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I. Introduction 

There are investment firms that pay people to sit outside of factories with binoculars, and count the 

number of trucks going in and out. Investors do this because each truck contains information, and 

they believe having this information before anyone else gives them an advantage in financial markets. 

Every day, several thousands of options are traded, and each trade contains information. In the same 

way that information can be gained by watching trucks, there must be a way to capture information by 

observing the options market. This paper develops a variant of a model to do just that. 

Ever since Black and Scholes (1973), both academics and finance practitioners have used it to 

garner information from the options market. One way of doing this is to calculate the implied 

volatility of an underlying security, given the market prices of options. Option-implied stock market 

volatility even became a tradable asset when the Chicago Board Options Exchange launched the 

CBOE Market Volatility Index (VIX) in 1993. Becker, Clements, and White (2007), among others, 

study whether or not the S&P 500 implied volatility index (VIX) contains information relevant to 

future volatility beyond that available from model based volatility forecasts and find that the VIX 

index does not contain any such additional information relevant for forecasting volatility; see also  

Canina and Figlewski (1993) and Christensen and Prabhala (1998). Alternatively, Hentschel (2003) 

shows that estimating implied volatility by inverting the Black-Scholes formula is subject to 

considerable error when option characteristics are observed with plausible errors.1 

When calculating implied volatility, however, one must choose a fixed risk-free rate, usually 

the yield on Treasury bills. This assumes that Treasury bill yields capture the risk-free rate implicitly 

used by market participants buying and selling options. This might not be true for a number of reasons, 

including that people buying and selling Treasury bills might have different time preferences than 

those trading options and that Treasury bill yields might be heavily influenced by Federal Reserve 

asset purchasing programs, and as a result may not reflect market forces. Relaxing this assumption 

complicates the interpretation of implied volatility, as it would then contain information on investor 

expectations for both the discount rate and the underlying security’s volatility. The assumption isn’t 

needed if one sets up a system of two Black-Scholes equations in two unknowns, and solves 

simultaneously for the implied volatility and implied risk-free rate. We believe this implied risk-free 

                                                               
1 Also, Jiang and Tian (2005) show that model-free implied volatility is a more efficient forecast of future realized 
volatility relative to the model based implied volatility. 
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rate might contain valuable information complementary to the usual implied volatility of the 

underlying asset.2   

Even though the goal is to have a single point estimate of implied volatility and implied 

risk-free rate for each underlying security, empirically these values differ among options on the same 

security with different strike prices. We build on the methods of Macbeth and Merville (1979) and 

Krausz (1985), but suggest using a seemingly unrelated regressions (SUR) model to calculate a point 

estimate of at-the-money implied volatility and implied risk-free rate for each underlying security. 

These point estimates can be used to re-price the options using the Black-Scholes formula. We 

examine the relationship between moneyness, time to expiration and size of the bid-ask spread on the 

difference between market prices and model-based Black-Scholes prices. 

When running a regression of the difference between market and model prices on the option 

characteristics described above, the coefficient on moneyness can be positive or negative across 

different regression specifications. The ‘no restrictions’ specification shows that as moneyness 

decreases, the model-based Black-Scholes price is likely to greatly exceed the market price. Also, as 

an option gets far into the money, the market price is more likely to exceed the model price. Intuitively, 

this is explained by the volatility skew. Out of the money options have higher implied volatility, and 

as a result have higher model prices. 

We find that the size of the bid ask spread and the quality of our solutions measured by an 

appropriate extremum move in the same direction indicating lack of liquidity and/or mispricing at 

either end of the spread. There are other statistically significant relationships, but the coefficients are 

economically small. Alternatively, moneyness and quality move in opposite direction which implies 

that very in the money options are easier to price.  

The model outlined above, by construction, extracts additional information from the options 

market, the key interesting question is whether or not this new information is useful. We provide a 

diagnostic of the marginal impact of allowing the risk-free rate to vary in terms of the volatility smile 

and the accuracy of market volatility prediction. The difference between the implied volatility 

calculated using a fixed r, and the same quantity calculated with r allowed to vary increases over the 

sampled period indicating that additional information becomes more important as the sample period 

                                                               
2 Basically, we use the implied risk-free rate for re-pricing options and expect this to be more accurate than using 
the usual Treasury bill rate. 
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progresses and their correlation is positive across all leads and lags.  In addition, the difference 

between the market price and the model-based Black-Scholes price shows that the varying risk-free 

rate model better fits the data, and potentially provides better estimates of implied volatility.  

A possible explanation for why the volatility smile looks different when using the 

simultaneous solution method is that there is a balancing effect between the risk-free rate and the 

implied volatility. As can be seen in Figure 9, there is a pattern for the implied risk-free rate across 

strikes that seems to be the inverse of the pattern for implied volatility. This balancing, however, is not 

enough to get rid of the volatility smile, so the problem remains unresolved.  For the purposes of 

forecasting the VIX, the simple implied volatility model is inferior relative to the joint implied 

volatility and implied risk-free rate proposed by our algorithm.   

Finally, we outline and examine potential trading strategies based on the discrepancy between 

Black-Scholes prices and model prices, and alternatively based on the predictability of the VIX using 

model-based prices. The simultaneous and fixed risk-free rate algorithms yield alternative relative 

performances in the sample period. 

The paper is organized as follows. Section II discusses the simultaneous solution for implied 

volatility and the implied risk-free rate. Section III goes over the at-the-money adjustment using the 

seemingly unrelated regressions model. Section IV discusses the data used in this paper, and some 

descriptive statistics of the results. Section V examines factors that might explain the difference 

between the model prices and the market prices. Section VI investigates the marginal effect of 

allowing the risk-free rate to vary in several finance problems, while Section VII overviews potential 

trading strategies and Section VIII concludes. An appendix presents the mathematical background of 

our main algorithm, performance and sensitivity analysis. 

 

II. Simultaneous Solution for Implied Volatility and Implied Risk-Free Rate 

This section begins with a brief review of the Black-Scholes formula followed by a brief review of the 

literature on simultaneous solutions for implied volatility and implied risk-free rate. We then provide 

a description of the algorithm implemented in this paper for finding the simultaneous solution. 

II.1. Black-Scholes Formula and Implied Volatility 

Black and Scholes (1973) created the following model for pricing a European call option: 

݁ܿ݅ݎܲ	݈݈ܽܥ ൌ 	Φሺ݀ଵሻܵ െ Φሺ݀ଶሻି݁ܭ௥ఛ              (1)  
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where ݀ଶ ൌ 	
୪୬ቀೄ

಼
ቁା	൬௥ି഑

మ

మ
൰ఛ

ఙ√ఛ
ൌ ݀ଵ െ  S is the spot price of the underlying security, Φ is the normal ,߬√ߪ

CDF, K is the strike price, r is the risk-free rate of return, ߪ is the volatility of the underlying asset 

and ߬ is option’s time to expiration. 

For any call traded on an exchange, S, K and ߬ are known, but ߪ and r, which are meant to be 

forward looking, cannot be observed directly. To resolve this issue, finance practitioners applying 

Black-Scholes to price options might use the annualized yield on Treasury bills to approximate the 

risk free rate, and use historical volatility to approximate future volatility.   

It is possible, however, to find the option-implied volatility for the underlying asset if the 

option’s market price is known. After deciding on an appropriate value for r, it now becomes a case of 

one equation in one unknown.  Owing to the fact that it does not enter the Black-Scholes formula 

linearly, an optimization routine is needed to solve for implied volatility. If one were using an 

algorithm like Newton’s Method, the goal would be to minimize the quadratic function ሾܥ∗ 	െ

,ܵ given	௡ሻሿଶߪሺܥ ,ܭ and	߬ from market data and r from Treasury bill yields, where ܥ∗ is the market 

price for the call and ܥሺߪሻ	is the Black-Scholes formula evaluated at ߪ. Solving for ߪ is useful, as it 

captures investor sentiment about the volatility of the underlying asset, but we believe it still leaves 

out important information.   

As mentioned above, the true risk-free rate is not observable in the market, so it would be 

better if both ߪ and ݎ could be extracted from options data. This is important, because it would 

eliminate the need to approximate the risk-free rate with the Treasury bill yields, as these may not 

accurately capture option traders’ expectations of changes in the discount rate. The following sections 

discuss methods for finding both ߪ and ݎ. 

II.2. Simultaneous Solutions for Implied Volatility and Implied Risk-Free Rate 

One can solve for the implied volatility and implied risk-free rate if one can observe two call options, 

on the same underlying security with the same time to expiration but different strike prices. This will 

yield a system of two equations and two unknowns, which can be solved simultaneously for the 

parameters of interest. Authors such as O'Brien and Kennedy (1982), Krausz (1985) and Swilder 

(1986) used various methods to find simultaneous solutions for ߪ and ݎ. This paper builds on their 

models, using modern mathematics and statistics software packages which allow for the use of much 

larger datasets and more precision in the estimates for ߪ and r. Appendix A discusses why an 
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optimization routine is needed to find this simultaneous solution. 

The general goal of a simultaneous solution is to solve both ܥଵሺߪ, ሻݎ ൌ 	ଵܥ	
∗ and	ܥଶሺߪ, ሻݎ ൌ

ଶܥ	
∗  where, ܥଵ

∗  and ܥଶ
∗  are the calls’ market prices and ܥଵሺߪ, ሻݎ  and ܥଶሺߪ, ሻݎ  are the first and 

second calls priced with the Black-Scholes formula evaluated at ߪ and ݎ. Given that ߪ and ݎ both 

enter non-linearly into the Black-Scholes formula, these parameters cannot be solved for directly.  

Krausz’s algorithm picks a starting point, and adjusts ߪ and ݎ by small increments, ߪߜ and ݎߜ, 

until a solution to the system is found.  

To determine how much ߪ  and ݎ  should be perturbed, Krausz’s algorithm solves the 

following system for ߪߜ and ݎߜ: 

ߪଵሺܥ ൅ ,ߪߜ ݎ ൅ ሻݎߜ ൌ ଵܥ	
∗	and	ܥଶሺߪ ൅ ,ߪߜ	 ݎ ൅ ሻݎߜ ൌ ଶܥ	

∗          (2) 

To simplify the problem, Krausz uses the following first order Taylor approximation, valid for small 

:ݎߜ and ߪߜ 3 

௡ߪ௜ሺܥ ൅ ,ߪߜ ௡ݎ ൅ ሻݎߜ ൎ ,௡ߪ௜ሺܥ	 ௡ሻݎ ൅	
డ஼೔
డఙ
ሺߪ௡, ߪߜ௡ሻݎ ൅	

డ஼೔
డ௥
ሺߪ௡, 	(3)      	ݎߜ௡ሻݎ

Given the Taylor approximation, Equation (2) can be rewritten in matrix form and solved for ߪߜ and 

 :as follows ݎߜ

ቂߪߜ
ݎߜ
ቃ ൌ

ଵ
ങ಴భ
ങ഑

ൈ
ങ಴మ	
ങೝ

ି	
ങ಴భ
ങೝ

ൈ
ങ಴మ
ങ഑

቎

డ஼మ
డ௥

ିడ஼భ
డ௥

ିడ஼మ
డఙ

డ஼భ
డఙ

቏ ൤
ଵܥ
∗ െ ,௡ߪଵሺܥ ௡ሻݎ

ଶܥ
∗ െ	ܥଶሺߪ௡, ௡ሻݎ

൨         (4) 

If there is a solution to this system, ߪߜ and ݎߜ are added to ߪ and ݎ. This process of finding ߪߜ 

and ݎߜ and adding them to ߪ and ݎ is repeated until the assumptions of the Black-Scholes model 

are violated. For example, the addition of ߪߜ and ݎߜ would make ߪ or r less than zero) or until ߪߜ 

and ݎߜ become sufficiently small where Krausz stopped when ߪߜ and ݎߜ were smaller than 10ିହ.  

This method, however, is slow, as it requires taking four derivatives of the Black-Scholes formula at 

each step. In addition, this method may not always find a solution as it relies on the assumption that a 

solution to ܥଵሺߪ, ሻݎ ൌ 	ଵܥ	
∗ and	ܥଶሺߪ, ሻݎ ൌ ଶܥ	

∗ exists, which may not be the case for real-world (noisy) 

data. 

II.3. Proposed Method for Finding a Simultaneous Solution 

Rather than set up two equations in two unknowns, we propose a single equation to be minimized for 

                                                               
3 Krausz (1985) limited the size of ߪߜ and ݎߜ when adjusting ߪand ݎ in each iteration. In Equation 4, after 
solving for these quantities he would multiply them by some constant so they would not exceed a maximum size 
and the Taylor approximation would still be sufficiently accurate. 
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 :and r with an optimization routine ߪ

,ߪሺܨ ሻݎ ൌ ଵ

஼భ
∗మ ሺܥଵ

∗ െ ,ߪଵሺܥ ሻሻଶݎ ൅
ଵ

஼మ
∗మ ሺܥଶ

∗ െ ,ߪଶሺܥ  ሻሻଶ          (5)ݎ

This equation has advantages over the two equations model discussed above, in that it has a 

mechanism for weighing the difference between the Black-Scholes price and the market price. This is 

important, because if the second option in the pair were much more expensive, the solution for ߪ and 

r would be biased toward minimizing ܥଶ
∗ െ ,ߪଶሺܥ  ሻ using Krausz’s method. In addition, minimizingݎ

this function does not rely on the assumption that an exact solution exists such that ܨሺߪ, ሻݎ ൌ 0, 

which means it has a much lower failure rate of finding solutions. The function F can be interpreted as 

a measure of the quality of our solutions and will be sensitive to moneyness, bid-ask spread and time 

to expiry according to our projections below. 

A number of different algorithms in MATLAB were tested for minimizing this equation, and 

while the main body of the paper focuses on algorithms built into the fmincon function, alternative 

optimization models are discussed in Appendix B. Within the fmincon function, we experimented 

with two algorithms: sequential quadratic programming (SQP) and interior point. In both cases, the 

algorithms actually ran slower when we provided gradient and Hessian information, so we used 

derivative-free approaches. These methods approximate the gradient using finite differences, and use 

the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method to approximate the Hessian. Both SQP and 

interior point use similar approaches at each step of the optimization, but they implement range 

constraints, restricting both ߪ and ݎ to be in the range of 0 to 1, differently 

The interior point algorithm tries to find a location where the gradient is equal to zero, but it 

weighs the quality of solutions by how close they are to the range constraints. We decided to impose 

the restriction that ߪ and ݎ must be between zero and one, because values outside of this range seem 

empirically unrealistic. When looking for a minimum, this algorithm will continue to choose points 

that are opposite the direction of the gradient (downhill) until it reaches a balance between getting the 

gradient close to zero, and staying far enough from the edge of the feasible set.   

The SQP algorithm takes a second-order Taylor Series approximation of the function to be 

minimized. Such a quadratic approximation can be directly minimized, similarly to the linearizations 

used in Newton's method, allowing iterative improvement of the approximate minimization of the 

non-linear (and non-quadratic) function F. Unlike interior point, this algorithm does not discount the 
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quality of solutions where ߪ and ݎ are close to the edge of the feasible set. The algorithm continues 

to take these Taylor Series approximations, and adjust ߪ and ݎ, until the gradient of F is sufficiently 

near zero. 

Although interior point requires more calculations than SQP per iteration, this was not an issue 

when minimizing ܨ, as it ended up being faster on average than SQP. In addition, interior point 

achieved more accurate solutions, with smaller average values of ܨ. 4 It is also important to note that 

both of these algorithms were faster and more accurate than the algorithm developed by Krausz 

(1985). This algorithm is faster than two simple alternatives: a brute-force approach that directly 

samples ܨሺߪ,  sampling 40,000 total) ݎ and ߪ ሻ on an evenly space mesh of 200 values of each ofݎ

points); and an algorithm that applies a classical Newton's method to directly minimizing F by 

satisfying its first-order optimality conditions. 

The final algorithm used for this paper is as follows:  

1. The starting values of ߪ and ݎ for each pair of options is (0.5, ݎ௧) where ݎ௧ is the Treasury bill 

yield on the data’s date. 

2. The interior point algorithm is used to find a simultaneous solution for ߪ and ݎ, starting at the 

point determined in step 1. 

3. The patternsearch algorithm (another derivative-free method in MATLAB’s optimization toolbox) 

is run to minimize F, starting from the point found in step 2, to find another possible solution ߪ and 

 .ݎ

4. Starting at the point found in step 3, the interior point algorithm is run again to minimize F, and find 

a third possible solution for ߪ and ݎ. 

5. The algorithm accesses the three values of F from steps 2, 3 and 4, choosing the (ݎ ,ߪ) pair which 

yields the smallest F. 

 

III. At-the-Money Adjustment 

After running the algorithm discussed in Section II, we obtain an implied volatility and implied risk 

free rate for each pair of options. In order to proceed with re-pricing the options, we need to find a 

point estimate for implied volatility and implied risk free rate for each underlying security. This 

                                                               
4 See appendix B for a comparison of speed and accuracy between these two algorithms. 
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section reviews potential approaches and discusses our version of the at-the-money adjustment, a 

method weighing the individual estimates. 

When working with a large number of options, each option on the same underlying security 

will most likely have a different implied volatility. Given that implied volatility is supposed to be a 

measure of volatility for the underlying security, and not the option, an adjustment should be made to 

extract a single point estimate for this parameter. 

This point estimate should not be calculated using a geometric average, given the presence of 

two common phenomena for options, the volatility skew and the volatility smile. The volatility skew 

is when implied volatility is highest for out-of-the-money (OTM) options, and decreases steadily as 

strike prices increase.5 The volatility smile is when volatility is lowest for at-the-money options, and 

it increases as options become deeper in-the-money (ITM) or farther OTM. An example of the 

volatility smile from the dataset used in this paper is shown in Figure 1. 

 

Figure 1:    

 

To adjust for the volatility skew and the volatility smile, Macbeth and Merville (1979) ran the 

following ordinary least squares (OLS) regression:  

௝௞௧ߪ ൌ ߶௢௞௧ ൅ ߶ଵ௞௧ܯ௝௞௧ ൅   ௜௞௧               (6)ߝ

where ߪ௝௞௧ is the model implied volatility for an option j, on security k, at time t, ߝ௜௞௧ is the error 
                                                               
5 This section only discusses strike skew, where implied volatility is different across options on the same 
underlying security with the same time to expiration. The other type of skew is time skew, where options on the 
same underlying security with the same strike price have different implied volatilities for each time to expiration. 
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term and ܯ௝௞௧ ൌ
ௌೖ೟ି௑ೕೖ௘షೝഓ

௑ೕೖ௘షೝഓ
 is a measure of moneyness, ܵ௞௧ is the price of the underlying security, 

௝ܺ௞݁ି௥ఛ is the present value of the option’s strike price and r is the Treasury bill interest rate. The 

term ܯ௝௞௧ equals zero when, on a present value basis, an option is at-the-money, so the estimate ߶෠௢௞௧ 

is the implied at-the-money volatility. Essentially, ߶෠௢௞௧ is a weighted average of all the different 

implied volatilities calculated for options on a particular security, where the weight is determined by 

moneyness. Krausz (1985) adapts this technique to his simultaneous solution for ߪ and ݎ. He runs an 

OLS regression to adjust each parameter: 

௝௞௧ߪ ൌ ߶௢௞௧ ൅ ߶ଵ௞௧ܯ௝௞௧ ൅   ௜௞௧               (7)ߝ

and  

௝௞௧ݎ ൌ ௢௞௧ߩ ൅ ௝௞௧ܯଵ௞௧ߩ ൅ ߳௜௞௧               (8)  

where ߪ௝௞௧ and ݎ௝௞௧ are the model implied values for implied-volatility and risk-free rate for an 

option, j on security, k at time, t. In addition, ܯ௝௞௧ ൌ
ௌೖ೟ି௑ೕೖ௘షೝ

∗ഓ

௑ೕೖ௘షೝ
∗ഓ  where ܵ௞௧  is the price of the 

underlying security, ௝ܺ௞݁ି௥
∗ఛ is the present value of the option’s strike price, and ݎ∗ is the average 

model implied risk-free rate across all securities on a given date. In this model, ߝ௜௞௧ and ߳௜௞௧ are 

error terms. The at-the-money implied volatility and risk free rate for each security are ߶෠௢௞௧ and 

௝௞௧ܯ ,ො௢௞௧. As in the Macbeth and Merville (1979) modelߩ ൌ 0 when, on a net present value basis, an 

option is at the money. 

III.1. Proposed At-the-Money Adjustment 

Using the average value of r in the calculation of ܯ௝௞௧, ݎ∗, causes an endogeneity problem, in that 

 ௝௞௧ will be on both sides of Equation (8). In addition, the fact that these regressions are run separatelyݎ

omits the simultaneity of the solution for ߪ and ݎ. It is possible, however, to account for this by 

rewriting ܯ௝௞௧	in a way that isolates r. First, we move all terms that contain r to the left hand side of 

the equation: 

௝௞௧ܯ	 ൌ
ௌೖ೟ି௑ೕೖ௘

షೝೕೖ೟ഓ

௑ೕೖ௘
షೝೕೖ೟ഓ 	→ 	 ௝ܺ௞݁

ି௥ೕೖ೟ఛ	൫1 ൅ ௝௞௧൯ܯ ൌ ܵ௞௧          (9) 

Then, we take the natural log of each side and solve for ܯ௝௞௧: 

 ln൫1 ൅ ௝௞௧൯ܯ ൌ െ ln൫ ௝ܺ௞ሻ െ ln	ሺ݁ି௥ೕೖ೟ఛ	൯ ൅ lnሺܵ௞௧	ሻ	.          (10) 

For ܯ௝௞௧ ൎ 0, we have that	ln൫1 ൅ܯ௝௞௧൯ ൎ  ௝௞௧, so we can approximate (10) asܯ
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௝௞௧ܯ  ൌ െ ln൫ ௝ܺ௞൯ ൅ ௝௞௧߬ݎ ൅ lnሺܵ௞௧	ሻ .             (11) 

Substituting this into Krausz’s Equations (7) and (8) gives 

௝௞௧ߪ	 ൌ ߶௢௞௧ ൅ ߶ଵ௞௧ሺlnሺܵ௞௧	ሻ െ ln൫ ௝ܺ௞൯ ൅ ௝௞௧߬ሻݎ ൅  ௜௞௧          (12)ߝ

and  

௝௞௧ݎ ൌ ௢௞௧ߩ ൅ ሻ	ଵ௞௧ሺlnሺܵ௞௧ߩ െ ln൫ ௝ܺ௞൯ ൅ ௝௞௧߬ሻݎ ൅ ߳௜௞௧.          (13) 

An additional adjustment is required because ݎ௝௞௧ is still on both sides of the second equation. 

The second equation can be solved explicitly for ݎ௝௞௧ as follows 

௝௞௧ݎ ൌ
ఘ೚ೖ೟

ଵିఘభೖ೟ఛ
൅ ఘభೖ೟

ଵିఘభೖ೟ఛ
൫lnሺܵ௞௧	ሻ െ ln൫ ௝ܺ௞൯൯ ൅ ߳′௜௞௧.          (14) 

As with the Macbeth and Merville (1979) model, the constant terms, ߶௢௞௧  and ߩ௢௞௧ 

represent the at-the-money implied volatility and risk-free rate for the underlying security because 

ln൫ ௝ܵ௧	൯ െ ln൫ ௝ܺ௞൯ ൅ ௝௞௧߬ݎ ൌ 0 for options expiring at the money.  

The following steps outline our method for explicitly identifying	ߩ௢௞௧. In order to find ߩ௢௞௧, 

we start by taking a linear approximation of 
ଵ

ଵିఘభೖ೟ఛ
 for ߩଵ௞௧߬ < 1 which given the units is safe to 

assume. We can rewrite 
ଵ

ଵିఘభೖ೟ఛ
 as the geometric series 1 + ߩଵ௞௧߬ ൅	ሺߩଵ௞௧߬ሻଶ ൅ ⋯ . While a higher 

order approximation would give more accurate results, this must be weighed against the additional 

computational cost. A first order approximation was used so that 

௝௞௧ݎ ൌ ଴௞௧ሾ1ߩ ൅ ଵ௞௧߬ሿߩ ൅ ଵ௞௧߬ሾ1ߩ ൅ ሻ	ଵ௞௧߬ሿሺ݈݊ሺܵ௞௧ߩ െ ݈݊൫ ௝ܺ௞൯ሻ ൅ ߳′′௜௞௧       (15) 

which can be simplified as follows: 

௝௞௧ݎ ൌ ௢ߚ ൅ ଵ߬ߚ ൅	ߚଶ ቀ݈݊ሺܵ௞௧	ሻ െ ݈݊൫ ௝ܺ௞൯ቁ ൅	ߚଷ ቀ݈݊ሺܵ௞௧	ሻ െ ݈݊൫ ௝ܺ௞൯ቁ ߬	 ൅ ߳′′௜௞௧6   (16) 

In this equation,	ߚ଴ ൌ ଶߚ ௢௞௧, is the model-implied risk-free rate andߩ ൌ   .ଵ௞௧ߩ

Another improvement in the at-the-money adjustment developed in this paper is that it 

accounts for the simultaneity of ߪ and ݎ, in that it uses a seemingly unrelated regressions (SUR) 

model for the two equations. The assumption of a SUR model is that the error terms across the 

regressions are related, which makes sense given every ߪ and ݎ is extracted from a single pair of 

options on the same underlying asset with the same time to expiration. 
                                                               
6 The number of iterations allowed in the SUR model for the variance-covariance matrix to converge was limited 
to 1,000. 
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The implications of using the SUR model are more evident when one considers shocks 

entering the system. Without using SUR, a shock in the error term for the risk-free rate regression has 

no impact on the volatility regression. With SUR, a shock in the error term for the risk-free rate 

regression will also cause a shock in the error term for implied volatility regression, and vice versa.  

Bliss and Panigirtzoglou (2004) explain that, “risk preferences are volatility dependent”. Given the 

close relationship between implied risk-free rate and the implied volatility, it makes sense that a shock 

affecting one of these equations should also affect the other. Finally, is that if there is correlation 

between the error terms in the two equations, using the SUR will yield smaller standard errors for the 

estimated coefficients.7 

 

IV. Data 

IV.1. Data Sources and Description 

The options dataset used for all empirical analysis in this paper is from 

http://www.historicaloptiondata.com/, and it contains end of day quotes on all stock options for the 

U.S. equities market. This includes all stocks, indices and ETFs for each strike price and time to 

expiration. Data on the VIX, Treasury bills and other market indices was collected from the Federal 

Reserve Bank of St. Louis. The empirical work in this paper focuses on data from March 2007-March 

2008. Given that we are interested in implied volatility and the risk-free rate, Figure 2 shows the 

evolution of these two quantities, as measured by the VIX8 and 3-month Treasury bills, over the 

period of interest. It can be seen that the risk free rate is trending downward, while the implied 

volatility is increasing. 

       

  

                                                               
7 SUR will only make the standard error smaller if two conditions are met: (1) There is correlation between the 
standard errors in the regressions (2) the two equations have different independent variables.  For example: 
running the two regressions ݕଵ ൌ ߙ ൅ ݔߚ ൅ ଶݕ  and ߝ ൌ ߙ ൅ ݔߚ ൅  as OLS regressions will be no different ߝ
than running them as SUR regressions because they both only have ݔ on the right hand side.  In our model, the 
right hand side is slightly different for each equation, and we have good reason to believe the standard errors will 
be correlated, so there should be efficiency gains. 
 
8 The new VIX is a model free calculation of volatility based upon the prices of S&P500 index options and it does 
not rely on the Black-Scholes framework. See e.g. CBOE (2009).   
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Figure 2: 

 

 

VI.2. Restrictions on the Data 

A subset of the data was chosen for analysis in this paper using a procedure similar to that of 

Constantinides, Jackwerth and Savov (2012). First, the interest rate implied by put-call parity was 

computed. The equation for put-call parity can be solved algebraically for ݎ௉௨௧ି஼௔௟௟ as follows: 

௉௨௧ି஼௔௟௟ݎ ൌ
ି௟௡ቀೄశುష಴

಼
ቁ

௧
                 (17) 

All the observations with values of ݎ௉௨௧ି஼௔௟௟ that did not exist or were less than zero were 

dropped. Constantinides et al. (2012) removed these options because these values for ݎ௉௨௧ି஼௔௟௟ 

suggest that the options are probably mispriced. After this calculation, all of the puts were removed 

from the dataset, as this paper only focuses on call options. Other procedures in line with 

Constantinides et al. were the removal of options with bid prices of zero and options with zero open 

interest. Options with zero volume for a given day, however, were allowed to remain in the dataset9. 

IV.3. Descriptive Statistics 

Figure 3 shows the evolution of the daily average of option-implied risk-free rate and volatility for 

SPX options, cash-settled options on the S&P 500 index, and how this compares to movements in 

benchmarks for these two quantities.10 It can be seen that changes in the average option-implied 

                                                               
9 Open interest is the total number of option contracts that have been traded, but not yet liquidated.  Volume is 

measured in shares, and is only useful as a relative measure; it should be compared to average daily volume for 

underlying security, rather than across securities. 

 
10 There are two commonly traded S&P 500 index options, SPX and SPY.  SPX options are based on the entire 
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risk-free rate do not seem to be related to changes in Treasury bill rate. In addition, the option-implied 

volatility seems detached from the VIX index. It should be noted that these averages for implied 

volatility and implied risk-free rate are calculated for values when these parameters are between zero 

and one, because as discussed above, values outside of this range seem economically unrealistic. A 

possible interpretation of the lack of relationship between the series calculated in this paper, and the 

benchmark series is that the old assumptions about Treasury bills representing the risk-free rate were 

false, and we are indeed getting new information through the simultaneous solution. 

      Figure 3: 

 

In Figure 4, we compare the implied volatility, calculated with the risk-free rate fixed at the 

3-month Treasury bill rate, to the VIX index. Unlike the line graphs above, these two series seem to 

generally follow the same trend. This is not surprising because according to the CBOE website: “The 

                                                                                                                                                                                                   
basket of underlying securities, and are settled in cash while the SPY is based on an ETF, settled in shares. All these 
averages are based on the values before the at-the-money adjustment. 
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risk-free interest rate, R, is the bond-equivalent yield of the U.S. T-bill maturing closest to the 

expiration dates of relevant SPX options.” Both of these calculations use the same fixed risk free rate. 

   Figure 4:  

 

A possible explanation for why the relationship between the VIX and option-implied volatility 

seems weaker when using the simultaneous solution is that our model better isolates investor 

expectations about volatility than the VIX.   

  Table 1 below presents some descriptive statistics across all days in the sample period. We 

experimented with several different restrictions on the data as follows. We define 

௜௞௧′ܯ	 ൌ
ௌೖ೟ି௑೔ೖ௘షೝ೅ഓ

௑೔ೖ௘షೝ೅ഓ
                  (18)  

and the restriction on ܯ′ is within one standard deviation of its mean (which excludes very far in the 

money and out of the money options). The restriction on time to expiration is to options expiring more 

than 90 days in the future. It should also be noted that these averages are restricted to observations 

where the variables of interest are between zero and one.11   

In almost all cases, making these restrictions does not make a significant difference in the 

variables’ averages. This is important, because it shows that the conditional mean of each variable 

based on some factors like moneyness is almost the same as the unconditional mean. The one case 

where it does make a significant difference is the time to expiration restriction on the average risk-free 

rate before the at the money adjustment. This implies that options closer to expiration have a higher 

                                                               
11 We make those restrictions because it is well known that far out-of-the-money options are poorly priced by 
Black-Scholes, and that option prices become more volatile as time to expiration gets smaller. 
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option-implied risk free rate. If this risk free rate captures investor expectations as we proposed above, 

this could signal that there was much more short-term uncertainty at the time than long term 

uncertainty, which is why the short-term implicit discount rate was so high. 

 

Table 1: Descriptive Statistics under Alternative Restrictions 

_____________________________________________________________________ 

 

 

V. Determinants of Underpricing/Overpricing 

This section presents a summary of the results from the applied algorithm and the analysis of the 

regressions on factors that determine the difference between model-based Black-Scholes prices and 

market prices. 

V.1. Macbeth and Merville Regressions 

Macbeth and Merville (1979) solved for implied volatility and after making the at-the-money 

adjustment, they re-priced the options using the new value for this parameter.12 They then wanted to 

examine possible determinants of differences between market prices and Black-Scholes prices. Their 

dependent variable was:  

ܻ ൌ ெ௔௥௞௘௧݈݈ܽܥ	 െ   ஻ିௌ,                (19)݈݈ܽܥ

and their independent variables were moneyness and time to expiration. We propose a similar model, 

with our regression: 

௜ܻ௞௧ ൌ ଵߙ ൅ ௜௞௧′ܯଵߚ ൅ ଶ߬௜௞௧ߚ ൅ ௜௞௧݀ܽ݁ݎ݌ܵ	݇ݏܣ	݀݅ܤଷߚ ൅           (20)	௜௞௧ߝ

where ௜ܻ௞௧ is the difference between the market price and the Black-Scholes model price for an 

                                                               
12 Macbeth and Merville (1979) did not use a simultaneous solution to find the implied risk-free rate. 

No Restrictions Restrict M' 

Restrict Time to 

Expiration Restrict F

Average Risk‐Free 

Rate 0.0932 0.0944 0.0883 0.0946

Average ATM Risk‐

Free Rate 0.1237 0.1214 0.1218 0.1228

Average Implied 

Volatility 0.3536 0.3365 0.3437 0.3509

Average ATM 

Implied Volatility 0.3767 0.3645 0.3797 0.3735
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option i, on security k, at time t, ܯ′௜௞௧ ൌ
ௌೖ೟ି௑೔ೖ௘షೝ೅ഓ

௑೔ೖ௘షೝ೅ഓ
ݎ் ,	  is the annualized coupon equivalent on a 

13-week Treasury Bill,	߬௜௞௧ is the time to expiration, ݀݅ܤ	݇ݏܣ	݀ܽ݁ݎ݌ܵ௜௞௧ ൌ
஻௜ௗ೔ೖ೟ି஺௦௞೔ೖ೟
ெ௜ௗ௣௢௜௡௧೔ೖ೟

, and ߝ௜௞௧ is 

an error term. 

  Table 2 below presents the averages across all dates for key variables across different 

specifications. The restrictions on moneyness, time to expiration and F are the same as those 

described in Section IV. 

 

  Table 2: Descriptive Statistics under Alternative Restrictions cont. 

  _____________________________________________________________________ 

 

   

Table 3 below presents the regression results. Across different specifications, the coefficient 

on moneyness can be positive or negative. This could imply that there are very far in the money and 

out of the money options that are biasing the regression results, given that the coefficient is only 

negative in the regression where moneyness itself is restricted. Based on the ‘no restrictions’ 

specification, as an option goes very far out of the money (moneyness decreases) the Black-Scholes 

price is likely to greatly exceed the market price. Also, as an option gets far into the money, the 

market price is more likely to exceed the model price. This relationship, however, is reversed when 

moneyness is within one standard deviation of the mean, as the coefficient on moneyness is negative 

and significant in the restricted moneyness specification.13 

 

  

                                                               
13 We also tried using percentage differences 

஼௔௟௟ಾೌೝೖ೐೟ି஼௔௟௟ಳషೄ
஼௔௟௟ಳషೄ

ൈ 100	as the dependent variable, but this function 

does not exist for a large number of options with either market prices, or Black-Scholes prices close to zero. 

No Restrictions Restrict M' 

Restrict Time to 

Expiration Restrict F

Moneyness  0.2117 0.1112 0.2407 0.2288

Time to Expiration 0.6161 0.5606 0.8442 0.6271

Spread ‐0.1792 ‐0.1742 ‐0.1709 ‐0.1626

F 0.0072 0.0066 0.0039 0.0002

Y ‐1.8065 ‐1.7799 ‐2.4808 ‐1.8758

# Obs 15,700,000 13,600,000 10,800,000 15,000,000
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Table 3: Regressions 
Estimated model is ௜ܻ௞௧ ൌ ଵߙ ൅ ௜௞௧′ܯଵߚ ൅ ଶ߬௜௞௧ߚ ൅ ௜௞௧݀ܽ݁ݎ݌ܵ	݇ݏܣ	݀݅ܤଷߚ ൅   ,	௜௞௧ߝ

where ௜ܻ௞௧ is the difference between the market price and the Black-Scholes model price for an option i, on  

security k, at time t, ܯ′௜௞௧ ൌ
ௌೖ೟ି௑೔ೖ௘

షೝ೅ഓ

௑೔ೖ௘
షೝ೅ഓ

ݎ் ,	  is the annualized coupon equivalent on a 13-week Treasury  

Bill,	߬௜௞௧ is the time to expiration, ݀݅ܤ	݇ݏܣ	݀ܽ݁ݎ݌ܵ௜௞௧ ൌ
஻௜ௗ೔ೖ೟ି஺௦௞೔ೖ೟
ெ௜ௗ௣௢௜௡௧೔ೖ೟

, and ߝ௜௞௧ is an error term. 

  _____________________________________________________________________ 

 

  _____________________________________________________________________ 

* 10% level, ** 5% level, ***1% level 

 

V.2. Others Explanations for the Differences between Model Prices and Market Prices 

A limitation of the research presented in this paper is that we did not adjust for dividends, even though 

many of the underlying securities in the dataset used for the empirical portion of this paper are 

dividend paying. Merton (1973) presented an adjustment to the Black-Scholes formula for stocks that 

pay dividends. Owing to the fact that the option price is decreasing in dividend yield, this will make 

the average Y in this paper generally smaller in absolute value than it should be if an adjustment for 

dividends were made, owing to the fact that the model price on average always exceeds the market 

price (see Figure 10).   

In addition to the dividend issue mentioned above, we want to see if there are certain types of 

options which are more likely to have low quality solutions, as measured by the size of F. We ran the 

following regression for several specifications: 

௜௞௧ܨ ൌ ଵߙ ൅ ௜௞௧′ܯଵߚ ൅ ଶ߬௜௞௧ߚ ൅ ௜௞௧݀ܽ݁ݎ݌ܵ	݇ݏܣ	݀݅ܤଷߚ ൅  ௜௞௧         (21)ߝ

and the results are presented in Table 4. It is not surprising that in every specification, as the size of the 

bid ask spread gets larger, so does F, as this indicates illiquidity and/or mispricing at either end of the 

spread. There are other statistically significant relationships, but the coefficients are economically 

small. As moneyness increases F decreases, which implies that very in the money options are easier to 

No Restrictions Restrict M' 

Restrict Time to 

Expiration Restrict F

Moneyness 0.392*** ‐0.409*** 0.572*** 0.457***

Time to Expiration ‐3.091*** ‐3.265*** ‐3.222*** ‐3.149***

Spread ‐2.199*** ‐1.723*** ‐3.458*** ‐2.472***

Constant ‐0.379*** ‐0.203*** ‐0.484*** ‐0.409***

# Obs 16,016,475 13,847,564 10,824,043 15,016,942
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price perhaps, because they behave more like a stock than an option, i.e. an option with strike zero 

behaves exactly like the stock. The coefficient on time to expiration is insignificant in the regressions 

where we don’t restrict this variable, which leads us to believe the effect of time to expiration on F 

might be opposite for options close to and far from expiration, which is why when time to expiration 

is restricted to greater than 90 days, the relationship becomes significant. 

 

Table 4: Regressions 

Estimated model is ܨ௜௞௧ ൌ ଵߙ ൅ ௜௞௧′ܯଵߚ ൅ ଶ߬௜௞௧ߚ ൅ ௜௞௧݀ܽ݁ݎ݌ܵ	݇ݏܣ	݀݅ܤଷߚ ൅   ௜௞௧ is the quality ofܨ ௜௞௧ whereߝ

solution for an option i, on security k, at time t, ܯ′௜௞௧ ൌ
ௌೖ೟ି௑೔ೖ௘

షೝ೅ഓ

௑೔ೖ௘
షೝ೅ഓ

  is the annualized coupon equivalent on ்ݎ ,	

a 13-week Treasury Bill,	߬௜௞௧ is the time to expiration, ݀݅ܤ	݇ݏܣ	݀ܽ݁ݎ݌ܵ௜௞௧ ൌ
஻௜ௗ೔ೖ೟ି஺௦௞೔ೖ೟
ெ௜ௗ௣௢௜௡௧೔ೖ೟

, and ߝ௜௞௧ is an error  

term. 

  _____________________________________________________________________ 

 

  _____________________________________________________________________ 

* 10% level, ** 5% level, ***1% level 

 

VI. Marginal Effect of Allowing Risk-Free Interest Rate to Vary 

As was mentioned above, finding the simultaneous solution and making the at-the-money adjustment 

yields more information. The interesting question is whether or not this additional information is 

useful. The following section goes over some comparisons between the new and old information sets, 

as well as some applications of this new information. 

Figure 5 plots the difference between the implied volatility calculated using a fixed r, and the 

same quantity calculated with r allowed to vary. Note that all these plots are just based on data for 

SPX options, and they exclude values where the variables of interest are not between zero and one. 

The difference increases over the sampled period indicating that additional information becomes 

more important as the sample period progresses. 

No Restrictions Restrict M' 

Restrict Time to 

Expiration

Moneyness ‐0.0689*** ‐0.0964*** ‐0.00895***

Time to Expiration ‐0.00775 0.0109 0.00592***

Spread 0.164*** 0.157*** 0.0522***

Constant 0.0521*** 0.0173 ‐0.00257***

Observations 17100528 14675713 11543771
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Figure 5: 

 

  Figure 6 presents the cross correlation function between the implied volatility calculated using 

a fixed r, and the same quantity calculated with r allowed to vary. We note that as expected, they are 

positively correlated across all leads and lags at about 50%, with a peak at the contemporaneous 

correlation over 50%. 

Figure 6: 

 

VI.1. Volatility Smile 

It is well known that in practice the implied volatility is different across strike prices in the 

Black-Scholes model. We wanted to see if allowing the risk-free rate to vary would change the 

differences in implied volatility across strikes, i.e. would change the volatility smile. Figure 7 shows 

the case for AAPL options. Allowing r to vary did not seem to change the pattern very much, as the 

volatility smile still clearly exists. 
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Figure 7: 

 

Figure 8 is a similar plot for GOOG options. Although the volatility skew is still apparent in 

the graph on the left, the pattern certainly seems less clear defined when r is allowed to vary. 

 

Figure 8: 
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A possible explanation for why the volatility smile looks different when using the 

simultaneous solution method is that there is a balancing effect between the risk-free rate and the 

implied volatility. As can be seen in Figure 9, there is a pattern for the implied risk-free rate across 

strikes that seems to be the inverse of the pattern for implied volatility. This balancing, however, is not 

enough to get rid of the volatility smile, so the problem remains unresolved. 

Figure 9:  

 

VI.2. Difference between market price and Black-Scholes price 

If we look at the evolution of the difference between the market price and the Black-Scholes price, it 

can be seen in Figure 10 that the simultaneous solution is generally more accurate than the model with 

a fixed risk-free rate controlling in both cases for the at-the-money adjustment and re-pricing the 

options. This shows that the varying risk-free rate model better fits the data, and at a minimum 

probably provides better estimates of implied volatility. 
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Figure 10:  

 

VI.3. Predicting Volatility 

In order to capture the accuracy of the VIX prediction under alternative risk-free rates assumptions, 

we estimate in-sample and out-of-sample forecasts of the VIX on SPX options, because the VIX is 

designed to track volatility on the S&P 500 index as measured by the prices of these options. Figure 

11 shows the VIX and the at-the-money implied volatilities with varying and fixed risk-free solutions 

for data from March 2007 to March 2008.14  

Figure 11: 

 

                                                               
14 The data on option implied volatility represent the average of that variable across all observations on that day, or 
all cash- settled options on the S&P 500 index. 
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The univariate econometric models were appropriately obtained via time series identification 

as  

௧ܺܫܸ ൌ ߙ ൅ ∑ ௝ߚ
ଶ
௝ୀଵ ௧ି௝ܺܫܸ ൅	∑ ௣ଶߛ

௣ୀ଴ ௧ି௣ݕݐ݈݅݅ݐ݈ܽ݋ܸ	ܯܶܣ ൅ ߳௧      (22) 

where ܯܶܣ	ݕݐ݈݅݅ݐ݈ܽ݋ܸ is the at-the-money implied volatility for the two alternative cases. The 

models where estimated via maximum likelihood. The in-sample predictions refer to the forecast 

error ߳௧ while the out-of-sample was obtained running the model on the sample March 2007 to 

October 2007, and obtaining the out-of-sample dynamic predictions for the remaining periods. In 

both cases, we use the Diebold and Mariano (1995) test to determine which forecast is more accurate. 

The results for the in-sample case are in Table 5, which gives evidence in favor of the joint implied 

volatility and implied risk-free rate model. The out-of-sample case, also in Table 5, confirms the 

in-sample results. We ran several alternatives including static forecasts and the results are similar and 

robust.    

For the purposes of forecasting the VIX, the simple implied volatility model is inferior relative 

to the joint implied volatility and implied risk-free rate proposed by our algorithm.15  

 

 

 

 

 

  

                                                               
15 The regressions and additional models will be posted on a website with additional materials and are available 
upon request. 
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Table 5: Predictive Accuracy – In-Sample and Out-of-Sample Cases 

In-Sample  
Series MSE (Mean Squared Error) over 262 obs. 

At the Money Implied Volatility 
(Varying Risk-Free Rate)  

1.792 
At the Money Implied Volatility 

(Fixed Risk-Free Rate) 2.559 
Difference -0.7666 

 
Diebold-Mariano S(1) = -3.251  

(p-value = 0.0012) 
Reject Null of Equal Forecasts in Favor of Joint Implied 

Volatility and Risk-Free rate 
Out-of-Sample  

Series MSE (Mean Squared Error) over 99 obs. 

At the Money Implied Volatility 
(Varying Risk-Free Rate) 

14.44 
At the Money Implied Volatility 

(Varying Risk-Free Rate) 53.18 
Difference -38.74 

Diebold-Mariano S(1) = -5.746  
(p-value = 0.0000) 

Reject Null of Equal Forecasts in Favor of Joint Implied 
Volatility and Risk-Free rate 

 

 

VII. Potential Trading Strategies 

VII.1 Re-pricing of Options Strategy 

The first trading strategy is based on the re-pricing of options after the at-the-money adjustment. It 

relies on the idea that if there is a discrepancy between the market price and the Black-Scholes price, 

we should defer to the Black-Scholes price. 

If we believe the Black-Scholes price with the at-the-money implied risk-free rate and 

volatility is the correct price for an option, then when there is a difference between the market price 

and the Black-Scholes price, we should trade on that difference since this is useful information. In this 

paper, we have solved for the at-the-money parameters for the bid-ask midpoint, but given that one 

would buy at the ask price, and sell at the bid price, it might be better to solve for implied parameters 

using those prices instead. It turns out that using the bid and ask instead of the midpoint does not make 

a substantive difference, as is discussed in Appendix C. 
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We define a simple strategy to use the information from the data.  

i. If the market price exceeds the Black-Scholes price, sell/write that call option, and to hedge this 

position, buy the underlying security;  

ii. If the market price is lower than the Black-Scholes price, buy that call option.  

It is possible to hedge this second position of going long on the call by shorting the stock, but for 

simplicity we will avoid shorting. In addition, any trading strategy requires transaction costs to 

buy/sell the options and underlying security, again, for simplicity, this is ignored in the context of this 

example. Also, we calculated the difference on a percentage basis, and dropped all observations for 

which the market price and Black-Scholes price differed by more than 20%. Finally, we did not make 

any trades for observations where the difference was zero.16  

The trading strategy described above was implemented for March 1st 2007 when there were 

502 SPX options traded which met the above selection criteria. The return for each option is 

calculated and added to the return on the stock if the position was hedged. We then calculate the 

average return for the strategy.17 We excluded options expiring on March 21st 2008, because we could 

not get a price for the S&P 500 index, and thus could not calculate the exercise value of those options 

because the S&P data from Yahoo Finance and from FRED are both missing this day. Under 

simultaneous risk-free rate, the average return was about 38%, and the standard deviation was about 

39%, both of which seem fairly high. Implementing this same strategy on November 30th, 2007 yields 

an average return of about -80%, with a standard deviation of about 29%, suggesting that the average 

return is heavily dependent on the day which the strategy is implemented. Also, these returns should 

be measured on a risk-adjusted basis. A popular measure for this is the Sharpe ratio: ݄ܵܽ݁݌ݎ	݋݅ݐܴܽ ൌ

௥̅೛ି௥೑
ఙ೛

 where ̅ݎ௣  is the expected portfolio return, ݎ௙  is the risk-free rate of return and ߪ௣  is the 

standard deviation of portfolio returns. For the March 1st 2007 data, the risk-free rate as measured by 

3-month treasury bills was about 5%, making the Sharpe ratio less than one. The standard deviation 

would probably be lower if we could hedge the long call positions, as those greatly increase standard 

                                                               
16 Options that differed by more than 20% were largely mispriced (in our opinion), and there was probably an 
unusual event or a data anomaly that can explain this difference. We also thought about restricting F to be smaller 
than a specific value, but after dropping all values that differ by more than 20%, almost all observations already 
have small values of F. We did, however, restrict the strategy to options with 90 or more days to expiration, given 
options close to expiration can have unusual price fluctuations. 
 
17 We did not weight each position by the degree of mispricing, but that is another possible strategy. 
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deviation when they go to zero expiring out of the money. 

The same strategy was implemented, but instead of re-pricing the calls with the at-the-money 

implied volatility from the simultaneous solution, it was done with the at-the-money implied 

volatility calculated with a fixed risk-free rate. This allows for an evaluation of the marginal impact of 

the additional information from a simultaneous solution, by seeing if it leads to a more effective 

trading strategy. For the March 1st 2007 data there was an average position return of about 24%, and a 

standard deviation of about 7.5%. On a risk-adjusted basis, this yields better returns than the strategy 

using the simultaneous solution. 

VII.2 VIX Prediction Strategy 

Another potential trading strategy is based on predicting the VIX index. It relies on the idea that it is 

possible to reliably predict the index, and make trades based on its expected future value. In this case, 

we use the econometric model (22) to obtain one-step-ahead forecasts of the VIX index and define a 

simple strategy as follows: 

i. A position initiated during a given trading day must be closed before the end of that trading day. 

Assume positions held overnight do not collect interest. 

ii. If the next period predicted VIX is higher than the current level of the VIX, put the entire portfolio 

into shares of a product that closely tracks the VIX, and sell them at the end of the next trading day.18 

Assume there is no tracking error between these products and the index itself. 

iii. If the next period predicted VIX is lower than the current level of the VIX, keep the entire portfolio 

in cash for the next trading day. 

While it would be possible to hedge the long position for the VIX, this will be avoided for 

simplicity. In addition, any trading strategy requires transaction costs to buy/sell the product, and for 

simplicity, this is ignored in the context of this example.  

  We implement the strategy for SPX options. The model described in Equation (22) was 

estimated using the first 160 trading days in our sample to calibrate the model. The forecasts after that 

were iterative, in that the model was re-estimated for every forecast using all data points before the 

one to be predicted. The hypothetical portfolio started with $100,000. A “benchmark” strategy only 

includes the two autoregressive terms of the VIX in Equation (22) when forecasting, while the other 

strategies include measures of model based at-the-money implied volatility. Figure 12 shows the 
                                                               
18 There are a variety of exchange traded products designed for this including NYSE ARCA: CVOL.   
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value of this hypothetical portfolio over time. This illustrates the main result that the simultaneous 

and fixed risk-free rate algorithms yield alternative relative performances in the sample period. In 

particular, the simultaneous risk-free interest rate dominates the fixed risk-free interest rate case in the 

later periods but the reverse occurs in the earlier periods.  

Figure 13: 

 

 

VIII. Summary and Conclusions 

This paper implements an algorithm that can be used to solve systems of Black-Scholes equations for 

implied volatility and implied risk-free rate. We use a seemingly unrelated regressions (SUR) model 

to calculate a point estimate of at-the-money implied volatility and implied risk-free rate for each 

underlying security. These point estimates can be used to re-price the options using the Black-Scholes 

formula. We examine the impact of moneyness, time to expiration and size of the bid-ask spread on 

the difference between market prices and model-based Black-Scholes prices. 

We find that across different specifications, the effect of moneyness on prices can be positive 

or negative. The ‘no restrictions’ specification shows that as moneyness decreases, the model-based 

Black-Scholes price is likely to greatly exceed the market price. Also, as an option gets far into the 

money, the market price is more likely to exceed the model price. The size of the bid ask spread and 

the quality of our solutions move in the same direction indicating lack of liquidity and/or mispricing 
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at either end of the spread. Alternatively, moneyness and quality move in opposite direction which 

implies that very in the money options are easier to price.  

We provide a diagnostic of the marginal impact of allowing the risk-free rate to vary in terms 

of the volatility smile and the accuracy of market volatility prediction. The difference between the 

implied volatility calculated using a fixed r, and the same quantity calculated with r allowed to vary 

increases over the sampled period indicating that additional information becomes more important as 

the sample period progresses and their correlation is positive across all leads and lags. The difference 

between the market price and the model-based Black-Scholes price shows that the varying risk-free 

rate model better fits the data, and potentially provides better estimates of implied volatility. For the 

purposes of forecasting the VIX, the simple implied volatility model is inferior relative to the joint 

implied volatility and implied risk-free rate proposed by our algorithm.   

Finally, we outline two potential trading strategies based on our analysis. One uses the 

discrepancy between Black-Scholes prices and model prices, and compares this strategy’s 

risk-adjusted return to a similar strategy setting a fixed risk-free rate. The other is based on predicting 

the VIX index. In both cases, the simultaneous and fixed risk-free rate algorithms yield alternative 

relative performances in the sample period. 

There are several avenues for future research that seem to us fruitful. A key one would be to 

expand on the computational capability and improve the accuracy of the algorithm using more 

nonlinear terms in the model-based prices. Expanding the sample period to more recent years and a 

more systematic information index of the gains from implied risk-free rates on implied volatility 

could potentially be used in parallel to the VIX as a measure of market volatility. In general, we 

believe options prices present important information content of future expectations that can provide 

essential for market participants and policy makers.    
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Appendix A: The need for an optimization routine 
 Given that the Black-Scholes formula is monotonically increasing in both ߪ and ݎ, one 
might question why an optimization routine is needed to minimize the following function: 

ܨ ൌ
1
ܿଵଶ

ሺܿଵ െ ܿሺߪ, ሻሻଶݎ ൅
1
ܿଶଶ

ሺܿଶ െ ܿሺߪ,  ሻሻଶݎ

 At first glance, it seems possible to pick some starting values for ߪ and ݎ, and move 
against the gradient of ܨ until a minimum is reached. This, however, is not always possible, as 
can be seen in the following case study on a pair of Agilent Technologies (NYSE:A) call 
options. On 3/1/2007, the stock was trading at $31.44, and both options were 16 days from 
expiration. The calls had strike prices of $27.50 and $30.00 and were trading at $4.08 and $1.73 
(these prices represent the bid-ask midpoint). 

Looking at the plot of ܨ below for this pair of options, it’s hard to tell where its global 
minimum truly lies. To make the minimum more obvious, one can instead examine a plot of 
െlog	ሺܨሻ, which will make small values of ܨ appear large on the vertical axis. This plot shows 
two important things: (1) ܨ is not monotonically increasing in ߪ and ݎ, and (2) There are 
several local minima surrounding the global minimum. 

 

To dig deeper into this issue, one can divide ܨ into two pieces: ଵ݂ ൌ
ଵ

௖భమ
ሺܿଵ െ ܿሺߪ,  ሻሻଶݎ
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and ଶ݂ ൌ
ଵ

௖మమ
ሺܿଶ െ ܿሺߪ,  ሻሻଶ. Plots of these functions, however, have the same issue as the plotݎ

of ܨ, in that the minimum is hard to see. To resolve this issue, the plots of െlog	ሺ ௜݂ሻ are shown 
below. The lack of monotonicity of ௜݂ in ߪ and ݎ is apparent in both figures. An explanation 
for why there are multiple local minima in each of these plots is that as one gets the term 
ܿଵ െ ܿሺߪ, ߪ ሻ close to zero, it is possible to increase (decrease)ݎ  by a small amount and 
decrease (increase) ݎ by a small amount and keep ܿሺߪ,  .ሻ about the sameݎ

 

 
To finalize this analysis, െ logሺ ଵ݂ሻ ൅ 5 is superimposed on െlog	ሺ ଶ݂ሻ (adding 5 to 

െ logሺ ଵ݂ሻ makes it easier to distinguish the two functions). The figure mostly in yellow is 
െ logሺ ଵ݂ሻ ൅ 5  while the figure mostly in blue is  െlog	ሺ ଶ݂ሻ. It can be seen that in the region 
near ߪ ൌ 0.3 and ݎ ൌ 0.1, both of the functions have multiple local minima, which is explains 
why ܨ has multiple local minima in this region as well. 
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 Given the lack of monotonicity in ߪ and ݎ, and the existence of multiple local minima, an 
optimization routine is needed to minimize ܨ. 
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Appendix B: Alternative Optimization Methods 

I. Alternative Optimization Algorithms 

While our primary algorithm for finding ߪ and ݎ uses the fmincon function built into 
MATLAB’s optimization toolbox, there are other algorithms that can be used to minimize	

ܨ ൌ
1
ܿଵଶ

ሺܿଵ െ ܿሺߪ, ሻሻଶݎ ൅
1
ܿଶଶ

ሺܿଶ െ ܿሺߪ,  ሻሻଶݎ

The optimization toolbox also contains a function designed to solve nonlinear least-squares 
problems called lsqnonlin. The input for lsqnonlin is a vector which contains the square roots of 
the functions to be minimized. A potential input for lsqnonlin to minimize ܨ as described 

above is: ࡲሺ࣌, ሻ࢘ ൌ ቎

௖భି௖ሺఙ,௥ሻ

௖భ
௖మି௖ሺఙ,௥ሻ

௖మ

቏.   

To minimize the sum of squares of the functions contained in ࡲ, the algorithm starts at 
some particular values for ߪ and ݎ, and approximates the Jacobian of the vector ࡲ using finite 
differences (rather than calculating it by taking derivatives). Then, it solves a linearized 
least-squares problem to determine by how much and in what direction ߪ and ݎ should be 
perturbed. A trust-region method is used to control the size of these changes at each step: if the 
proposed change in ߪ and ݎ gets the sum of squares in ࡲ closer to zero, it is used. Otherwise, 
 are perturbed by a small amount and the algorithm solves the linearized least-squares ݎ and ߪ
problem at the new values for	ߪ and ݎ.   

This process is repeated until a sufficiently small sum of squares has been achieved, or the 
maximum number of allowed iterations has occurred. A limit is set on the maximum number of 
iterations because for some pairs of calls, there are no values of ߪ and ݎ that will yield a 
sufficiently small sum of squares. 

The lsqnonlin algorithm should be faster than both the interior point and SQP algorithms 
built into the fmincon function. This is because lsqnonlin gains efficiency from that fact that the 
problem is known to be a minimization of squares (as opposed to other types of problems like 
minimizing the sum of absolute differences, etc.), which allows the algorithm to make 
assumptions that fmincon cannot. 

The table below compares the performance of lsqnonlin to both the interior point and SQP 
algorithms built in fmincon using options from March 2007. It should be noted that these 
averages are based on using the bid-ask midpoint as the representative price for each option.     

 

It can be seen that lsqnonlin is many times faster than SQP, and is more than three times as 
fast as interior point. The average F (quality of solution) is best for interior point, but lsqnonlin 
is not far behind. Finally, it should be noted that all three algorithms fail to find solutions for the 
same pairs of options. This leads us to believe that the inability to find a solution is not an 
algorithm-specific problem, but rather an issue where some pairs of options are mispriced, 

Algorithm:

Average Seconds 

per Pair  Average F %Solutions Found

Lsqnonlin  0.0269 0.0123 96.51%

SQP  0.1744 0.1483 96.51%

Interior Point 0.0831 0.0075 96.51%
fmincon
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making it impossible to pick ߪ and ݎ to make F sufficiently small. 
 

II. Alternative Function Specifications 

One of the issues with minimizing ܨ  is the somewhat random nature by which an 
optimization routine might pick ݎ. This is because there is usually a large range of ݎ values for 
which one can choose a value of ߪ to make ܨ small. This issue of randomness, however, does 
not apply to ߪ as there is usually a smaller range of ߪ values for which one could choose an ݎ 
value to make ܨ small. 

  The figure below shows the surface of െlog	ሺܨሻ for a pair of Agilent Technologies 
(NYSE:A) call options in March 2007, with the red areas indicating where ܨ is close to zero. 
This shows that the range of possible ߪ values for which	ܨ can be small is between 0.2 and 0.3, 
while the same range for ݎ values is between 0 and 0.4 (which is 4 times as large as the range 
for ߪ). As can be seen in a different view of the same figure, there are several local minima 
along the red ridge which an optimization routine might accidentally pick as the best value for 
minimizing ܨ.   

 
If the optimization routine accidentally picks one of the local minima, as opposed to the 

global minimum, the chosen ߪ will not be far from the best ߪ, but the value of ݎ could be 
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drastically different. 
To address the issue of ݎ’s randomness, we can add a term to ܨ as follows:	

ଶܨ ൌ
1
ܿଵଶ

ሺܿଵ െ ܿሺߪ, ሻሻଶݎ ൅
1
ܿଶଶ

ሺܿଶ െ ܿሺߪ, ሻሻଶݎ ൅ ܲሺݎ െ  ሻଶ∗ݎ

Where ݎ∗  is the benchmark value for ݎ  (for example: the annualized three-month 
Treasury bill rate) and ܲ is the degree by which values of ݎ are penalized as they deviate from 
 but this ,∗ݎ should be close to ݎ The idea behind this is that it is reasonable to believe that .∗ݎ
must be balanced against minimizing  the difference between the market price and the 
Black-Scholes price for each call. To decide on a value for ܲ that balances these demands, the 

average size of 
ଵ

௖భమ
ሺܿଵ െ ܿሺߪ, ሻሻଶݎ ൅ ଵ

௖మమ
ሺܿଶ െ ܿሺߪ, ሻሻଶݎ , the data fit, is plotted against  

ሺݎ െ  ሻଶ, the regularization term, for all values of ܲ between 0.75 and 5.00 in increments of∗ݎ
0.25 using data from March 2007. 

  
Based on the figure above, it seems as though ܲ ൌ 1.25 is near the inflection point of 

the curve created by the points, making it the best choice for a trade-off between data fit and 
regularization.  

The table below compares the performance of the lsqnonlin algorithm with the input:	 

,࣌૛ሺࡲ ሻ࢘ ൌ

ۏ
ێ
ێ
ێ
ۍ

௖భି௖ሺఙ,௥ሻ

௖భ
௖మି௖ሺఙ,௥ሻ

௖మ

√1.25ሺݎ െ ሻ∗ݎ ے
ۑ
ۑ
ۑ
ې
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This shows that setting  ܲ ൌ 1.25 actually makes the algorithm slightly faster. This 
could mean that the global minimum is normally near ݎ∗, so biasing ݎ towards ݎ∗ speeds up 
the optimization routine. The average value of F is larger, but this is no surprise, given that an 
additional term has been added. If we remove the impact of adding 1.25ሺݎ െ  ሻଶ to F, the∗ݎ
average of F is 0.0145, which is only slightly bigger than the average of F for ܲ ൌ 0.00. 

The next thing to consider is the general impact of setting ܲ ൌ 1.25 on ݎ. The table 
below shows how it affects the average ݎ, and the average squared difference between ݎ and 
the annualized three-month Treasury bill rate. 

 

As expected, setting ܲ ൌ 1.25 gets r much closer to the Treasury bill rate, but at the expense of 
almost doubling the average size of r. An explanation for this is that any regularization of r is 
going to lose important information, so it might be better to solve for r without any restrictions. 
 
  

Algorithm: P

Average 

r

Average

1.25 0.1556 0.0068

0.00 0.0847 0.0288
Lsqnonlin

ሺݎ െ ሻଶ∗ݎ

Algorithm:

Average Seconds 

per Pair  Average  F 

P=1.25 0.0246 0.0213

P=0.00 0.0269 0.0123

SQP 0.1744 0.1483

Interior Point 0.0831 0.0075
fmincon 

Lsqnonlin 
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Appendix C: Using the Bid/Ask Prices Instead of the Bid-Ask Midpoint 

I. Summary Statistics 

Throughout the entire paper, the bid-ask midpoint was used as the representative price for 
each option.  While this is nice way to resolve the fact that a bid-ask spread exists, the validity 
of this technique is better determined by looking at the paper’s results using the bid and ask 
prices themselves.  Below is a table of summary statistics for the average option-implied 
risk-free rate and option-implied volatility. 

 

  It is important to note that these summary statistics only include observations where the 
at-the-money implied volatility and at-the-money implied risk-free rate were between zero and 
one (the algorithm that solves for the initial values for ߪ and ݎ already makes this restriction, 
but the SUR model does not).  Also, the “Implied Volatility” specification fixes the risk-free 
rate at the yield of the three-month Treasury bill. 
 It is not surprising that both option-implied risk-free rates and volatilities are on average 
higher for the ask specification than the midpoint specification, as the Black-Scholes formula is 
increasing in ߪ and ݎ.  Given that the ask price is at least as large as the midpoint price, and all 
other inputs for the Black-Scholes formula are the same, the average ߪ and ݎ must be at least 
as large in the ask specification as they are in the midpoint specification (this logic also applies 
to a comparison between the midpoint specification and the bid specification).   

II. Macbeth and Merville Regression 

It is also interesting to review the regression results using the bid and ask prices instead of 
the bid-ask midpoint.  The table below presents the Macbeth and Merville (1979) regressions 
for all three specifications.  It is important to note that the same restrictions apply to these 
regressions that apply to the table of summary statistics above. 

 

The largest deviation among specifications can be seen in the coefficient on moneyness, which is 
more than twice as large for the ask specification as it is for the bid specification.  Generally speaking, 
however, the results are surprisingly similar, so it seems safe to believe that using the bid-ask 

Bid Ask Midpoint Implied Volatility

Average Risk‐Free 

Rate
0.0876 0.1117 0.0932

Average ATM Risk‐

Free Rate
0.1207 0.1577 0.1237

Average Implied 

Volatility
0.3332 0.3538 0.3536 0.3953

Average ATM 

Implied Volatility
0.3520 0.3835 0.3767 0.4110

Specification

Bid Ask Midpoint Implied Volatility

Moneyness 0.206*** 0.498*** 0.392*** 0.0328***

Time to Expiration ‐3.178*** ‐3.368*** ‐3.091*** ‐5.024***

Spread ‐2.294*** ‐2.330*** ‐2.199*** ‐4.318***

Constant ‐0.396*** ‐0.415*** ‐0.379*** ‐0.984***

Observations 15,650,630 15,951,644 16,016,475 16,461,704

*** p<0.01, ** p<0.05, * p<0.1

Specification
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midpoint, instead of the bid and ask prices, does not leave out important information. 
 
________________________________________________________________________________ 


