
IMA Journal of Applied Mathematics (2005) 1−27
doi: 10.1093/imamat/hxh000

Mathematical and computational models of incompressible materials
subject to shear

J. H. ADLER1 , L. DORFMANN2 D. HAN1∗, S. MACLACHLAN1 , AND C. PAETSCH2

1 Department of Mathematics, Tufts University, Medford, MA 02155
2Department of Civil and Environmental Engineering, Tufts University, Medford, MA 02155

∗503 Boston Ave., Medford, MA 02155. E-mail: dong.han@tufts.edu

[March 12th, 2014]

Numerical modeling of incompressible nonlinear elastic materials plays an increasing role in computa-
tional science and engineering, particularly in the high-fidelity simulation of rubber-like materials and
many biological tissues. Our present study focuses on the treatment of the incompressibility constraint
in finite-element discretizations for a cube subject to “simple shear”. We demonstrate that this test prob-
lem is not easily captured in three-dimensional mathematical and computational models, with challenges
related to the incompressibility constraint that are unique to each approach. Specifically, we review
the mathematical model, which presupposes the simple shear deformation and requires additional as-
sumptions to determine the response. A computational model avoids these difficulties, but gives rise to
questions regarding the mismatch between continuum and discrete representations of material incom-
pressibility. We consider three distinct finite-element formulations to enforce (near) incompressibility,
with particular attention paid to the competing goals of physical fidelity and computational efficiency. We
demonstrate that some of these standard approaches fail to resolve incompressibility in a point-wise man-
ner, despite it holding in an averaged sense. Numerical results indicate the maximum ratio of deformed to
undeformed volumes grows sharply with mesh refinement; this is in contrast to the mathematical model,
but occurs in a manner consistent with finite-element convergence theory.

Keywords: incompressible materials, slightly compressible materials, simple shear, mixed finite-element
methods

1 Introduction

Mathematical and computational modeling of incompressible or slightly compressible materials has a
long history, starting with the work of Ogden (1972a, 1976, 1978), and including many others (Arnold
et al., 1984a,b; Hughes, 1977; Hughes and Malkus, 1983; Malkus and Hughes, 1978; Simo et al., 1985).
Recently, the topic has returned to the literature, with a focus on developing accurate and efficient
simulation tools for modeling biological tissues and rubber-like materials (Bose and Dorfmann, 2009;
deBotton et al., 2013; Horgan and Murphy, 2007, 2009c, 2010, 2011; Paetsch and Dorfmann, 2013;
Rashid et al., 2013). This subject combines several challenging aspects, requiring nonlinear material
laws (to account for effects of large strain), geometric nonlinearities (to account for large deformations),
and accurate modeling of incompressibility, or slight compressibility, of the underlying materials, all for
complex three-dimensional geometries. This paper explores the numerical simulation of incompressible
and slightly compressible, nonlinear, hyperelastic materials in three dimensions, using the example of
a cube of neo-Hookean material subject to simple shear. This allows us to focus on the interplay of the
mathematical and computational models in the simplest possible setting.
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The nonlinear theory of elasticity was used by Rivlin (1948) to analyze a cuboidal block of either
compressible or incompressible material subject to simple shear. He demonstrated that for large elastic
deformations, the state of simple shear cannot be supported by tangential surface traction, as in the case
of small deformation using the linear theory of elasticity. In particular, Rivlin (1948) showed that for an
incompressible material, the magnitude of the surface tractions is not determined uniquely since a hydro-
static pressure can always be added to the system without changing the state of deformation. The recent
publication by Gent et al. (2007) and the increased use of mathematical and computational models to
analyze the behavior of incompressible and highly deformable biological materials has created renewed
interested in this topic. For example, Horgan and Murphy (2010) derived alternative expressions of
the normal stress components in an incompressible cube of neo-Hookean material and its slightly com-
pressible counterpart subject to simple shear. In the context of biological materials, Mihai and Goriely
(2011) analyzed the orientation of the Poynting effect when a biopolymer gel is sheared between two
plates. Furthermore, Rashid et al. (2013) used simple shear to characterize the mechanical properties of
brain tissue, and Horgan and Murphy (2011) used it to analyze materials with preferred directions.

In the context of computational modeling, finite-element simulation of nonlinear materials is, itself,
a well-studied subject, covered in numerous texts and research papers; see, for example, Belytschko
et al. (2000), Bonet and Wood (2008), or Crisfield (1991). However, material incompressibility de-
serves particular attention. Challenges include the fundamental choice between the use of specialized
slightly compressible or fully incompressible numerical approaches, where a poor choice can easily
lead to slowly converging linearization strategies, or to non-physical solutions, due to the effects of
“locking” or unsatisfied inf-sup stability conditions. Effectively addressing these challenges is made
even more difficult by the lack of well-developed test problems in this area, where the mathematical
and computational aspects of the solution process are well-understood. While this paper focuses on the
finite-element approach, we also note that similar challenges arise in modeling with other approaches,
such as meshless methods (Chi et al., 2014; Wu et al., 2012).

The main focus of this paper is, then, to utilize simple shear deformation as a test problem to un-
derstand treatment of the incompressibility constraint in a computational framework. For two (unre-
lated) mixed finite-element models, we see strong divergence in the maximum ratio of deformed to
undeformed volumes across a series of three-dimensional meshes. Thus, while the (physical) incom-
pressibility constraint is enforced in a weak (or averaged) sense by these models, pointwise measures
of the volume change may show strong non-physical effects. This is, nonetheless, consistent with stan-
dard finite-element convergence theory, in that the growth in volume ratio occurs over correspondingly
smaller volumes of the undeformed cube. Computational results can deviate from what is intuitively
expected from the physical and mathematical descriptions. Thus, in addition to the results presented
regarding the volumetric change, we address issues related to the deviating results obtained by the two
approaches. We note that the disconnects between the mathematical and computational models of sim-
ple shear have been studied recently in two dimensions (Auricchio et al., 2013). However, there are
significant effects in three-dimensional shear deformation that are not necessarily present in two dimen-
sions, where plane-strain or plane-stress considerations may yield varying results.

The remainder of this paper is organized as follows. Section 2 details the basic equations, describ-
ing the incompressible and slightly compressible formulations for nonlinear deformations. Section 3
describes the prototypical simple shear problem and reviews solution techniques. A discussion of com-
putational models is then given in Section 4. Next, simple analytical results demonstrating the misfit
between the models considered are given in Section 5. Finally, more detailed numerical results are
presented in Section 6, with an accompanying discussion in Section 7.
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2 Basic equations

In the following, we provide an overview of the main concepts of continuum mechanics that are neces-
sary to describe the test problem. Note that, in this paper, we focus on fully incompressible nonlinear
elastic materials and on the slightly compressible (also called almost incompressible or nearly incom-
pressible) counterpart. The theory of slightly compressible materials, originally developed for rubber-
like solids, is given by Ogden (1972a, 1976, 1978). Different formulations of the volumetric part of the
strain energy function have recently been proposed by Horgan and Murphy (2007, 2009a,b,c). For a
detailed background on nonlinear elasticity, we refer to the books by Ciarlet (1988); Holzapfel (2001);
and by Ogden (1997); the collection of articles in Fu and Ogden (2001); and Section 3 of Dorfmann and
Ogden (2014).

2.1 Kinematics

To describe the deformation, we denote the stress-free reference configuration of the solid by Br and
identify a generic material point by its position vector, X, relative to an arbitrarily chosen origin. Appli-
cation of mechanical forces deforms the body, so that the point, X, occupies the new position, x = χχχ(X),
in the deformed configuration, B. The vector field, χχχ , describes the deformation of the body and assigns
to each point, X, a unique position, x in B, and vice-versa. In other words, the deformation function, χχχ ,
is a one-to-one mapping with suitable regularity properties.

The deformation gradient tensor, F, relative to Br, is defined by

F = Gradx, (2.1)

where Grad is the gradient operator with respect to X. The Cartesian components are Fiα = ∂xi/∂Xα ,
where xi and Xα are the components of x and X, respectively, with i,α ∈ {1,2,3}. Roman indices are
associated with B and Greek indices with Br. We also adopt the standard notation, J, to denote the
volume ratio given by

J = detF =
dv
dV

> 0, (2.2)

where v denotes the deformed volume and V denotes the undeformed volume. For incompressible
materials or volume preserving (isochoric) deformations, we have J = 1 pointwise in Br.

The deformation gradient can be decomposed pointwise according to the unique polar decomposi-
tion,

F = RU = VR, (2.3)

where R is a proper orthogonal tensor and U and V are positive definite and symmetric, and are called
the right and left stretch tensors, respectively. These can be expressed in spectral form. For U, the
spectral decomposition is

U =
3

∑
i=1

λi u(i)⊗u(i), (2.4)

where the principal stretches λi > 0, i∈ {1,2,3}, are the eigenvalues of U, u(i) are the (unit) eigenvectors
of U, and ⊗ denotes the tensor product. Using the polar decomposition (2.3), we define

C = FTF = U2, B = FFT = V2, (2.5)



4 of 27 J. H. Adler, L. Dorfmann, D. Han, S. MacLachlan, C. Paetsch

which denote the right and left Cauchy-Green deformation tensors, respectively. According to the theory
of invariants (Spencer, 1971), there exist three principal invariants for C, or equivalently B, defined by

I1 = trC, I2 =
1
2
[
(trC)2− tr(C2)

]
, I3 = detC = J2, (2.6)

where tr is the trace of a second-order tensor. Alternatively, in terms of principal stretches, the invariants,
I1, I2, I3, are expressed as

I1 = λ 2
1 +λ 2

2 +λ 2
3 , I2 = λ 2

1 λ 2
2 +λ 2

2 λ 2
3 +λ 2

3 λ 2
1 , I3 = λ 2

1 λ 2
2 λ 2

3 . (2.7)

2.2 Incompressible materials

The theory of hyperelasticity characterizes the elastic response of a body by a strain-energy density
function, W , defined per unit volume in the reference configuration Br. For homogeneous materials, W
depends only on the deformation gradient F, and is written W =W (F). Recall that W (F) represents the
work, per unit reference volume, done by the stress in deforming the material from Br to B. Later, for
the computational model, we introduce the total strain energy, π , which is defined as the volume integral
of W , π =

∫
Br

W (F)dV .
In this section, attention is restricted to incompressible materials, subject to the constraint J = 1.

From the energy balance equation, we find that the nominal stress tensor, S, and the symmetric Cauchy
stress tensor, σσσ , are given, respectively, by

S =
∂W
∂F
− pF−1, σσσ = F

∂W
∂F
− pI, (2.8)

where p is the Lagrange multiplier (Ogden, 1997). Equation (2.8) shows that for an incompressible
material, the Cauchy stress, σσσ , and the nominal stress, S, are related by σσσ = FS.

The strain energy is not affected by a rigid body rotation. Therefore, for an isotropic material the
stored energy can be expressed as a symmetric function of λ1,λ2, and λ3 or, alternatively, in terms
of the invariants in (2.7). Many different strain-energy density functions are available to model the
incompressible behavior of rubberlike solids, and we refer to deBotton et al. (2013) and Ogden (1972b)
for an overview and applications. In this paper, we restrict attention to the nonlinear prototype model that
is known as the incompressible neo-Hookean material, and commentary on the implication of alternate
constitutive forms is provided in Section 6. The strain-energy density function has the form

W =
1
2

µ (I1−3) , (2.9)

where µ(> 0) is a material constant referred to as the shear modulus of the material in the reference
configuration. Then, the associated nominal and Cauchy stresses (2.8) are given by

S = µFT− pF−1, σσσ = µB− pI, (2.10)

respectively. Assuming incompressibility and using a simple form of the strain-energy density func-
tion, it is possible to obtain explicit analytical solutions of boundary-value problems involving simple
geometries and boundary conditions, see, for example, Ogden (1997). In Section 3, we note that this is
only possible in the context of simple shear with added boundary conditions or forces.
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2.3 Slightly compressible materials

In this section, we define the isochoric-volumetric decomposition of the relevant kinematic measures for
slightly compressible materials, i.e. J 6= 1. Following the developments given by Ogden (1976, 1978),
we adopt the multiplicative decomposition of the total deformation into volumetric and isochoric parts
expressed by

F = (J1/3)F̄, (2.11)

where F̄ is the isochoric portion of the deformation with det F̄ = 1. The isochoric right and left Cauchy-
Green tensors are, respectively, given by

C̄ = F̄TF̄, B̄ = F̄F̄T, (2.12)

with the principle invariants of C̄ (or equivalently B̄) written

Ī1 = trC̄, Ī2 =
1
2
[
(trC̄)2− tr

(
C̄2)] , Ī3 ≡ 1. (2.13)

Alternatively, the invariants Ī1 and Ī2 can be expressed in terms of the modified stretches in the form

Ī1 = λ̄ 2
1 + λ̄ 2

2 + λ̄ 2
3 , Ī2 = λ̄−2

1 + λ̄−2
2 + λ̄−2

3 , with λ̄1λ̄2λ̄3 = 1, (2.14)

where λ̄i = λiJ−1/3, i ∈ {1,2,3}.
Many different isotropic strain-energy density functions have been proposed in the literature to

model slightly compressible materials, see Horgan and Murphy (2007, 2009a,b,c), Destrade et al.
(2012a) and Ogden (1972a) for details. Specifically, the model introduced by Ogden (1972a) is of
the form

Wc = ¯̄W (λ1,λ2,λ3)+F(J), (2.15)

where Wc denotes the strain-energy density function of a compressible material and ¯̄W is a symmetric
function of the principal stretches.

When the finite-element method is used to solve the equations for specified geometry and boundary
conditions, the strain-energy density function for slightly compressible materials is most frequently
given in the form

Wc = W̄ (Ī1, Ī2)+F(J), (2.16)

where W̄ (Ī1, Ī2) is the volume-preserving contribution and F(J) is the volumetric portion. Ogden (1976)
provides an alternative formulation in terms of the modified principal stretches, λ̄1, λ̄2, and λ̄3, given by

Wc = W̃
(
λ̄1, λ̄2, λ̄3

)
+F(J), (2.17)

where W̃ is a symmetric function of the modified principal stretches and again accounts for the volume-
preserving part of the deformation. To ensure that Equations (2.15) - (2.17) reduce to the fully incom-
pressible case, it is required that F(1) = 0. The corresponding nominal and Cauchy stresses are given,
respectively, by

S =
∂Wc

∂F
, σσσ = J−1F

∂Wc

∂F
, S = JF−1σσσ . (2.18)

Following Bose and Dorfmann (2009), Paetsch and Dorfmann (2013), the nominal stress is calcu-
lated by substituting expression (2.16) into S in the first equation of (2.18),

S =
∂W̄
∂F

+
∂F
∂F

= S̄+Svol, (2.19)
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where the first term on the right-hand side represents the isochoric (or deviatoric) contribution, denoted
by S̄, and the second term is the volumetric (or hydrostatic) part, denoted by Svol. Evaluation of equation
(2.19) requires the derivatives of the isochoric strain invariants with respect to F, which can be found in
the aforementioned references.

For a slightly compressible neo-Hookean model, the analogue of the incompressible strain-energy
density function given in (2.9) is

Wc =
1
2

µ (Ī1−3)+
κ
2
(J−1)2 =

1
2

µ
(
λ̄1 + λ̄2 + λ̄3−3

)
+

κ
2
(J−1)2, (2.20)

where we note that the volumetric penalty function takes the form F(J) = κ
2 (J−1)2. Here, κ is defined

as the bulk modulus of the system and represents a penalty parameter in the energy functional. Note,
there exist many possible forms of F(J), subject to some restrictions, see Merodio and Ogden (2003)
and Merodio and Neff (2006), for example. The interested reader can find alternate expressions of the
volumetric elastic response function in the work of Ogden (1972a), Ehlers and Eipper (1998), Peng and
Chang (1997), and the references within.

From Eq. (2.19) and the connection (2.18)3, we find the total nominal stress is

S = µJ−1/3
(

F̄T− 1
3

Ī1F̄−1
)
+κJ(J−1)F−1, (2.21)

while the total Cauchy stress is obtained from the connection

σσσ = µJ−1 dev
(
B̄
)
+κ(J−1)I, (2.22)

where (2.22) is written more concisely by introducing the deviatoric operator defined as dev(A) = P : A.
The fourth-order projection tensor, P, has components Pi jkl = δikδ jl − (1/3)δi jδkl and A is a second-
order symmetric tensor. The component form of P : A is Pi jklAkl .

3 Mathematical model

3.1 Deformation for simple shear

In this section, we consider the problem involving a homogeneous deformation, known as simple shear.
The mathematical problem of simple shear for nonlinear elastic materials was first considered by Rivlin
(1948) and various aspects evaluated subsequently in the monographs by Truesdell and Noll (1965) and
by Ogden (1997). Motivated by the publication by Gent et al. (2007), the mathematical treatment of
simple shear has attracted renewed interest in recent years. For isotropic materials we list, for example,
the papers by Horgan and Murphy (2010), Destrade et al. (2012a,b), Mihai and Goriely (2011) and
Rashid et al. (2013). Simple shear deformation involving fiber reinforced biological tissues is discussed
by Horgan and Murphy (2011). For convenience of reference, we provide a brief summary next.

Simple shear in the X1-direction in the (X1,X3) plane with an amount of shear, γ , is defined in
component form by

x1 = X1 + γX3, x2 = X2, x3 = X3. (3.1)

The matrix of Cartesian components, F, of the deformation gradient tensor, F, is

F=

 1 0 γ
0 1 0
0 0 1

 . (3.2)
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For simple shear, the principal invariants, I1, I2, and I3, defined in Equation (2.6), simplify to

I1 = I2 = 3+ γ2, I3 = 1. (3.3)

3.2 Stress response for an incompressible material

For an incompressible material, we solve for the Lagrange multiplier, defined in (2.8), in order to de-
termine the material response, even when the deformation is given. For the case of simple shear, this
is not straightforward, and there are several examples in the literature, which address this issue (Gent
et al., 2007; Horgan and Murphy, 2010; Mihai and Goriely, 2011; Rivlin, 1948). Here, we provide an
overview of the topic to provide context for the deviation in the numerical results from the prescribed
simple shear deformation given by (3.2).

By substituting B into the stress-deformation relation defined in (2.10), we find the stress compo-
nents for an incompressible neo-Hookean material associated with simple shear in the form,

σ11 = µ(1+ γ2)− p, σ22 = σ33 = µ− p, σ13 = µγ, (3.4)

where we note that the simple shear deformation is associated with normal stress components, σ11,
σ22, and σ33, as well as with the shear stress, σ13. The remaining two shear components, σ12 and σ23,
are zero everywhere for this deformation. Expressions of the stress components corresponding to a
general energy-density function, W = W (I1, I2), are given, for example, in Rivlin (1948) and Horgan
and Murphy (2010). In these works, it is shown that traction boundary conditions must be applied to
maintain the deformation in (3.1). Figure 1 shows that the outward unit normal, n, and the unit tangent
vector, s, in the (X1,X3) plane are given, respectively, by

n =
1√

1+ γ2
(e1− γ e3) , s =

1√
1+ γ2

(γ e1 + e3) , (3.5)

where e1 and e3 are the unit basis vectors.

X1

X3

n

s
γ σ11

σ33

σ13

FIG. 1: Cuboidal block subject to simple shear in the (X1,X3) plane. The amount of shear is γ , the
outward unit normal and the tangent vector on the inclined face are n and s, respectively. The
orientations of the in-plane stress components are depicted as well.

The normal component, N = t · n, and the tangential component, S = t · s, of the traction vector,
t = σσσn, on the inclined faces of the deforming body are

N = σ33− γ S, S =
σ13

1+ γ2 , (3.6)
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where the universal relation, σ11−σ33 = γ σ13, is used. Therefore, a normal component, N, is required
to maintain the deformation in (3.1). Similarly, the traction vector on the plane, whose outward pointing
unit vector is in the 2-direction, is equal to σ22.

To complete the solution, the unknown Lagrange multiplier, p in (3.4), needs to be determined,
which can be done in several different ways (Horgan and Murphy, 2010). Following Rivlin (1948),
we consider a plane stress condition, where the surfaces defined by unit vectors in the 2-direction are
traction free, i.e. σ22 = 0 and, therefore, p = µ . From (3.4), we find

σ11 = µγ2, σ22 = σ33 = 0, σ13 = µγ. (3.7)

For the slightly more general Mooney-Rivlin material, W = W (I1, I2), the stress in the 3-direction is
negative (compressive) and has the form σ33 =−2γ2 ∂W/∂ I2.

For small deformations considered in the classical theory of elasticity, simple shear deformation is
generated by shear stress only. Therefore, an alternative approach is to assume that the normal compo-
nent of the traction vector on the inclined faces, given by the normal component in (3.6), vanishes (Gent
et al., 2007; Horgan and Murphy, 2010; Rivlin, 1948). The value of the unknown Lagrange multiplier,
p, is then given by

p =
µ

1+ γ2 , (3.8)

and, using (3.4), we find the normal stress components,

σ11 =
µγ2(2+ γ2)

1+ γ2 , σ22 = σ33 =
µγ2

1+ γ2 , (3.9)

which clearly differ from (3.7). The shear stress is not affected and is still given by σ13 = µγ . The sign
of the normal components is positive, indicating tensile stresses. For the plane stress condition, using a
Mooney-Rivlin material, σ33 is negative, indicating a compressive stress. These ambiguities are elabo-
rated in great detail by Horgan and Murphy (2010), who also derived the corresponding expressions in
terms of principal stretches.

For the slightly compressible neo-Hookean material given in (2.20), the deformation given in (3.2)
leads to a Cauchy stress, from (2.18) or (2.22), of

σ11 =
2
3

µγ2, σ22 = σ33 =−
1
3

µγ2, σ13 = µγ. (3.10)

The normal and tangential components of the traction vector on the inclined surfaces are given by
N = σσσn ·n and S = σσσn · s. For a slightly compressible material these are given by

N =−
µγ2

(
4+ γ2

)
3(1+ γ2)

, S =
µγ

1+ γ2 , (3.11)

where we recall that the components of the unit vectors, n and s, are defined by (3.5). We note that the
tangential component of the traction vector defined here matches that given for the incompressible case
in (3.6), but the normal components are different when p = µ is chosen, as in (3.7).

These considerations highlight the difficulty of obtaining consistent results for this commonly con-
sidered test problem. It is therefore no surprise that in the following section, by applying boundary
conditions consistent with simple shear at two surfaces of a cube, our numerical results do not repro-
duce the homogeneous deformation considered in the mathematical model, except for a few special
cases.
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4 Computational models

Since analytical approaches for minimizing the total strain energy are only applicable in special cases,
we next discuss commonly used computational approaches for approximately minimizing that energy.
We focus on finite-element formulations and consider how their properties, including enforcement of
boundary conditions, correspond to the conditions needed for a simple shear deformation.

Computational methods for modeling incompressible deformation are naturally divided into those
based on the fully incompressible approach described in Section 2.2, those based on the slightly com-
pressible formulation discussed in Section 2.3, and those that use a “hybrid” formulation, which is more
robust than the standard formulation in the slightly compressible case; see, for example, Bonet and
Wood (2008), Belytschko et al. (2000) or Crisfield (1991). In all three cases, the total strain energy is
minimized by solving the (nonlinear) first-order optimality conditions, such that the total strain energy
is stationary at its minimum. To solve these nonlinear equations, Newton’s method (or some variant) is
applied to the first-order optimality conditions, yielding a series of linear systems to be solved for the
Newton iterates. These systems are discretized using the finite-element method (often referred to as the
principle of virtual work) (Belytschko et al., 2000; Boffi et al., 2013), although we note that first-order
optimality conditions can also be discretized before they are linearized.

For the neo-Hookean materials considered here, the computational models are based on minimiz-
ing the integrated strain energy density, referred to as the total strain energy. For the incompressible
model, we augment the strain-energy density function in (2.9) with a Lagrange multiplier to enforce
incompressibility, and integrate over the reference configuration,

πFI =
∫

Br

µ
2
(I1−3)+ p(J−1)dV, (4.1)

where the subscript FI indicates this is the fully incompressible formulation. Since the Lagrange multi-
plier is used here to enforce J = 1, a nearly equivalent formulation is to consider

πFI =
∫

Br

µ
2
(
I1−3

)
+ p(J−1)dV, (4.2)

where the standard invariant, I1, is replaced by I1 defined in (2.13). In the computational results in
Section 6, we use (4.2) to drive the minimization, ensuring a true separation into volumetric and iso-
choric work, although analytical results in Section 5 rely on the simpler form in (4.1). For the slightly
compressible case, denoted by a subscript SC, we use the strain-energy density function from (2.20),
giving

πSC =
∫

Br

µ
2
(
I1−3

)
+

κ
2
(J−1)2 dV. (4.3)

For comparison, in Section 6, we also include results for a “hybrid” formulation for slightly compress-
ible materials, as implemented in Abaqus FEA (Dassault Systèmes Simulia, 2009). In all cases, the
strain-energy functional is rewritten in terms of the displacement vector, u (taking χχχ(X) = X+u(X)),
leading to a nonlinear minimization problem.

The equilibrium equations are then obtained by doing a variation of the appropriate strain-energy
functional with respect to the dependent variables, u (and p in the incompressible and hybrid cases), and
setting the derivatives to zero. The resulting Euler-Lagrange equations are nonlinear, and a linearization
is performed to yield a solution scheme, iteratively taking u→ u+ u̇ and p→ p+ ṗ (if necessary). In
this simple case, we consider a standard Newton step on the equilibrium equations. Thus, for the slightly
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compressible case, we obtain a linear equation,(
˙δuπSC(uk)

)
u̇

u̇ =−δuπSC(uk), (4.4)

and for the fully incompressible or hybrid cases, we obtain
(

˙δuπFI(uk, pk)
)

u̇

(
˙δuπFI(uk, pk)

)
ṗ(

˙δpπFI(uk, pk)
)

u̇

(
˙δpπFI(uk, pk)

)
ṗ

( u̇
ṗ

)
=

(
−δuπFI(uk, pk)
−δpπFI(uk, pk)

)
, (4.5)

where the dot notation indicates a linearization about some previous iteration, (uk, pk). Note that, in the
fully incompressible case, the lower right block in system (4.5) is generally zero, due to the fact that
the fully incompressible energy is linear in p. However, in certain mixed-form finite-element methods,
a stabilization term is added in this block to guarantee inf-sup stability. The five other terms (including
the right-hand sides) in the above Hessian system, (4.5), and the terms in (4.4), can all be computed
explicitly in terms of known quantities, coming from the domain, the invariants of the system, and the
deformation at the previous linearization step. Thus, the nonlinear solution algorithm, specifically for
the fully incompressible case, is as follows:

Algorithm 1: Variation and linearization steps for incompressible nonlinear elasticity.

0. Set k = 0, u0 = 0, and p0 = 0.

while Nonlinear Iterations Not Converged do
1. Compute δuπFI(uk, pk), δpπFI(uk, pk),

(
˙δuπFI(uk, pk)

)
u̇
,
(

˙δuπFI(uk, pk)
)

ṗ
,(

˙δpπFI(uk, pk)
)

u̇
,
(

˙δpπFI(uk, pk)
)

ṗ

2. Solve system (4.5) for u̇ and ṗ.

3. uk+1 = uk + u̇, pk+1 = pk + ṗ, k = k+1.
end

4.1 Finite-element spaces

From the linearization process, we next need to choose finite-element spaces for u and p, choosing
appropriate sets of basis functions for their discrete representation on the computational mesh. For
the standard slightly compressible formulation, the linearization and discretization process is somewhat
straightforward, with a wide array of acceptable finite-element spaces. In this setting, there is no aux-
iliary variable, p, and, so, the Hessian has only one block in contrast to the fully incompressible case
given in (4.5). Thus, the Hessian of the slightly compressible model, (4.4), remains invertible for all lin-
earizations in the Newton iteration using standard choices of the finite-element spaces, including typical
piecewise-polynomial spaces defined on tetrahedral and hexahedral meshes. As a result, the important
criterion in the choice of the discretization space is the trade-off of potential accuracy versus the com-
putational cost of solving the resulting linear systems (Braess, 2007). While this computational cost is
often equated with, simply, the size of the resulting linear system, a more subtle calculus arises when
considering the construction of optimal preconditioning strategies for these systems. Since we only
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consider direct solves of the resulting linearized systems, issues of robust and scalable preconditioners
do not arise directly in our numerical results.

For this paper, we assume a hexahedral mesh, Th, of the domain, Br, with uniform mesh spacing,
h. We denote by Pk(T ) the space of polynomial functions of degree at most k defined on a generic
element, T ∈ Th. Then, the discrete finite-element spaces considered are the piecewise-polynomial
spaces of order k with enforced continuity across element boundaries,

Qk = {u ∈ H1(Br)∩C0(Br) : u|T ∈Pk(T )3 ∀T ∈Th},

and the piecewise-polynomial spaces of order k that are allowed to be discontinuous across element
boundaries,

Pk = {u ∈ L2(Br) : u|T ∈Pk(T )3 ∀T ∈Th}.

Here, L2(Br) refers to the space of square-integrable functions on Br and H1(Br) = {u ∈ L2(Br) :
∇u∈ L2(Br)} is the first-order Sobolev space. In Section 6, we present results for the Q2 finite-element
discretization of the standard slightly compressible formulation, using triquadratic basis functions for
each component of the displacement on each element. Since there is no ambiguity in their use, we
do not distinguish in notation between the scalar finite-element spaces defined above and their vector
counterparts used for displacements.

For the Q2 finite-element space considered here, assuming sufficient regularity of the domain and
solution, classical error bounds are obtained for the discrete solution of the displacement, uh, compared
to the continuum solution, u:

‖u−uh‖0 6C(µ,κ)h3|u|3,

where the norm on the left is the usual L2 norm, and that on the right is the usual semi-norm of the
Sobolev space H3; with additional regularity and increasing polynomial order, k, the error bound scales
as hk+1. Therefore, using higher-order spaces and more refined meshes should reduce the discretiza-
tion error. However, since the constant, C, depends on the material parameters, µ , and κ , we are not
guaranteed a uniform bound as κ/µ → ∞, the case of interest.

Since such classical error bounds do apply, the primary concern in the choice of finite-element bases
for the slightly compressible formulation is one of avoiding the well-known problem of “volumetric
locking”, where non-physical results may be given and convergence of the nonlinear iteration suffers.
The phenomenon of volumetric locking occurs in the slightly compressible case when the bulk modulus,
κ , (acting as a penalty parameter) becomes large in comparison to µ , enforcing the incompressibility
constraint too strongly for the solution to remain physically meaningful. In this instance, deviations
in the volumetric constraint, J = 1, dominate the energy at the scale where numerical errors in the
constraint dominate the solution. As a result, it is difficult to computationally minimize the energy in
a way that is consistent with the physical problem. Mathematically, this is associated with an “over-
constraining” of the solution within the finite-element space.

Several solutions have been presented to reduce the effects of locking in the slightly compressible
case. A straight-forward approach is to use higher-order finite-element methods or over-resolved meshes
in order to lessen the effects of the constraint. More commonly, reduced integration techniques are used
(Belytschko et al., 1984; Hughes, 1977, 1980; Hughes and Malkus, 1983; Malkus and Hughes, 1978),
replacing the exact integral in (4.3) with a suitable approximation. While these methods reduce the
effects of volumetric locking, the resulting linear systems may be more difficult to solve, thus increasing
the overall computational cost of the method. These approaches can still lead to difficulties when κ� µ ,
only delaying the onset of such problems for large κ . In some cases, however, reduced integration
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approaches are equivalent to the use of the fully incompressible strain energy, such as for suitably
chosen discontinuous approximations of the Lagrange multiplier (Malkus and Hughes, 1978).

An alternative approach is to augment the variational formulation with additional variables in a two-
field or three-field formulation (Belytschko et al., 2000; Doghri, 2000; Simo and Taylor, 1991; Simo
et al., 1985). In Section 6, we compare the slightly compressible and fully incompressible results with
the three-field “hybrid” formulation implemented in Abaqus FEA (Dassault Systèmes Simulia, 2009),
in which the displacement degrees of freedom are augmented by an independent hydrostatic pressure
variable, which is coupled to the physical hydrostatic pressure via a Lagrange multiplier. While we refer
to this as a “three-field” formulation, the Lagrange multiplier is eliminated algebraically through a sym-
metry argument and the introduction of an instantaneous bulk modulus, leaving just the displacement
and hydrostatic pressure variables as unknowns in the final system.

While the complete formulation of this “hybrid” approach is too involved to readily summarize
here, two salient points are important. First, the approach includes the slightly compressible material
law, as given in (2.16) (see (2.20) for the Neo-Hookean case), and not the incompressible law in (2.9);
as a result, the bulk modulus remains as a penalty parameter. Second, the augmentation is done in a
way so that the Hessian system (analogous to that given in (4.5) for the fully incompressible case) is
always invertible, with a negative-definite second variation with respect to p. While this guarantees
that no discrete stability condition (inf-sup or Ladyzhenskaya-Babuska-Brezzi (LBB) condition (Boffi
et al., 2013; Braess, 2007; Brenner and Scott, 2002)) needs to be satisfied, typical practice is to take the
approximation of hydrostatic pressure from a lower-dimensional space, such as using Q2 (triquadratic)
basis functions for displacements and Q1 (trilinear) basis functions for the hydrostatic pressure. For
the detailed formulation, the interested reader is referred to the Abaqus FEA Theory Manual (Dassault
Systèmes Simulia, 2009).

For the fully incompressible strain energy in (4.2), using mixed finite-elements, as in the “hybrid”
case, is also a natural choice, separately approximating the displacements and the Lagrange multiplier.
This eliminates the issue of volumetric locking from the standard slightly compressible formulation, as
in the hybrid case discussed above. However, the fully incompressible formulation does raise problems
with stability of the discretization and invertibility of the Hessian in (4.5).

For incompressible linear elasticity, such questions are well-understood. In order to ensure stabil-
ity (equivalently, invertibility of (4.5)), an inf-sup or LBB condition must be satisfied, constraining the
choices of discretization spaces for the two variables (Adams and Cockburn, 2005; Arnold et al., 1984a,
2007; Arnold and Winther, 2002; Boffi et al., 2013; Brenner and Scott, 2002). This condition en-
forces weak coercivity, ensuring well-posedness of the formulation. For linear elasticity, pairs of spaces
that satisfy such (problem-dependent) conditions are well-known, such as the Taylor-Hood (Q2Q1) ele-
ments, which (for hexahedral meshes) combine Q2 (triquadratic) approximations for displacements with
Q1 (trilinear) approximations for the Lagrange multiplier, or the slightly lower-order approximation,
Q2P0, with Q2 displacements and a P0 (piecewise-constant) Lagrange multiplier. Using equal-order
elements, such as Q1 approximations for both the displacements and the Lagrange multiplier, is known
to not be stable without either the addition of a non-physical (but asymptotically vanishing) stabilization
term to the second variation with respect to p, akin to what appears naturally in the hybrid formulation.
For the simulations in Section 6, we use a standard stabilization approach for Q1Q1 elements in the
Stokes’ system (Dohrmann and Bochev, 2004; Elman et al., 2005). In this approach, the lower-right
block of (4.5) is replaced by a “pressure-projection” operator,

(
˙δpπFI(uk, pk)

)
ṗ
=−〈δp−Π0δp, ṗ−Π0 ṗ〉, (4.6)
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where Π0 is the projection from Q1 onto P0 and 〈·, ·〉 indicates an L2(Ω) inner product. Other stabi-
lization methods include augmenting the displacement space with bubble functions, as is done in MINI
elements (Arnold et al., 1984b).

For the nonlinear problems at hand here, similar theoretical results are not known, but empirical
evidence suggests such spaces are appropriate (cf. Rossi et al. (2012); Ruiz-Baier et al. (2013)). The
numerical results that follow use these finite-element spaces, and we encounter no numerical difficulties
suggesting problems with stability. Additionally, error analysis for these mixed formulations is com-
plicated by their reliance on inf-sup stability bounds. Nonetheless, we can gain insight from bounds
for cases where stability results are known, such as for the Stokes’ equations and linear elasticity (Boffi
et al., 2013; Brenner and Scott, 2002; Elman et al., 2005). For the Stokes’ equations, standard error
bounds (assuming sufficient regularity on the domain, mesh, and solution) (Elman et al., 2005) are:

Q2Q1: ‖∇(u−uh)‖0 +‖p− ph‖0 6C1h2 (|u|3 + |p|2) ,
Q2P0: ‖∇(u−uh)‖0 +‖p− ph‖0 6C2h(|u|3 + |p|1) ,
Q1Q1: ‖∇(u−uh)‖0 +‖p− ph‖0 6C3h(|u|2 + |p|1) ,

where the standard Sobolev semi-norms of orders 1, 2, and 3 appear on the right-hand sides, and C1, C2,
and C3 are arbitrary constants. Assuming similar bounds hold for the nonlinear problem considered here,
this would guarantee convergence of both the computed displacements, uh, and Lagrange multiplier, ph,
to their continuum values, u and p, with grid refinement. We note, however, that this offers no guarantee
of uniform convergence of Jh = det(I+Graduh) to one. In fact, results in Section 6 show divergence in
the maximum value of Jh as h→ 0; based on these error estimates, we can only guarantee that increasing
values of Jh must be confined to smaller regions as h→ 0, as observed, for example, in Figure 8. Finally,
we provide a summary of the finite-element spaces considered in Table 1.

Table 1: Summary of finite-element spaces.

Method Software Variables Approximation Eqn. Form

Slightly Compressible
Q2 Abaqus FEA u triquadratic (4.3)

Hybrid
Q2A Abaqus FEA u, p triquadratic, trilinear (Dassault Systèmes Simulia, 2009)

Fully Incompressible
Q1Q1 deal.II u, p trilinear, trilinear (4.2) & (4.6)
Q2P0 deal.II u, p triquadratic, piecewise-constant (4.2)
Q2Q1 deal.II u, p triquadratic, trilinear (4.2)

4.2 Boundary conditions

In contrast to the discussions in Sections 3.1 and 3.2, the computational models apply boundary con-
ditions specifying the displacement or the normal component of the referential displacement gradient.
For the simple shear example treated here, the boundary conditions applied on the top and bottom faces
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enforce the deformation given in (3.1). Specifically, the boundary conditions on the unit cube, [0,1]3,
include fixing all three components of displacement to be zero along the face X3 = 0 and fixing the
sheared displacement to give x1 = X1 + γ , x2 = X2, x3 = X3 along the face X3 = 1. Along all four other
faces, a condition of zero normal deformation gradient is imposed, such that (Grad u(X))T n = 0.

These latter boundary conditions, known as natural boundary conditions in the finite-element lit-
erature, differ from the prescribed traction vector in (3.6). However, they are the standard choice of
conditions for when Dirichlet conditions are not known or would otherwise “over-constrain” the sys-
tem. Enforcing (3.6) directly would require adding forcing terms or traction conditions to the variational
form, changing the formulation. The natural boundary conditions agree only in the trivial limit of small
deformation, when γ → 0. For small γ , one might hope, then, that the difference in deformation re-
sulting from this change would be small. The following sections demonstrate that while this is true
when considering the magnitude of the deformation, the resulting difference in energy is significant,
with about 25% less total strain energy for the neo-Hookean case considered here. Furthermore, while
all finite-element methods considered here converge to the same solution with moderate numbers of
elements (thousands or tens-of-thousands), their behavior for small numbers of elements (hundreds or
less) is dramatically different.

5 Deviation from simple shear

We first investigate the minimization of total strain energy under these “computational” boundary con-
ditions through analytical calculation. Taking the simple shear deformation given in (3.1) and (3.2), we
compute the first invariant of C as I1 = tr

(
FT F

)
= 3+γ2, while J = 1. Since J = 1, the isochoric invari-

ant, I1, satisfies I1 = I1 = 3+ γ2, demonstrating that (4.1) and (4.2) are equal, and the energy associated
with the Lagrange multiplier in either is uniformly zero. The strain energy of this simple shear (denoted
by the superscript SS) is, then,

πSS
FI =

∫
[0,1]3

µ
2
[(

3+ γ2)−3
]
+ p(J−1)dV =

µγ2

2
. (5.1)

Defining the reference volume, V =
∫
[0,1]3 dV , and the strain energy per unit volume, Π SS

FI = πSS
FI/V , with

γ = 0.1, we have Π SS
FI = 0.005µ .

To investigate the energy minimization, we next consider allowing simple variations in the dis-
placements from those imposed in (3.1). To mimic the finite-element spaces used here, we consider a
deformation that is always contained in the Q2P0 finite-element space on the unit cube. A prototypical
deformation is chosen as

x1 = X1 + γX3 +a(1+2X1)X3 (1−X3) ,

x2 = X2 +b(1+2X2)X3 (1−X3) , (5.2)
x3 = X3 + c(1+2X1)X3 (1−X3) ,

for unknowns parameters a, b, and c. The term X3 (1−X3) ensures that the Dirichlet boundary condi-
tions imposed on the X3 = 0 and X3 = 1 faces, both physically in (3.1) and computationally, are always
satisfied. Minimizing the total strain energy from (4.1) then amounts to simply defining

πQ2P0
FI = min

a,b,c,p

∫
[0,1]3

µ
2
[
Î1−3

]
+ p(J−1)dV, (5.3)
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where Î1 is the first invariant of the Cauchy-Green tensor corresponding to (5.2). Taking γ = 0.1, the
minimum of (5.3) is achieved when a = −0.0011, b = −0.001, c = −0.021 and p = −0.995µ , giving
Π Q2P0

FI = 0.00465µ , where again Π Q2P0
FI is given per reference volume, Π Q2P0

FI = πQ2P0
FI /V . Plainly, this

deformation achieves a smaller energy than that in (3.1), although we note that this deformation is non-
physical in two regards. First, no traction forces are applied, allowing lower energy to be achieved at the
expense of the simple shear deformation. Secondly, the incompressibility condition is no longer satisfied
pointwise but, rather, only on average over the domain. While, in general, satisfying the incompress-
ibility condition only on average can lead to significant non-physical properties of the finite-element
solutions, numerical results in Section 6 show that such problems are relatively isolated when proper
grid refinement is used.

A natural approach to improve the physical fidelity of the solution is to enrich the space for the
Lagrange multiplier, p, in order to more strongly enforce the incompressibility condition. Following the
above results, we then consider a minimization in a subset of the Taylor-Hood (Q2Q1) finite-element
space on the unit cube, taking the same form for the deformation as given in (5.2), but allowing the
Lagrange multiplier to vary in the space of trilinear functions. The resulting total strain energy is given
by

πQ2Q1
FI = min

a,b,c,pi

∫
[0,1]3

µ
2
[
Î1−3

]
+(p1 + p2X1)(p3 + p4X2)(p5 + p6X3)(J−1)dV. (5.4)

However, it is apparent that the constant p minimization in (5.3) is performed over a subset of the mini-
mization space in (5.4), fixing p2 = p4 = p6 = 0. Thus, πQ2Q1

FI 6 πQ2P0
FI and Π Q2Q1

FI 6 Π Q2P0
FI , showing

that stronger enforcement of the incompressibility condition can only lower the minimum energy in this
example. Thus, while these approaches clearly do not generate solutions that are guaranteed to be in-
compressible in a pointwise sense, we see that this should not be regarded as a fundamental flaw. As the
computational results in Section 6 underscore, in combination with appropriate grid refinement, these
approaches yield largely physically meaningful solutions that, nonetheless, vary in significant ways from
the deformation gradient given in (3.2).

6 Numerical results

In this section, we compare results from the standard slightly compressible, hybrid slightly compress-
ible, and fully incompressible formulations, generated by finite-element discretization over appropriate
spaces. For the slightly compressible formulation, we use the implementation in Abaqus FEA (Dassault
Systèmes Simulia, 2009), where we consider cubic elements with 27 nodes, representing the standard
Q2 space for the displacements. For the hybrid formulation, we augment the Q2 displacements with Q1
hydrostatic pressure; we call the resulting element space Q2A to indicate the “augmented” formulations.
In both the slightly compressible and hybrid formulations, we use the default value of κ = 105µ , unless
noted otherwise. For the fully incompressible formulation, we have developed an implementation for
general material laws and boundary conditions in the finite-element package deal.II (Bangerth et al.,
2007, 2013). We report results for Q2Q1 (Taylor-Hood), Q2P0, and stabilized Q1Q1 discretizations.
We refer to Table 1 for a summary of these elements. Source code for the stable Q2Q1 and Q2P0
discretizations is available as supplementary material for this article.

Remark 1 It was our intent to include numerical results for cubic elements with 8 nodes, representing
standard Q1 (piecewise trilinear) finite-elements for the slightly compressible (Q1) and hybrid (Q1A)
models. However, when processing the data from these numerical experiments, we noted that Abaqus
FEA reported inconsistent results for the slightly compressible Q1 and Q1A models. Both models re-
turned identical displacements that largely match those of the other methods reported here. However,
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we noted a significant disparity between the values of J at the integration nodes reported by Abaqus
FEA (based on the undeformed, and deformed, representative volumes) and those computed directly
from the deformation gradient at the integration nodes. Furthermore, there was disagreement between
the deformation gradient computed from the displacement data and that provided directly by Abaqus
FEA. The values of J computed from the deformation gradient coming from the displacements failed
to match either of the other two values. Put simply, since Abaqus FEA uses black-box algorithms, we
could not explain the discrepancies in these calculations. As a result, we have excluded data for these
two test cases from the results in this section.

The deformation computed using Q2Q1 elements for the fully incompressible case is shown in
Figure 2, where the color bars indicate the difference between the computed deformation and that of
simple shear, computed as xh

i (X1,X2,X3)− xi (X1,X2,X3) for i = 1,2,3, where xi denotes the simple
shear deformation given in (3.1), and xh

i = Xi + uh
i is the computed deformation. We note that all

discretizations converge to an equivalent solution. The most significant deviation is in the x3 component.

Next, we compare solutions from all discretizations. Figure 3 shows the difference in the computed
x3 component between the midpoints of the faces X1 = 0 and X1 = 1 as the number of elements in the
discretization is increased from 23 to 243 elements. For comparison, the simple shear solution has this
difference as 0, since there is no deformation in the x3 direction. Note that the results using the Q2
or Q1Q1 formulations coincide and vanish when 23 elements are used; in these cases, the computed
displacement components represent the simple shear deformation. However, for all discretizations on
all meshes larger than 123 elements, the numerical solutions are effectively identical in this measure.
Considering the variation in the x2 component, Figure 4 shows the difference from unit width in the
computed solution along the face X1 = 1, at the quarter-points X3 = 0.25 and X3 = 0.75. Again, for
comparison, the simple shear solution has uniform unit width, so these deviations show the computed
solutions varying from simple shear in this way. We note that, here, we see slower convergence to
consistent solutions across all discretizations; only for the largest grids of 203 and 243 elements do we
see numerical convergence.

Figure 5 shows the computed strain energies (per total volume of reference configuration) for the
various discretizations as the computational mesh is refined. All discretization approaches converge to
similar solutions, as also seen in Figures 3 and 4. Deviations from the simple shear solution are small
in the x1 and x2 components. Most notably, the cube does not maintain unit width, with widening near
the corners defined by X1 = 0, X3 = 1 and X1 = 1, X3 = 0 and narrowing near the corners given by
X1 = X3 = 0 and X1 = X3 = 1. The deviation in the x3 component is more significant. Also interesting
is the strong variation in computed deformations for small numbers of elements. All methods, except
Q2P0, yield simple shear for the single element case. Figure 5 shows that with 23 elements, the Q2A
and Q2Q1 solutions jump from simple shear to a deformation that is very close to the minimum strain
energy, while Q2 and Q1Q1 yield the simple shear solution for 23 elements, but no larger. All methods,
except Q2A and Q2Q1, converge relatively slowly to the minimal strain energy, as reflected in Figures
3, 4, and 5. We note that the minimal strain energy achieved as the mesh size is decreased is significantly
below that of the simple shear solution.

Seeing that, as the number of elements increase, these methods approach a solution that is not the
simple shear solution raises the question of whether or not the computational solution is truly incom-
pressible, or only approximately so. Figure 6 presents the maximum and minimum values of J over
the entire body for each approach, varying the number of elements in the discrete mesh. Considering
the performance with respect to method, we see that all of the fully incompressible approaches, as well
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(a) x1 deviation

(b) x2 deviation

(c) x3 deviation

FIG. 2: Deviation (given per cube edge reference length) from simple shear deformation in each com-
ponent for the fully incompressible numerical case, discretized using Q2Q1 elements on a 203 grid.
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FIG. 3: Difference (given per cube edge reference length) in the x3 component of the finite-element solu-
tions between midpoints of the faces X1 = 0 and X1 = 1, computed as x3(0,1/2,1/2)− x3(1,1/2,1/2).
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(a) Deviation from unit length in the x2 direction
for X3 = 0.25
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(b) Deviation from unit length in the x2 direction
for X3 = 0.75

FIG. 4: Deviation from unit length (given per cube edge reference length) in the x2 component of the
finite-element solutions along the X1 = 1 face, computed as x2(1,0,X3)− x2(1,1,X3)−1.

as the hybrid approach, lead to much larger variations in J than the standard slightly compressible ap-
proach does with κ = 105µ . Considering the forms of the strain-energy functional, the positive penalty
term used in the slightly compressible formulation given in (4.3) explains the strict adherence to the
constraint seen in the Q2 results in Figure 6.

In Figure 7, we explore the dependency of the results for Q2 on the ratio, κ/µ , noting significant
deviations from J = 1 for small κ/µ in the figure at left, and that |J− 1| scales roughly as 10−µ/κ in
the figure at right. Each of the other approaches augments the isochoric strain energy with additional
terms, ensuring that J = 1 in some averaged sense, but not necessarily pointwise. We also note that with
κ/µ = 106, we see the onset of volumetric locking already, with no convergence in our solution past 12
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FIG. 5: Strain energy (per total volume of reference configuration) of the finite-element solutions as
a function of grid refinement. Note that a strain energy of

(
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)
µ corresponds to the analytical

simple shear deformation.

elements in each direction.
To get a better understanding of this deviation, Figure 8 shows the pointwise values of J on the faces

of the cube for the Q2, Q2Q1, and Q2A discretizations, and how these change with refinement from 83 to
163 elements. In Figures 8a and 8b, we show the deviation from J = 1 for the Q2 discretization with κ =
µ , chosen to emphasize the variations for small κ/µ in this formulation. Here, we see deviations from
unity that are large near the four edges experiencing the largest deformation, but that these deviations
change only slightly with grid refinement. Figures 8c and 8d show that, in contrast, the variations
for Q2Q1 are strongly localized to the X1 = 0 and X1 = 1 faces of the cube, and that they become more
localized to the top and bottom edges of these faces when the mesh is refined. Similar behavior is seen in
Figures 8e and 8f for the Q2A discretization. We note that similar results to those for Q2Q1 are obtained
for other choices of finite-element spaces using the fully incompressible formulation, and that results
similar to Q2 are obtained for other values of κ/µ , albeit with smaller variations as κ/µ increases. As
discussed above, the observed growth in the maximum pointwise values of J with grid refinement in the
mixed formulations does not directly contradict the standard finite-element error analysis, so long as the
volume over which J is significantly different from 1 contracts faster than the pointwise values grow.
This is precisely what we see in these results.

It is clear that the best physical fidelity in these solutions arises from the Q2 slightly compressible
approach with large κ/µ . If the computational cost of generating solutions with this approach was
comparable to all others, then the path forward would be clear. Figure 9 shows, however, that there is
great variation in the computational costs, both with formulation and finite-element strategy and with
κ/µ for the standard slightly compressible approach. At the left of Figure 9, we see how the number
of linearization steps needed varies with method. Using the standard slightly compressible model with
κ = 105µ is prohibitively expensive, with number of linearization steps growing with problem size.
This is emphasized by the right side of Figure 9, which shows that this growth increases with κ/µ , to
the point of a scheme that is no longer convergent for κ = 106µ and a moderate number of elements
(as expected from the phenomenon of volumetric locking). The second conclusion from the left figure
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FIG. 6: Maximum and minimum values of J at the quadrature nodes of the discretization as a
function of finite-element approach and varying mesh size.
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FIG. 7: Minimum and maximum values of J at quadrature nodes of the discretization for a stan-
dard slightly compressible model with Q2 elements. At left, the maximum and minimum val-
ues over the mesh. At right, data for the maximum values on a logarithmic scale.
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(a) 83 elements, Q2 κ = µ (b) 163 elements, Q2 κ = µ

(c) 83 elements, Q2Q1 (d) 163 elements, Q2Q1

(e) 83 elements, Q2A, κ = 105µ (f) 163 elements, Q2A κ = 105µ

FIG. 8: Value of J at the quadrature nodes (projected to the surface of the cube) for Q2, Q2Q1,
and Q2A discretizations on 83 and 163 meshes.
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(a) Varying finite-element space and formulation
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(b) Varying κ/µ for standard slightly compressible
formulation with Q2 elements

FIG. 9: Number of linearizations (Newton iterations) to reach convergence (measured as small non-
linear residual). At left, compared across formulations and finite-element spaces. At right, compar-
ed across κ/µ for the standard slightly compressible formulation with Q2 elements.

is that the stabilized Q1Q1 fully incompressible formulation suffers greatly in comparison to the stable
methods, although the number of linearization steps for this approach is clearly decreasing as problem
size increases. In contrast, all of the remaining augmented formulations (both fully incompressible and
hybrid slightly compressible) yield a solution after only a handful of linearizations.

While the numerical results presented above are specific to the Neo-Hookean material law of Equa-
tion (2.9), nearly identical results were obtained for a Mooney-Rivlin material law. Clearly, variations
in the computed deformations could be achieved by considering more complex material laws, such as
those in Destrade et al. (2012a,b); Horgan and Murphy (2010, 2011); Mihai and Goriely (2011) and
Rashid et al. (2013); nonetheless, the question of pointwise satisfaction of the incompressibility con-
straint within these models remains a important one, that is partly illuminated by the results above.

7 Discussion

It is widely regarded that there are numerous challenges to both the theory and practice of generating
numerical solutions to problems of incompressible nonlinear elasticity in three dimensions. In this paper,
we aim to gain some insight into these problems from the point-of-view of understanding the interplay
between the mathematical and computational models of simple shear of a homogeneous cube. Three
mathematical formulations are considered, two following from the slightly compressible viewpoint,
along with a fully incompressible approach. Suitable finite-element based discretizations are posed for
each.

Contrary to expectations, simple shear does not provide an example where an analytical solution
can be used to check the accuracy of the resulting finite-element discretizations, due to the mismatch
between the boundary conditions and forces needed to maintain the simple shear solution and those
that are naturally implemented in the finite-element framework. However, highlighting the utility of
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numerical approaches to obtain accurate results, a computational study reveals that all methods converge
to a solution that is qualitatively the same, with out-of-plane deformation.

Despite a misleading nomenclature, it is clear that the fully incompressible approach leads to discrete
representations where incompressibility is enforced only in an average sense, leading to large pointwise
variations in the volume ratio, J, for these solutions. The slightly compressible formulations lead to
solutions that are more faithful to the incompressibility constraint for large bulk moduli; however, the
standard slightly compressible formulation clearly suffers from effects of volumetric locking in this pa-
rameter range. Thus, since the offending variations of the fully incompressible approach are contained
within only a small fraction of the total volume (which decreases with grid refinement as required by
finite-element error analysis), it is difficult to say which approach is truly the preferred choice. When
balanced against the expected computational cost of solving the resulting nonlinear and linearized sys-
tems, it is clear that the use of mixed finite-element methods, either for the hybrid slightly compressible
or fully incompressible approaches, is highly preferable. To further resolve this question, close study of
these computational costs and design of effective preconditioning strategies is needed.
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