) exact Braess-Sarazin relaxation is

µopt,E = min
(αE ,ωE)

max
θ∈Thigh

∣∣λ(S̃E(αE , ωE ,θ))
∣∣ = 3

5
,

and is achieved if and only if αE = 5
4ωE , with ωE ∈ [ 25 ,

8
5 ].

Proof
Since the symbol of the error-propagation operator, S̃E(αE , ωE ,θ) = I − ωEM̃

−1
E L̃, has eigenval-

ues 1− ωE , 1− ωE , 1− ωE
m(θ)
αE

, the smoothing factor is given by max
θ∈Thigh

∣∣λ(S̃E(αE , ωE ,θ))
∣∣ =

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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8 Y. HE, S.P. MACLACHLAN

max

{∣∣1− ωE

2αE

∣∣, ∣∣1− 2ωE

αE

∣∣, ∣∣1− ωE

∣∣}. As in Theorem 3.1, we know that min
(αE ,ωE)

max
θ∈Thigh

{∣∣1−
ωE

2αE

∣∣, ∣∣1− 2ωE

αE

∣∣} =
3

5
. Since |1− ωE | should be no larger than 3

5 to achieve the overall bound,

we have ωE ∈ [ 25 ,
8
5 ].

The natural choice is to take ωE = 1, with αE = 5
4ωE = 5

4 . In this setting, the predicted rate of
multigrid convergence is very fast, again matching the smoothing performance of weighted Jacobi
on the finite-difference Poisson operator. Also note that for the analysis above, we considered
C = diag(A) rather than C = I; however, the same conclusion holds for the latter case since
diag(A) = 4I on the infinite grid. Taking C = I , we obtain the same smoothing factor µopt,E(θ) =
3
5 with ωE ∈ [ 25 ,

8
5 ] and αE = 5ωE .

4.2. Inexact Braess-Sarazin relaxation

The (exact) Braess-Sarazin approach was first introduced in [10], where it was shown that a
multigrid convergence rate of O(k−1) can be achieved, where k denotes the number of smoothing
steps on each level. However, there is a significant difficulty in practical use of this method because
it requires an exact inversion of the Schur complement, which is very expensive. A broader class of
iterative methods for Stokes problem is discussed in [27], which demonstrated that the same O(k−1)
performance can be achieved as the exact Braess-Sarazin relaxation when the pressure correction
equation is not solved exactly. In [27], this inexact BSR is seen to be slightly worse than exact BSR
for a finite-element discretization of the Stokes Equations, even with a strong iteration used on the
Schur complement system. This motivates us to explore inexact Braess-Sarazin relaxation for the
MAC discretization, wondering whether it is possible to achieve the same smoothing factor of 3

5 .
This will be answered in the following.

Considering parallel and GPU computation, we focus on using a single sweep of weighted Jacobi
iteration (with weight ωJ ) to approximate the solution of Equation (7). In order to distinguish
between the parameters αE , ωE used in the exact case, we use αI , ωI in the inexact case. Denote
the resulting approximation matrix, M , as MI . Considering the block factorization of M in
Equation (6), we introduce the modified Schur complement that corresponds to applying only
a single weighted Jacobi sweep of relaxation on the true Schur complement, B(αIC)−1BT , as
−S +B(αIC)−1BT , where C = diag(A) and S = ω−1

J diag(B(αIC)−1BT ). The stencil of αIC is

1

h2

[
4αI 0
0 4αI

]
,

and the stencils of B(αIC)−1BT and the modified Schur complement for weighted Jacobi iteration
are, respectively,

1

αI

 −1
4

− 1
4 1 −1

4
−1

4

 ,
1

αI

 − 1
4

−1
4 1− ω−1

J −1
4

− 1
4

 .

Therefore, according to the symbol formulation (2.1), the symbol of the weighted Jacobi iteration
is

β =
2− cos θ1 − cos θ2 − 2ω−1

J

2αI
=

m(θ)− ω−1
J

αI
.

The symbol of matrix MI is given by

M̃I(θ1, θ2) =
1

h2

 4αI 0 i2h sin θ1
2

0 4αI i2h sin θ2
2

−i2h sin θ1
2 −i2h sin θ2

2 h2β

 .

Calculating the determinant of L̃ − λM̃I , we obtain the characteristic polynomial

πI(λ;αI , ωJ ) =
16αI(m(θ)− αIβ)

h4

(
λ− m(θ)

αI

)(
λ2 +

βm(θ)− 2m(θ)

m(θ)− αIβ
λ+

m(θ)

m(θ)− αIβ

)
(8)

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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LFA OF BLOCK-STRUCTURED MULTIGRID RELAXATION SCHEMES FOR THE STOKES EQUATIONS 9

Note that setting β = 0 (which would require m(θ)ωJ = 1) yields πI(λ;αI , ωJ) = πE(λ;αI),
recovering the case of exact Braess-Sarazin. In the general case (when ωJ is a constant factor),
we still recognize that λ∗ := m(θ)

αI
is an eigenvalue for both the exact and inexact Braess-Sarazin

relaxation. Therefore, the optimal smoothing factor µopt,I for the inexact case cannot be smaller than
3
5 , and will only achieve that value if ωI

αI
= 4

5 . Thus, it is reasonable to try ωI

αI
= 4

5 in the analysis of
the inexact case.

To analyze the other eigenvalues of the inexact Braess-Sarazin relaxation, substituting β =
m(θ)−ω−1

J

αI
into (8), these two eigenvalues, λ1, λ2, are the roots of

gI(λ;αI , ωJ) = λ2 +

(
m(θ)

αI

(
m(θ)ωJ − 1

)
− 2m(θ)ωJ

)
λ+m(θ)ωJ . (9)

Consequently, we have

λ1 + λ2 =
m(θ)

αI

(
1−m(θ)ωJ

)
+ 2m(θ)ωJ , (10)

λ1λ2 = m(θ)ωJ > 0. (11)

Denote the discriminant of the quadratic function gI as

∆I(αI , ωJ ) =
ω2
J

α2
I

m(θ)
(
m(θ)−m∗

)(
m(θ)−m+

)(
m(θ)−m−

)
, (12)

where

m∗ = ω−1
J , m± =

4αI + ω−1
J ±

√
(4αI + ω−1

J )2 − (4αI)2

2
.

For m(θ) ∈ [0, 2], the sign of ∆I(αI , ωJ) is determined by the choices of αI , ωJ . Hence, it is
important to determine the relationship of m∗,m+,m−, for certain choices of αI , ωJ . The next
Lemma gives a useful characterization.

Lemma 4.1
If αI = ω−1

J , then m− = m∗. If, furthermore, 1
2 ≤ αI ≤ 2, then

∆I(αI , ωJ) ≤ 0, ∀m(θ) ∈ [0, 2].

Proof
Since αI = ω−1

J , we have

m− =
4αI + ω−1

J −
√

(4αI + ω−1
J )2 − (4αI)2

2
= αI = m∗,

which is the first result.
If 1

2 ≤ αI ≤ 2, we have

m+ =
4αI + ω−1

J +
√

(4αI + ω−1
J )2 − (4αI)2

2
= 4αI ≥ 2,

m− = αI ≤ 2.

According to the discriminant in (12) and the relationship that αI = ω−1
J , it follows that

∆I(αI , ω) =
m(θ)(m(θ)− 4αI)(m(θ)− αI)

2

α4
I

≤ 0,

for all m(θ) ∈ [0, 2].

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
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10 Y. HE, S.P. MACLACHLAN

Theorem 4.2
If ∆I(αI , ωJ) ≤ 0, then necessary and sufficient conditions for the convergence of inexact Braess-
Sarazin iteration, S̃I(θ) = I − ωI(M̃I)

−1L̃, for all frequencies θ ̸= 0 are

|1− ωIλ∗| < 1, (13)
(1− ωIλ1)(1− ωIλ2) < 1. (14)

Proof
If ∆I(αI , ωJ ) ≤ 0, then λ1 = λ2 and |1− ωIλ1|2 = |1− ωIλ2|2 = (1− ωIλ1)(1− ωIλ2). Thus,
the necessary and sufficient condition for convergence is (1− ωIλ1)(1− ωIλ2) < 1, along with
|1− ωIλ∗| < 1.

Next, under the condition αI = ω−1
J , we optimize the smoothing factor µloc,I(θ). Considering

the convergence conditions, using (10) and (11), (14) can be simplified as

m(θ) < ω−1
J + αI(2− ωI),

which should hold for all m(θ) ∈ [0, 2]. This is clearly satisfied for all m(θ) if it is true for m(θ) = 2.
From (13), since λ∗ = m(θ)

αI
, we obtain ωI < αI . We thus define a set D∗, of parameters that satisfy

Theorem 4.2 (allowing for non-convergence when θ = 0), as well as the assumption that αI = 5
4ωI

needed to achieve the smoothing factor of 3
5 , as

D∗ =

{(
αI , ωJ , ωI

)
:
1

2
≤ αI = ω−1

J ≤ 2, 2 < αI(3− ωI), αI =
5

4
ωI

}
.

The next theorem demonstrates that inexact Braess-Sarazin relaxation can achieve the optimal
smoothing factor of 3

5 .

Theorem 4.3
For (αI , ωJ , ωI) ∈ D∗, the optimal smoothing factor for the inexact Braess-Sarazin relaxation is

µopt,I = min
(αI ,ωJ ,ωI)∈D∗

max
θ∈Thigh

{
|1− ωIλ∗|, |1− ωIλ1|, |1− ωIλ2|

}
=

3

5
,

and is achieved if and only if αI = 5
4 , ωI = 1, and ωJ = 4

5 .

Proof
Since (αI , ωJ , ωI) ∈ D∗, the convergence conditions are satisfied. For the high frequencies, the
eigenvalues are either complex numbers or two equal real numbers, so we consider µ2

opt in place of
µopt. Let us set

η2(m(θ)) := (1− ωIλ1)(1− ωIλ2).

Following (10) and (11), and substituting ω−1
J = αI , ωI = 4

5αI into η2(m(θ)), we have

η2(m(θ)) =
4

5αI
m(θ)2 + (

16αI

25
− 12

5
)m(θ) + 1.

Treating η2 as a quadratic function of m, the symmetry axis is m0 =
15αI − 4α2

I

10
. For αI ∈

[ 12 , 2],m0 ∈
[
13
20 ,

45
32

]
⊆

[
1
2 , 2

]
, achieving its maximum value at αI = 15

8 . This tells us that η2(m(θ))

obtains its maximum at either m(θ) = 1
2 or m(θ) = 2, so our discussion is divided into two cases.

Note also that m0 = 5
4 , when αI = 5

4 .
Case 1: If m0 ≥ 5

4 , then

max
θ∈Thigh

η2(m(θ)) = η2(m(θ) =
1

2
) =

1

5αI
+

8αI

25
− 1

5
.
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From m0 ≥ 5
4 and αI ∈ [ 12 , 2], we have αI ∈

[
5
4 , 2

]
. The optimal smoothing factor is, then

min
(αI ,ωJ ,ωI)∈D∗

max
θ∈Thigh

η2(m(θ)) = min
αI∈[ 54 ,2]

{
1

5αI
+

8αI

25
− 1

5

}
=

9

25
, (15)

where αI = 5
4 obtains the minimum.

Case 2: If m0 ≤ 5
4 , then

max
θ∈Thigh

η2(m(θ)) = η2(m(θ) = 2) =
16

5αI
+

32αI

25
− 19

5
.

From m0 ≤ 5
4 and αI ∈

[
1
2 , 2

]
, we have αI ∈

[
1
2 ,

5
4

]
. The optimal smoothing factor is

min
(αI ,ωJ ,ωI)∈D∗

max
θ∈Thigh

η2(m(θ)) = min
αI∈[ 12 ,

5
4 ]

{
16

5αI
+

32αI

25
− 19

5

}
=

9

25
, (16)

where αI = 5
4 obtains the minimum.

For both situations, ωI = 4
5αI = 1, ωJ = α−1

I = 4
5 satisfy the condition 2 < αI(3− ωI) in D∗.

Combining (15) and (16), we see that the optimal smoothing factor over D∗ for λ1, λ2 is 3
5 . For the

third eigenvalue, λ∗, since αI = 5
4ωI is a condition on D∗, we always have max

θ∈Thigh

∣∣1− ωI
m(θ)

αI

∣∣ =
3

5
as in the exact Braess-Sarazin relaxation. Thus, we can draw the conclusion that the optimal

smoothing factor for inexact Brazess-Sarazin relaxation is

min
(αI ,ωJ ,ωI)∈D∗

max
θ∈Thigh

{
|1− ωIλ∗|, |1− ωIλ1|, |1− ωIλ2|

}
=

3

5
,

with αI = 5
4 , ωI = 1, and ωJ = 4

5 .

Remark 4.2
For the optimal values αI = ω−1

J = 5
4 , and ωI = 1, (9) has real roots only for m(θ) = 0, 5

4 . For other
m(θ) ∈ [0, 2], the roots are complex.

Remark 4.3
It is interesting that the optimal parameter of αI = 5

4 matches that found experimentally in [35] for
solving the discretized Stokes problem using Taylor-Hood elements with Braess-Sarazin relaxation.

Remark 4.4
The definition of D∗ makes use of the assumption that αI = ω−1

J , which is not strictly necessary,
Thus, while the choice of parameters is unique over D∗, it may not be globally unique. However,
since our interest is whether IBSR can reach the same optimal smoothing factor as BSR, we do not
consider this question further.

Comparing Theorem 4.3 with Theorem 4.1, we note that inexact and exact Braess-Sarazin
relaxation obtain the same optimal smoothing factor, 3

5 , with the same choices αI = 5
4 , ωI = 1. The

inexact Braess-Sarazin relaxation is simple to implement, avoiding the necessity of computing the
exact inversion of the Schur complement. These properties make inexact Braess-Sarazin relaxation
attractive as a smoother for general saddle-point problems.

5. UZAWA-TYPE RELAXATION

Multigrid methods with Uzawa-type relaxation are a popular family of algorithms for solving
saddle-point systems [11, 36]. Each step of the exact Uzawa algorithm requires the solution of
a linear system with coefficient matrix A, as well as one with an approximation of the Schur
complement, −BA−1BT . However, if this computation is replaced by approximate solutions

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
Prepared using nlaauth.cls DOI: 10.1002/nla



12 Y. HE, S.P. MACLACHLAN

produced by iterative methods then, with relatively modest requirements on the accuracy of the
approximate solution, the resulting inexact Uzawa algorithm is convergent, with a convergence rate
close to that of the exact algorithm [36, 37]. In order to distinguish the parameters from those used
in Braess-Sarazin relaxation, we add the subscript U in the following. The Uzawa-type relaxation
that we consider can be written as a simpler block solve than that used in BSR,

MUδx =

(
αC 0
B −S

)(
δU
δp

)
=

(
rU
rp

)
, (17)

where αC is an approximation of A and −S is an approximation of the Schur complement,
−BA−1BT .

Here, we discuss two cases. First, we consider an analogue to exact Braess-Sarazin with
C = diag(A), S = B(αC)−1BT . Then, we consider an algorithm with manageable cost, with
C = diag(A), S = σ−1I .

5.1. Schur-Uzawa relaxation

Here, we consider C = diag(A), S = B(αSUC)−1BT , giving the so-called Schur-Uzawa method.
The amplification factor for this method is S̃SU (αSU , ωSU ,θ) = I − ωSUM̃

−1
SU L̃ and the symbol of

MSU is given by

M̃SU (θ1, θ2) =
1

h2

 4αSU 0 0
0 4αSU 0

−i2h sin θ1
2 −i2h sin θ2

2 −m(θ)
αSU

h2

 .

The determinant of L̃− λM̃SU is then

πSU (λ;αSU ) =
16αSUm(θ)

h4

(
λ− m(θ)

αSU

)(
λ2 −

(
1 +

m(θ)

αSU

)
λ+ 1

)
.

As discussed in Braess-Sarazin relaxation, the optimal smoothing factor for the modes λ∗U := m(θ)
αSU

is known to be ∣∣1− 2ωSU

αSU

∣∣ = ∣∣1− ωSU

2αSU

∣∣ = 3

5
,

provided that ωSU

αSU
= 4

5 .
To analyze the other eigenvalues of Schur-Uzawa relaxation, we denote λ1, λ2 as the roots of

gSU (λ;αSU ) = λ2 −
(
1 +

m(θ)

αSU

)
λ+ 1, (18)

taking the discriminant of the quadratic function gSU as

∆SU (m(θ);αSU ) =
(
1 +

m(θ)

αSU

)2 − 4.

Since the sign of the discriminant is undetermined and depends on the value of m(θ), we must
consider three cases for the distribution of the eigenvalues. First, that all of the eigenvalues are real
numbers. Second, that all of the eigenvalues are complex numbers. Finally, that some are real and
some are complex. The main idea behind optimizing the smoothing factor is, simply, to optimize
for each of the three cases respectively, then select the best one.

Theorem 5.1
The optimal smoothing factor for Schur-Uzawa relaxation is

µopt,SU = min
(αSU ,ωSU )

max
θ∈Thigh

{∣∣λ(S̃SU (αSU , ωSU ,θ))
∣∣}

=

√
33− 3

√
73

41− 3
√
73

≈ 0.6924,
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and is achieved if and only if

αSU =
4√

73− 5
, ωSU =

4√
73− 3

.

Proof

Case 1: If ∆SU (m(θ);αSU ) ≤ 0 for all m(θ), then we must have αSU ≥ m(θ) for all θ, so
αSU ≥ 2. In this case, we have two complex roots for all m(θ), whose magnitude, τSU (m(θ)), is
given by

τ2SU (m(θ)) := (1− ωSUλ1)(1− ωSUλ2),

= 1− (λ1 + λ2)ωSU + λ1λ2ω
2
SU ,

= 1− ωSU (1 +
m(θ)

αSU
) + ω2

SU .

The smoothing factor over these roots is given by

µC(αSU , ωSU )
2 : = max

m(θ)∈[ 12 ,2]
τ2SU (m(θ)) = τ2SU (

1

2
)

=

(
ωSU −

(1
2
+

1

4αSU

))2

+ 1−
(1
2
+

1

4αSU

)2
. (19)

In order to minimize µC(αSU , ωSU ), ωSU must be equal to ω∗
SU = 1

2 + 1
4αSU

. Since αSU ≥ 2,

min
(αSU≥2,ωSU )

µC =

√
1−

(1
2
+

1

4× 2

)2
=

√
39

64
≈ 0.7806,

provided that αSU = 2, ωSU = 1
2 + 1

4αSU
= 5

8 .

Since there is another eigenvalue, m(θ)
αSU

, the optimal smoothing factor when ∆SU (m(θ);αSU ) ≤ 0

for all θ is at least
√

39
64 .

Case 2: If ∆SU (m(θ);αSU ) ≥ 0 for all m(θ), then we have αSU ≤ m(θ) for all θ, so αSU ≤ 1
2 .

Denote the two eigenvalues of (18) as λ+(m(θ)) > λ−(m(θ)). It is easy to check that λ+ is an
increasing function of m(θ), while λ− is a decreasing function of m(θ). Set

µR(αSU , ωIU ) := max
m(θ)∈[ 12 ,2]

{|1− ωSUλ|} = max
{
|1− ωSUλ+(2)|, |1− ωSUλ−(2)|

}
. (20)

We know that to minimize this maximum, we need

ωSU =
2

λ+(2) + λ−(2)
=

2
2

αSU
+ 1

, (21)

and take ω∗∗
SU = 2

2
αSU

+1
. The smoothing factor for these modes is then given by

minµR(αSU , ωSU ) = min
αSU≤ 1

2

{
λ+(2)− λ−(2)

λ+(2) + λ−(2)

}
= min

αSU≤ 1
2

{√
1− 4λ+(2)λ−(2)(

λ+(2) + λ−(2)
)2}

= min
αSU≤ 1

2

{√
1− ω2

SU

}
(22)

=

√
21

25
≈ 0.9615,
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14 Y. HE, S.P. MACLACHLAN

since λ+(2)λ−(2) = 1 with the minimum achieved when αSU = 1
2 .

Since there is another eigenvalue, m(θ)
αSU

, the optimal smoothing factor when ∆SU (m(θ);αSU ) ≥ 0

for all θ is at least
√

21
25 .

Case 3: αSU ∈ ( 12 , 2). When m(θ) ∈ ( 12 , αSU ], ∆SU (m(θ);αSU ) ≤ 0. From (19), we know that
µC(αSU , ωSU ) is an increasing function of αSU . When m(θ) ∈ [αSU , 2) , ∆SU (m(θ);αSU ) ≥ 0.
From (21) and (22), we know that µR(αSU , ωSU ) is a decreasing function of αSU . Set

µSU = min
(αSU ,ωSU )

max
{

max
αSU≤θ<2

µR(αSU , ωSU ), max
1
2≤θ≤αSU

µC(αSU , ωSU )
}
.

In order to achieve the minimum, we must have µR(αSU , ωSU ) = µC(αSU , ωSU ) and ω∗
SU = ω∗∗

SU .
This gives αSU = 4√

73−5
, ωSU = 4√

73−3
, and

µSU =
√

1− ω2
SU =

√
33− 3

√
73

41− 3
√
73

≈ 0.6924.

Recall the third eigenvalue m(θ)
αSU

. Since αSU = 4√
73−5

and ωSU = 4√
73−3

, we have

max
m(θ)∈[ 12 ,2]

{∣∣1− ωSU
m(θ)

αSU

∣∣} =
70 + 2

√
73

128
≈ 0.6804 < 0.6924.

From the three cases discussed above, we can clearly conclude that when αSU = 4√
73−5

and

ωSU = 4√
73−3

, we obtain the optimal smoothing factor µSU =
√

33−3
√
73

41−3
√
73

≈ 0.6924.

We note that the convergence factor predicated for Schur-Uzawa is somewhat worse than for exact
Braess-Sarazin. As we will see in the next section, further degradation occurs when we consider the
more practical algorithm, σ-Uzawa.

5.2. σ-Uzawa relaxation

In Braess-Sarazin relaxation, we prefer to solve Schur complement system (BC−1BT )δp =
BC−1rU − αrp by an inexact iteration such as weighted Jacobi for the pressure update. This idea
can be adopted to the Schur-Uzawa relaxation, replacing the exact solution of B(αSUC)−1BT δp =
BδU − rp by the simple calculation of σ−1δp = BδU − rp, which can be viewed as a weighted
Jacobi iteration applied with the Schur-Uzawa solve, since the symbol of diag(B(αSUC)−1BT ) is
α−1
SU . Following the usual notation, we call the resulting parameter σ and the algorithm as σ-Uzawa

relaxation. The symbol of the resulting approximation of L, MU , is given by

M̃U (θ1, θ2) =
1

h2

 4αU 0 0
0 4αU 0

−i2h sin θ1
2 −i2h sin θ2

2 −σ−1h2

 .

The determinant of L̃− λM̃U is then

πU (λ;αU , σ) =
16α2

U

σh4

(
λ− m(θ)

αU

)(
λ2 − 1 + σ

αU
m(θ)λ+

m(θ)σ

αU

)
.

Since λ∗U
:= m(θ)

αU
and m(θ) ∈ [ 12 , 2] for high frequencies, the optimal smoothing factor for these

modes is known to be ∣∣1− 2ωU

αU

∣∣ = ∣∣1− ωU

2αU

∣∣ = 3

5
,

provided that ωU

αU
= 4

5 .
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To analyze the other eigenvalues of σ-Uzawa relaxation, we denote by λ1, λ2 the roots of

gU (λ;αU , σ) = λ2 − (1 + σ)m(θ)

αU
λ+

m(θ)σ

αU
, (23)

taking the discriminant of the quadratic function gU as

∆U (αU , σ) =
m(θ)(1 + σ)2

α2
U

(
m(θ)− 4αUσ

(1 + σ)2

)
,

and take
m1 = 0, m2 =

4αUσ

(1 + σ)2
.

From (23), we have

λ1 + λ2 =
m(θ)(1 + σ)

αU
> 0, (24)

λ1λ2 =
m(θ)σ

αU
> 0, (25)

λ1,2 =
(1 + σ)m(θ)

2αU

(
1±

√
1− m2

m(θ)

)
. (26)

The sign of ∆U (αU , σ) (and, consequently, the value of m2) plays an important role in the analysis
of the smoothing factor. As before, we explore the optimal smoothing factor for three cases: only
real eigenvalues, only complex eigenvalues, and when 1

2 < m2 < 2, giving both real and complex
eigenvalues. We first explore the case where only complex eigenvalues occur.

In order to discuss the complex eigenvalues, we take τ(m(θ)) to be the magnitude of the two
eigenvalues at frequency θ, giving

τ2(m(θ)) = (1− ωUλ1)(1− ωUλ2),

= 1− (λ1 + λ2)ωU + λ1λ2ω
2
U ,

= 1 +
ωU

αU
(ωUσ − σ − 1)m(θ).

For simplicity of discussion of the smoothing factor for complex eigenvalues, we give a general
result that can be applied in the third case, when 1

2 < m2 < 2.

Lemma 5.1
Assume that m2 ≥ 1

2 and let γ = min{m2, 2}. For m(θ) ∈ [ 12 , γ], eigenvalues λ1 and λ2 are
complex conjugates and the smoothing factor for these modes over this range of θ is

SFC = max
m(θ)∈[ 12 ,γ]

τ(m(θ)) =

√
1 +

ωU (ωUσ − σ − 1)

αU
≥

√
1− 1

2γ
,

with equality if and only if
ωU

αU
(ωUσ − σ − 1) = − 1

γ
.

Proof
Clearly, for m(θ) ∈ [ 12 , γ], ∆U (αU , σ) ≤ 0 and |1− ωUλ1| = |1− ωUλ2| = τ(m(θ)). In order to
guarantee convergence, we require τ(m(θ))2 < 1 (with equality allowed for θ = 0). This requires
that ωU (ωUσ−σ−1)

αU
< 0. Since γ = min{m2, 2}, it is easily seen that

τ2(γ) = 1 +
ωU

αU
(ωUσ − σ − 1)γ

≥ 1 +
ωU

αU
(ωUσ − σ − 1)m2

=

(
1− 2ωUσ

1 + σ

)2

≥ 0,
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which gives
ωU

αU
(ωUσ − σ − 1) ≥ − 1

γ
.

It follows that

max
m(θ)∈[ 12 ,γ]

τ(m(θ)) = τ

(
1

2

)
=

√
1 +

ωU

2αU
(ωUσ − σ − 1) ≥

√
1− 1

2γ
,

and that equality is achieved if and only if ωU (ωUσ−σ−1)
αU

= −1
γ .

Lemma 5.2
If m2 = 4αUσ

(1+σ)2 > 2, then τ2(2) = 1 + ωU

αU
(ωUσ − σ − 1)2 > 0.

Proof
For contradiction, assume that τ(2) = 1 + ωU

αU
(ωUσ − σ − 1)2 = 0, which gives αU

ωU (σ+1−ωUσ) = 2.
Since m2 > 2, we have

4αUσ

(1 + σ)2
>

αU

ωU (σ + 1− ωUσ)
,

which can be rewritten as (
ωUσ

1 + σ
− 1

2

)2

< 0.

These results allow us to obtain a bound on the smoothing factor when m2 > 2.

Theorem 5.2
If m2 = 4αUσ

(1+σ)2 > 2, then the optimal smoothing factor for inexact Uzawa relaxation is larger than
√
3
2 .

Proof
From Lemma 5.1, we know the smoothing factor for the complex modes is SFC = τ( 12 ) ≥√

1− 1
2γ =

√
3
2 with equality if and only if τ2(2) = 0. However, from Lemma 5.2, we know when

m2 > 2, τ2(2) ̸= 0. This implies that the optimal smoothing factor is larger than
√
3
2 .

We now consider the case where m2 ≤ 2. For m(θ) ∈ [m2, 2], the two roots are real. From (26),
we have

|1− ωUλ1| =

∣∣∣∣1− (1 + σ)ωU

2αU
m(θ)

(
1 +

√
1− m2

m(θ)

)∣∣∣∣ ,
|1− ωUλ2| =

∣∣∣∣1− (1 + σ)ωU

2αU
m(θ)

(
1−

√
1− m2

m(θ)

)∣∣∣∣ .
Let

R+(m(θ)) =
m(θ)

2

(
1 +

√
1− m2

m(θ)

)
,

R−(m(θ)) =
m(θ)

2

(
1−

√
1− m2

m(θ)

)
.

Function R+(m(θ)) is an increasing function of m(θ) for m(θ) ∈ [m2, 2], giving

R1 := R+(m(θ))max = R+(2) = 1 +

√
1− m2

2
,

R+(m(θ))min = R+(m2) =
m2

2
.
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For function R−(m(θ)), since it is a decreasing function of m(θ), where m(θ) ∈ [m2, 2], we have

R−(m(θ))max = R−(m2) =
m2

2
,

R2 := R−(m(θ))min = R−(2) = 1−
√

1− m2

2
.

Remark 5.1

R−(m(θ)) is a decreasing function of m(θ), because R−(m(θ))
′
=

√
1− m2

m(θ)
+

m2
2m(θ)

−1

2
√

1− m2
m(θ)

< 0 for all

m(θ) ∈ (m2, 2].

From the above discussion, the smoothing factor for the two real eigenvalues in this case is

SFR : = max
θ∈Thigh

∣∣λ(S̃U (αU , ωU , σ,θ))
∣∣

= max

{∣∣1− (1 + σ)ωU

αU
R1

∣∣, ∣∣1− (1 + σ)ωU

αU
R2

∣∣}.

We can simplify the above expression by noting that

SFR =


(1 + σ)ωU

αU
R1 − 1, if

(1 + σ)ωU

αU
≥ 1

1− (1 + σ)ωU

αU
R2, if

(1 + σ)ωU

αU
≤ 1

(27)

This allows us to bound the smoothing factor for the case when m2 ≤ 1
2 .

Theorem 5.3
If m2 = 4αUσ

(1+σ)2 ≤ 1
2 , then the optimal smoothing factor for inexact Uzawa relaxation is at least

√
3
2 .

Proof
Since m2 ≤ 1

2 , the eigenvalues are all real. According to (27), the smoothing factor for m(θ) ∈ [ 12 , 2]
is

SFR =


(1 + σ)ωU

αU
(1 +

√
3

2
)− 1, if

(1 + σ)ωU

αU
≥ 1

1− (1 + σ)ωU

αU
(1−

√
3

2
), if

(1 + σ)ωU

αU
≤ 1

It is easy to see that when (1+σ)ωU

α = 1, SFR reaches its minimum value of
√
3
2 . Note that the

conditions that (1+σ)ωU

α = 1 and m2 ≤ 1
2 might not be satisfied at the same time, so the optimal

smoothing factor may be larger than
√
3
2 .

We now consider the case where 1
2 ≤ m2 ≤ 2. The key parameter in the proof is (1+σ)ωU

αU
, which

determines which of bounds on the real eigenvalues is dominant.

Theorem 5.4
When m2 ∈ [ 12 , 2], the optimal smoothing factor for σ-Uzawa relaxation is

µopt,σU = min
(αU ,ωU ,σ)

max
θ∈Thigh

{∣∣1− 2ωU

αU

∣∣, ∣∣1− ωU

2αU

∣∣, SFR, SFC

}
=

√
1− mopt

2
=

√
3

5
≈ 0.7746,
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if and only if m2 = mopt =
4
5 , and the parameters satisfy

1

5(2µopt,U − 1)
≤ ωU ≤ 2

5(1− µopt,U )
,

αU =
5ω2

U

5ωU − 1
,

σ =
1

5ωU − 1
.

Proof
We first consider the case where (1+σ)ωU

αU
= 1, and the two expressions in (27) coincide. In this case,

m2 = 4αUσ
(1+σ)2 = 4

ω2
Uσ
αU

, and, for m(θ) ∈ [m2, 2],

SFR =
(1 + σ)ωU

αU
R1 − 1 =

√
1− m2

2
=

√
1− 2

ω2
Uσ

αU
.

For m(θ) ∈ [ 12 ,m2], from Lemma 5.1, we have

SFC =

√
1 +

ωU (ωUσ − σ − 1)

2αU
=

√
1

2
+

ω2
Uσ

2αU
.

Since SFR is a decreasing function of ω2
Uσ
αU

and SFC is an increasing function of ω2
Uσ
αU

, the optimal
smoothing factor over the modes bounded by these factor is achieved if and only if SFR = SFC

and is given by

µopt,σU = min
(αU ,ωU ,σ)

max
m(θ)∈[ 12 ,2]


√

1− 2
ω2
Uσ

αU
,

√
1

2
+

ω2
Uσ

2αU

 =

√
3

5
, (28)

with the minimum occurring when

ω2
Uσ

αU
=

1

5
, (29)

(1 + σ)ωU

αU
= 1. (30)

Furthermore, mopt := m2 = 4
ω2

Uσ
αU

= 4
5 . We now show this is the best possible bound over these

two modes before returning to consider the eigenvalues 1− ωU
m(θ)
αU

.

In the following, take x = (1+σ)ωU

αU
, and y =

ω2
Uσ
αU

, then m2 = 4αUσ
(1+σ)2 = 4y

x2 . Assume that SFC ≤√
3
5 ; that is √

1 +
ωU (ωUσ − σ − 1)

2αU
=

√
1− x

2
+

y

2
≤

√
3

5
,

which implies that

y ≤ x− 4

5
. (31)
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If x > 1, from (27) and (31), we have

SFR =
(1 + σ)ωU

αU

(
1 +

√
1− m2

2

)
− 1

= x+
√

x2 − 2y − 1

≥ x+

√
x2 − 2(x− 4

5
)− 1

= x− 1 +

√
(x− 1)2 +

3

5

>

√
3

5
.

Therefore, when x > 1, the optimal smoothing factor is larger than
√

3
5 .

If x < 1, from (27) and (31), we have

SFR = 1− (1 + σ)ωU

αU

(
1−

√
1− m2

2

)
= 1− x+

√
x2 − 2y

≥ 1− x+

√
x2 − 2(x− 4

5
)− 1

= 1− x+

√
(x− 1)2 +

3

5

>

√
3

5
.

Therefore, when x < 1, the optimal smoothing factor is larger than
√

3
5 .

Thus, over all choices of x, the optimal smoothing factor that over these modes is µopt,U =
√

3
5 ,

achieved when x = (1+σU )ωU

αU
= 1.

We now consider the eigenvalue λ∗,U = m(θ)
αU

. We know that min
(αU ,ωU ,σ)

max
θ∈Thigh

∣∣1− ωU
m(θ)

αU

∣∣ =
3

5
< µopt,U =

√
3

5
. In order to have this mode not be reduced more slowly than the others, we need

|1− 2ωU

αU
| ≤ µopt,U and |1− ωU

2αU
| ≤ µopt,U ,

which imply that

2(1− µopt,U )
1

ωU
≤ 1

αU
≤ 1 + µopt,U

2

1

ωU
. (32)

Simplifying (29) and (30) , we have

αU =
5ω2

U

5ωU − 1
, (33)

σ =
1

5ωU − 1
. (34)

Using (33) and (34), (32) can be simplified as

1

5(2µopt,U − 1)
≤ ωU ≤ 2

5(1− µopt,U )
. (35)
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Note that the set of values defined by (33), (34), and (35) is not empty, with parameters ωU =
1, αU = 5

4 , σ = 1
4 in this set.

Corollary 5.1

The optimal smoothing factor for σ-Uzawa relaxation over all possible parameters is
√

3
5 .

Comparing this to the optimal smoothing factor for both exact and inexact Braess-Sarazin, 3
5 ,

we note that Braess-Sarazin relaxation offers better smoothing performance, but requires more
work per iteration. In the following, we compare the computational work of these two methods
and distributive relaxation.

5.3. Comparing among IBSR, σ-Uzawa, and DWJ relaxation

To end this section, we turn our attention to an estimate of the computational work for multigrid
methods with σ-Uzawa, inexact Braess-Sarazin and distributive weighted-Jacobi relaxation. Since
µ2
opt,σU = µopt,I , one cycle of multigrid with inexact Braess-Sarazin relaxation brings about the

same total reduction in error as 2 cycles using σ-Uzawa relaxation. However, for inexact Braess-
Sarazin and distributive weighted-Jacobi relaxation, µopt,I = µopt,D.

Considering the cost per sweep of inexact Braess-Sarazin relaxation and Uzawa relaxation, we
see that inexact Braess-Sarazin is expected to be more efficient. Recall the inexact Braess-Sarazin
relaxation (6), where C = diag(A), requires inexact solution of

(BC−1BT )δp = BC−1rU − αrp,

δU =
1

α
C−1(rU −BT δp).

Since we use the standard finite-difference discretizations, C is just a diagonal matrix and C−1 is
very simple to compute. For the first equation, we use a single sweep of weighted Jacobi iteration,
having precomputed the approximate Schur complement, B(C)−1BT . Thus, the total cost of a
single sweep of inexact BSR is that of 2 applications of C−1, one sweep of weighted Jacobi for δp,
one matrix-vector product each with B and BT , and some vector updates. In σ-Uzawa relaxation,
Equation (17) is equivalent to computing updates as

δU = (αC)−1rU ,

Sδp = BδU − rp.

Thus, the total cost of a single sweep is that of one application of C−1, one diagonal scaling for δp,
one matrix-vector product with B, and some vector updates. Thus, the cost of 2 sweeps of σ-Uzawa
is slightly more than one sweep of inexact Braess-Sarazin and, in this case, inexact Braess-Sarazin
is more efficient.

In distributive weighted-Jacobi relaxation, Equation (5) is equivalent to computing updates as

δÛ = (αC)−1rU ,

δp̂ =
(
αdiag(Ap)

)−1
(rp −BδÛ),

followed by distribution to the original unknowns by computing

δU = δÛ +BT δp̂,

δp = −Apδp̂.

Thus, the total cost of a single sweep is one application of (αC)−1, one sweep of Jacobi on
Ap, one matrix-vector product with BT and B, one application of Ap, and some vector updates.
Comparing with inexact Braess-Sarazin relaxation, the cost of one sweep of distributive weighted-
Jacobi relaxation is a slightly more than the cost of one sweep of inexact Braess-Sarazin relaxation.
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6. NUMERICAL EXPERIMENTS

In this section, we present the optimized smoothing and LFA two-grid convergence factors
for distributive weighted-Jacobi, Braess-Sarazin-type, and Uzawa-type relaxation. Furthermore,
we validate these predictions against measured multigrid convergence factors using distributive
weighted-Jacobi, inexact Braess-Sarazin, and σ-Uzawa relaxations. The numerical results show
good agreement between predicted convergence and the true performance, although some
dependence is seen on the boundary conditions imposed, as noted elsewhere in the literature.

6.1. LFA spectral radius of error-propagation symbols

In this section, we show the spectral radius of the error-propagation symbol for distributive
weighted-Jacobi, Braess-Sarazin, and Uzawa-type relaxation, computed with h = 1

64 . Figure 2 gives
the spectral radius of the error-propagation symbol for DWJ as a function of θ, showing that
distributive weighted-Jacobi relaxation reduces errors over the high frequencies quickly. Figure 3
displays these for exact BSR and IBSR, showing that both reduce the error over the high frequencies
at a fast speed. Figure 4 displays these for Schur-Uzawa and σ-Uzawa. Here, we see very flat profiles
in the upper right quadrant, particularly for the case of σ-Uzawa, which reduces the error at a much
slower speed over the high frequencies.
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Figure 2. The spectral radius of the error-propagation symbol for DWJ, as a function of the Fourier mode, θ.
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Figure 3. At left, the spectral radius of the error-propagation symbol for exact BSR, as a function of the
Fourier mode, θ. At right, the spectral radius of the error-propagation symbol for inexact BSR.
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Figure 4. At left, the spectral radius of the error-propagation symbol for Schur-Uzawa, as a function of the
Fourier mode, θ. At right, the spectral radius of the error-propagation symbol for σ-Uzawa.

6.2. LFA two-grid convergence factor

Let µ and ρ be the LFA-predicted smoothing and two-grid convergence factors, respectively,
computed with h = 1

64 . For ρ, we first consider only one step of pre-smoothing (which gives the
same results as one step of post-smoothing). At grid-points corresponding to velocity unknowns,
u and v, we consider 6-point restrictions and at grid-points associated with pressure unknowns, p,
a 4-point cell-centered restriction is applied. For the prolongation of the corrections, we apply the
corresponding adjoint operators multiplied by a factor of 4 or bilinear interpolation for velocity
(12pts) and pressure (16pts) see, e.g., [28]. In Table I, we give the choices of parameters for the
relaxation schemes analyzed in the previous sections to present our LFA two-grid convergence
factors. Note that parameter ωJ appears only in the IBSR algorithm, and σ only in σ-Uzawa.

Table I. Relaxation parameter choices

````````````parameter
Relaxation DWJ BSR IBSR Schur-Uzawa σ-Uzawa

ω 1 1 1 4√
73−3

1

α 5
4ω = 5

4
5
4ω = 5

4
5
4

4√
73−5

5ω2

5ω−1 = 5
4

ωJ orσ \ \ 4
5 \ 1

5ω−1 = 1
4

µopt
3
5

3
5

3
5

√
33−3

√
73

41−3
√
73

√
3
5

Figures 5-9 show the spectra of the two-grid error-propagation operators for different relaxation
methods. In Figure 5, both linear and bilinear interpolation result in the same convergence factor
µ = 0.600, which is equal to the optimal smoothing factor for DWJ. In Figure 5, we see many
eigenvalues with linear interpolation cluster around zero compared with the bilinear case. This
might indicate that the linear interpolation operator produces an algorithm that reduces the error
better. In Figure 6, we again have ρ = µ for both linear and bilinear interpolation for exact Braess-
Sarazin relaxation, with some complex eigenvalues for linear case, while all of the eigenvalues for
bilinear interpolation are real. In Figure 7, we see some more significant difference between the
distribution of the eigenvalues for the linear and bilinear cases, however the resulting spectral radii
are the same. In Figure 8, for Schur Uzawa, we see that the two-grid spectral radius is larger than
the smoothing factor with linear interpolation, but is the same as smoothing factor with bilinear
interpolation. In Figure 9, both linear and bilinear interpolation for σ-Uzawa relaxation achieve the

same convergence factor, ρ =
√

3
5 , which is the same as the optimal smoothing factor, µ =

√
3
5 . All

of these pictures confirm our theoretical optimal smoothing factors presented in previous sections,
showing the (generally small) effect of the choice of interpolation.
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Figure 5. At left, the spectrum of the two-grid error-propagation operator for DWJ with linear interpolation.
ρ = µ = 0.6000. At right, the spectrum of the two-grid error-propagation operator for DWJ with bilinear

interpolation. ρ = µ = 0.6000.
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Figure 6. At left, the spectrum of the two-grid error-propagation operator for exact BSR with linear
interpolation. ρ = µ = 0.6000. At right, the spectrum of the two-grid error-propagation operator for exact

BSR with bilinear interpolation. ρ = µ = 0.6000.
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Figure 7. At left, the spectrum of the two-grid error-propagation operator for IBSR with linear interpolation.
ρ = µ = 0.6000. At right, the spectrum of the two-grid error-propagation operator for IBSR with bilinear

interpolation. ρ = µ = 0.6000.
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Figure 8. At left, the spectrum of the two-grid error-propagation operator for Schur-Uzawa with linear
interpolation. ρ = 0.8240, µ = 0.6924. At right, the spectrum of the two-grid error-propagation operator

for Schur-Uzawa with bilinear interpolation. ρ = µ = 0.6924.
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Figure 9. At left, the spectrum of the two-grid error-propagation operator for σ-Uzawa with linear

interpolation. ρ = µ =
√

3
5 . At right, the spectrum of the two-grid error-propagation operator for σ-Uzawa

with bilinear interpolation. ρ = µ =
√

3
5

6.3. Multigrid convergence factor

We now validate our LFA results against measured multigrid performance. We use the notation
W (ν1, ν2) to indicate the cycle type and the number of pre- and postsmoothing steps employed.
Here, we use the defects (full system residuals in (3) ) d(k)h (k = 1, 2, · · · ) to experimentally measure

the convergence factor as ρ̂(k)h = k

√
∥d(k)

h ∥2

∥d(0)
h ∥2

(see [30]), with k = 100. We consider the homogeneous

problem (b = 0) with discrete solution xh ≡ 0, and start with a random initial guess x(0) to test the
multigrid convergence factor. The coarsest grid is a 4× 4 mesh. Rediscretization is used to define
the coarse-grid operator. For comparison, we present the LFA predicated convergence factors, ρh,
for two-grid cycles with ν1 prerelaxation and ν2 postrelaxation steps.

In Table II, we present the multigrid performance of distributive weighted-Jacobi relaxation with
Dirichlet boundary conditions. We see the same degradation in actual convergence behavior as
was mentioned for distributive Gauss-Seidel in [28] and note that performance is h-independent.
Furthermore, as we increase the number of relaxation sweeps, we see degradation in even the LFA-
predication as compared to µν1+ν2 for bilinear interpolation. In order to see that boundary conditions
play an important role in multigrid performance, we present the case of periodic boundary
conditions in Table III. These results show measured multigrid convergence factors that coincide
with the LFA-predicated convergence factors. Comparing linear and bilinear interpolation, these
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results indicate that linear interpolation outperforms bilinear interpolation in this case, matching
some existing studies [8, 38, 39] for other relaxation schemes. Table IV shows that the measured
multigrid convergence factors again match well with the LFA-predicted two-grid convergence
factors for inexact Braess-Sarazin relaxation with Dirichlet boundary conditions, and that the
convergence is h-independent. We note no major differences in results between linear and bilinear
interpolation, except a small one (that is captured by the LFA) for W (2, 2) cycles. Similar results
are seen with periodic boundary conditions.

For the σ-Uzawa relaxation, there are many choices for ωU , αU , and σ, see Theorem 5.4. We
tested a range of parameter values for the multigrid method with Dirichlet boundary conditions, and
found that the choice of ωU = 1

5(2
√

3/5−1)
is typically best. Thus, we use this value in our numerical

results. In Table V, the measured multigrid convergence factor degrades for ν1 + ν2 > 1 for both
linear and bilinear interpolation with Dirichlet boundary conditions, and the same behavior was seen
using a two-grid method. To confirm this is due to LFA doing a poor job of capturing the effects
of boundary conditions, we tested the σ-Uzawa relaxation with periodic boundary conditions. In
Table VI, we see no major difference between the measured convergence using linear and bilinear
interpolation with periodic boundary conditions, and good agreement between the LFA-predicted
convergence factor and the measured multigrid convergence factor. Comparing Table VI with Table
V, we conclude that the degradation seen in Table V is, in fact, due to boundary conditions.

Remark 6.1
We also tested the LFA-predicated two-grid convergence factors using Galerkin coarse-grid
operators for the different relaxation schemes discussed in this paper. The convergence factors
were almost the same as the ones obtained above using rediscretization coarse-grid operators for
bilinear interpolation. However, for the case of linear interpolation, we see a large degradation in
performance.

Remark 6.2
We see similar good performance for IBSR when using F -cycles; however, this is true only for
Uzawa-type and distributive weighted-Jacobi relaxation on the problem with periodic boundary
conditions. For V (ν1, ν2)-cycles with linear interpolation, when ν1 + ν2 = 1, both Braess-Sarazin-
type and Uzawa relaxations are divergent. However, when ν1 + ν2 > 1, Braess-Sarazin relaxation
works well for both Dirichlet and periodic boundary conditions, but Uzawa only works well for
periodic boundary conditions. This is consistent with other studies of these relaxation schemes such
as [20]. Distributive weighted-Jacobi relaxation has similar behavior as Braess-Sarazin relaxation.
For V (ν1, ν2)-cycles with bilinear interpolation, all of these three relaxation schemes are convergent
with both Dirichlet and periodic boundary conditions, although there is a different degradation for
each case, compared with the LFA-predications.

Table II. Multigrid convergence factor for DWJ–Dirichlet BC

PPPPPPPPρ̂h

Cycle
W (0, 1) W (1, 0) W (1, 1) W (1, 2) W (2, 1) W (2, 2)

Linear interpolation
ρh=1/256 0.600 0.600 0.360 0.216 0.216 0.130
ρ̂
(100)
h=1/256 0.670 0.670 0.476 0.337 0.337 0.240

ρ̂
(100)
h=1/128 0.673 0.672 0.475 0.338 0.337 0.240

Bilinear interpolation
ρh=1/256 0.600 0.600 0.397 0.319 0.319 0.269
ρ̂
(100)
h=1/256 0.668 0.668 0.474 0.340 0.340 0.270

ρ̂
(100)
h=1/128 0.671 0.670 0.476 0.341 0.341 0.270
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Table III. Multigrid convergence factor for DWJ–Periodic BC

PPPPPPPPρ̂h

Cycle
W (0, 1) W (1, 0) W (1, 1) W (1, 2) W (2, 1) W (2, 2)

Linear interpolation
ρh=1/256 0.600 0.600 0.360 0.216 0.216 0.130
ρ̂
(100)
h=1/256 0.584 0.585 0.350 0.210 0.210 0.126

ρ̂
(100)
h=1/128 0.584 0.585 0.350 0.211 0.210 0.127

Bilinear interpolation
ρh=1/256 0.600 0.600 0.397 0.319 0.319 0.269
ρ̂
(100)
h=1/256 0.584 0.584 0.381 0.303 0.302 0.253

ρ̂
(100)
h=1/128 0.585 0.584 0.381 0.302 0.302 0.253

Table IV. Multigrid convergence factor for IBSR–Dirichlet BC

PPPPPPPPρ̂h

Cycle
W (0, 1) W (1, 0) W (1, 1) W (1, 2) W (2, 1) W (2, 2)

Linear interpolation
ρh=1/256 0.600 0.600 0.360 0.216 0.216 0.130
ρ̂
(100)
h=1/256 0.583 0.583 0.350 0.212 0.214 0.130

ρ̂
(100)
h=1/128 0.583 0.582 0.350 0.214 0.213 0.130

Bilinear interpolation
ρh=1/256 0.600 0.600 0.360 0.216 0.216 0.153
ρ̂
(100)
h=1/256 0.582 0.581 0.349 0.209 0.209 0.146

ρ̂
(100)
h=1/128 0.582 0.581 0.349 0.208 0.208 0.145

Table V. ωU = 1

5(2
√

3/5−1)
: Multigrid convergence factor for σ-Uzawa–Dirichlet BC

PPPPPPPPρ̂h

Cycle
W (0, 1) W (1, 0) W (1, 1) W (1, 2) W (2, 1) W (2, 2)

Linear interpolation
ρh=1/256 0.775 0.775 0.600 0.465 0.465 0.360
ρ̂
(100)
h=1/256 0.767 0.777 0.646 0.533 0.532 0.447

ρ̂
(100)
h=1/128 0.780 0.783 0.646 0.540 0.538 0.450

Bilinear interpolation
ρh=1/256 0.775 0.775 0.600 0.465 0.465 0.360
ρ̂
(100)
h=1/256 0.775 0.778 0.644 0.534 0.534 0.445

ρ̂
(100)
h=1/128 0.781 0.780 0.648 0.537 0.537 0.446

Copyright c⃝ 2010 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2010)
Prepared using nlaauth.cls DOI: 10.1002/nla



LFA OF BLOCK-STRUCTURED MULTIGRID RELAXATION SCHEMES FOR THE STOKES EQUATIONS 27

Table VI. Multigrid convergence factor for σ-Uzawa–Periodic BC

PPPPPPPPρ̂h

Cycle
W (0, 1) W (1, 0) W (1, 1) W (1, 2) W (2, 1) W (2, 2)

Linear interpolation
ρh=1/256 0.775 0.775 0.600 0.465 0.465 0.360
ρ̂
(100)
h=1/256 0.752 0.752 0.580 0.449 0.449 0.347

ρ̂
(100)
h=1/128 0.752 0.753 0.580 0.448 0.448 0.347

Bilinear interpolation
ρh=1/256 0.775 0.775 0.600 0.465 0.465 0.360
ρ̂
(100)
h=1/256 0.751 0.751 0.580 0.449 0.449 0.347

ρ̂
(100)
h=1/128 0.753 0.751 0.579 0.448 0.448 0.347

7. CONCLUSION

In this paper, we develop a local Fourier analysis for block-structured relaxation schemes for
the Stokes equations. The convergence and smoothing theorems presented here provide us with
optimized parameters for distributive weighted-Jacobi, Braess-Sarazin, and Uzawa relaxation. From
the theory, the inexact Braess-Sarazin method has been proven to be as good as the exact iteration
for solving the Stokes equations, with certain choices of parameters, and the convergence of the
distributive weighted-Jacobi relaxation is as good as Braess-Sarazin, but both outperform Uzawa.
For implementation, we consider the inexact cases, with weighted Jacobi iterations, as is suitable
for use on modern in parallel and GPU architectures. In practice, we see much less sensitivity
to boundary conditions for IBSR and, hence, generally recommend this as most efficient and
robust of the approaches considered. Overall, the analysis presented here gives good insight into
the use of block-structured relaxation for other types of saddle-point problems. Developing LFA
smoothing analysis to determine the optimal parameters in these relaxation schemes for finite-
element discretization methods, for example, stable and stabilized rectangular elements for the
Stokes Equation, will be a focus of our future research, as will be extensions to other saddle-point
problems.
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