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Abstract

In this paper, we consider the numerical solution of the Helmholtz equation, arising
from the study of the wave equation in the frequency domain. The approach proposed
here differs from those recently considered in the literature, in that it is based on a
decomposition that is exact when considered analytically, so the only degradation in
computational performance is due to discretization and roundoff errors. In particular,
we make use of a multiplicative decomposition of the solution of the Helmholtz equation
into an analytical plane wave and a multiplier, which is the solution of a complex-
valued advection-diffusion-reaction equation. The use of fast multigrid methods for
the solution of this equation is investigated. Numerical results show that this is an
efficient solution algorithm for a reasonable range of frequencies.

1 Introduction

In recent years, there has been a substantial interest in developing fast solvers for the
Helmholtz equation [3, 4, 6–9, 18, 21]. This interest is motivated primarily by geophysical
applications [13], although it also serves as an important model problem for many fields
where fully indefinite partial differential equations arise. In this paper, we propose a new
preconditioner for the Helmholtz equation.

The Helmholtz equation describes the propagation of a wave with frequency ω = 2πf
within a non-homogeneous medium and can be written as

∆u+ κ2(x)ω2u = q x ∈ Ω
α∇u · n−Mu = 0 x ∈ ∂Ω,

(1)

where u is the Fourier transform of the wavefield, κ(x) is the “slowness” (or inverse of
velocity) of the medium and can vary with position x = (x1, x2)

>, and q represents any
sources. In this paper, we assume that Ω = [0, 1]d where d = 1, 2, although the extension
for 3D is straightforward. The equation is given with some consistent boundary conditions.
Here, we consider both homogeneous Dirichlet and Sommerfeld boundary conditions,

∇u · n− iωκu = 0,
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that approximate boundary conditions at infinity. Other boundary conditions could be
considered as well (see Section 2).

Upon discretization of the Helmholtz equation, a large, sparse, possibly complex-valued,
and highly indefinite linear system is obtained. Here, we consider only the standard second-
order finite-difference discretization, although other discretizations can be used as well. Typ-
ically, for boundary conditions that imitate appropriate behaviour at infinity, the system and
solution are complex-valued. The solution of the Helmholtz equation is highly oscillatory
and nonlocal, especially for problems with high frequencies. For these large frequencies,
the wave length λ = 2π

ωκ
= 1

κf
can be very small. This generates two related difficulties.

First, a sufficiently fine grid has to be used in order to resolve all spatial frequencies. For
the second-order finite-difference discretization considered here, the rule of thumb is that at
least 10 points per wavelength are needed to accurately resolve the solution. For example,
assuming κ = 1 and a frequency of ω = 32π, the maximum mesh size is 1/160. The problem
is even worse if dispersion is considered and needs to be controlled. In this case, it is possible
to show that the number of grid points per wavelength should increase when the frequency
increases [2]. Such mesh sizes generate large linear systems even in 2D and especially in 3D.

A second, related problem is that the resulting linear systems are very difficult to solve.
The performance of standard multigrid methods is hindered by the fact that standard
smoothers, such as weighted-Jacobi or Gauss-Seidel, do not necessarily resolve high frequen-
cies and may even be divergent. Thus, complementing these approaches with an appropriate
coarse-grid correction process is very difficult. Due to the oscillatory and indefinite character
of the equation, the solution of the Helmholtz equation is a challenging task, even though it
is linear. Efficient solvers for this equation which yield mesh and frequency independence for
the variable coefficient case are not well developed. Recent work includes the combination
of multigrid with Krylov space relaxation [6], multigrid applied to the least-squares formu-
lation [9], and the wave-ray multigrid approach [3, 4]. Another approach that has attracted
significant interest both recently and in the past is the family of “shifted-Laplacian” pre-
conditioners (see, for example, [7,12,18,21] and the references cited therein). Despite many
years of research, none of the above approaches is a “silver bullet” for this very difficult
problem.

The goal of this work is to suggest a new family of preconditioners for the Helmholtz
equation that enable quick convergence in linear time, largely independent of the frequency.
Our approach is different from previous approaches, which are based on some variation of
multigrid applied directly to a Helmholtz-type equation. Rather than working directly with
the discretized Helmholtz equation, we reformulate the problem in continuous setting to
obtain an equivalent system of equations made of a nonlinear part (an Eikonal equation)
and a linear part (an advection-diffusion-reaction equation). We show that we are able to
choose analytic solutions to the Eikonal equation that yield a linear system that is amenable
to solution using multigrid principles. We then discretize and solve this linear system and
use it as a preconditioner.

The rest of this paper is organized as follows. In Section 2, we present the basic idea for
reformulation. In Section 3, we discuss the solution of the reformulated problem. Section 4
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presents a multigrid method for the resulting complex-valued advection-diffusion-reaction
equation. In Section 5, we suggest a new preconditioner for the Helmholtz equation based
on our approximate solver, which is examined using Fourier analysis in Section 6. Finally,
in Section 7, we conduct numerical experiments.

2 Reformulation

In this section, we present a reformulation of the Helmholtz equation that is more amenable
to numerical solution. The basic idea is to decompose the solution using the so-called Rytov
decomposition of the form

u(x) = a(x)eiωT (x). (2)

This decomposition is a classical textbook approach (see [1,11]) and is typically used in order
to approximate the homogeneous wave or Helmholtz equation. Here, in contrast, we use this
decomposition to obtain an exact equivalent system for the non-homogeneous Helmholtz
equation. Note that there is always such a decomposition and that the decomposition is not
unique; for example, taking T = 0, we obtain the original Helmholtz system. The idea, then,
is to choose an appropriate decomposition such that the resulting system is easier to solve.

Differentiating (2), we obtain

∇u = eiωT (∇a+ iωa∇T ) ,

and ∆u = eiωT
(
∆a+ 2iω∇a ·∇T + iωa∆T − ω2a|∇T |2

)
.

Substituting these in (1) and multiplying by exp(−iωT (x)), we have

∆a+ 2iω∇a ·∇T + iωa∆T − ω2(|∇T |2 − κ2)a = qe−iωT (x). (3)

Equation (3) suggests that the problem can be decomposed in the following way:

• Choose T (x)

• Set q̂ = q exp(−iωT (x)) and solve the resulting complex-valued advection-diffusion-
reaction (ADR) equation for a:

∆a+ 2iω∇T ·∇a+ iω(∆T )a− ω2(|∇T |2 − κ2)a = q̂, x ∈ Ω. (4)

The first question to be addressed is how should we choose T to obtain a better system for
a? One obvious choice is to choose T to satisfy the Eikonal Equation, |∇T |2 = κ2; however,
this approach is difficult to realize when κ is highly variable, particularly given the need to
compute ∆T in Equation (4). Instead, we consider using simple plane waves,

T = cα · x, (5)
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where α = (α1, α2)
> with ‖α‖ = 1 and c is a constant scaling. Clearly, this T satisfies a

simple Eikonal equation,
|∇T |2 = c2,

and the resulting ADR equation from (4) can be rewritten as

∆a+ 2iωcα ·∇a− ω2(c2 − κ2)a = q̂ x ∈ Ω. (6)

Now, if c � κ then the system (6) has a strong negative-definite component. This may
seem appealing at first; however, two difficulties arise when doing so. First, note that the
right-hand side contains the factor exp(−iωcα · x). This makes the right-hand side highly
oscillatory and, thus, a very fine grid will be needed as c increases. Second, for large c, one
obtains a boundary layer that requires special care for accurate solution of the problem. The
goal, therefore, is to bias the eigenvalues of equation (6) by choosing the smallest c that
keeps the value of c2 − κ2 non-negative. Thus, we propose to choose

c ≥ max
x

(κ(x)).

We further discuss the value of c and its effect on the solution later. For the moment, note
that we obtain an ADR equation with a non-positive reaction term and this helps in biasing
the eigenvalues towards the negative-definite side.

The ADR equation is, of course, not closed without appropriate boundary conditions.
The boundary conditions for a are inherited from the boundary conditions for u. Homoge-
neous Dirichlet boundary conditions on u yield identical boundary conditions on a. More
general Robin boundary conditions on u, such as Sommerfeld boundary conditions, yield

n ·∇a+ iω(cn ·α− κ)a = 0 x ∈ ∂Ω.

Similarly, other more-involved boundary conditions for u produce corresponding boundary
conditions for a.

As we show next, solving the Eikonal and the ADR equations as a replacement to the
Helmholtz equation is appealing. This is because fast and efficient solvers enable an O(n)
solution to the ADR equation [20,22].

3 The advection-diffusion-reaction equation

We first consider the solution of the advection-diffusion-reaction equation (6), using bound-
ary conditions that are inherited from the Helmholtz equation. We consider two different
discretizations for ∇a, the second-order centered difference

ax1 ≈
1

2h
(ai+1,j − ai−1,j), ax2 ≈

1

2h
(ai,j+1 − ai,j−1),

and, to have a stable discretization for ∇a, the second-order upwind discretization; assuming
α1, α2 > 0, we compute the derivatives as

ax1 ≈
1

2h
(3aij − 4ai−1,j + ai−2,j), ax2 ≈

1

2h
(3aij − 4ai,j−1 + ai,j−2).
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Boundary conditions are implemented by using ghost points as is typically done in finite-
difference formulations [20]. We then use a standard five-point stencil to discretize the
Laplacian, obtaining a system of the form

Ma = (A1 + 2icωA2 − ω2A3)a = b̂, (7)

where A1 is a discretization of the Laplacian and A2 is the discretization of α ·∇ and A3 is
a diagonal matrix which contains the discretization of 0 ≤ β = c2 − κ2 on its diagonal.

To better understand the discretization and its properties, we use local Fourier analysis
(LFA). We assume periodic boundary conditions and constant coefficients. We then have
that A1, A2, and A3 are represented by the stencils

A1 =
1

h2

 1
1 −4 1

1

 (8)

A2 =
1

2h

 α2

−α1 α1

α2

 for central differences (9)

A2 =
1

2h


0

α1 −4α1 3(α1 + α2) 0
−4α2

α2

 for upwind (10)

A3 =

 β

 (11)

To see that this equation can be efficiently solved using multigrid methods, we first
consider LFA to examine the h-ellipticity of the system (see, for example, [20] for a detailed

discussion of this analysis). Consider the usual Fourier component, exp(iθ
>x
h

), with θ =
(θ1, θ2)

>. The symbols of A1, A2 and A3 are

Â1 =
1

h2
(2 cos(θ1) + 2 cos(θ2)− 4)

Â2 =
i

h
(α1 sin(θ1) + α2 sin(θ2)) for central differences

Â2 =
1

2h
(α1(3− 4e−iθ1 + e−2iθ1) + α2(3− 4e−iθ2 + e−2iθ2)) for upwind

Â3 = β

and, thus, the symbol of the system is

B̂h = Â1 + 2iωcÂ2 − ω2β. (12)
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In order to have an amenable discretization for multigrid methods, one requires that the
discretization is h-elliptic. Recall that the h-ellipticity measure is defined as

Eh =
min{|B̂h(θ)|; θ ∈ T high}

max{|B̂h(θ)|; θ ∈ [−π, π)2}
,

where T high = [−π, π)2 \ [−1
2
π, 1

2
π)2 and that the discrete system given by Bh is said to be

h-elliptic if Eh is bounded uniformly away from 0, independently of h.
Consider first the case where central differences are used for the advection term, and

assume for simplicity that κ = 1 and c = κ, which implies that β = 0. Note that for β > 0
the system has better properties (as it is more negative definite) and that we can always
choose c such that β ≥ 0. Thus, the case where β = 0 is the worst-case scenario. The symbol
of the operator is, then,

B̂h =
1

h2
((2 cos(θ1) + 2 cos(θ2)− 4)− 2ωh(α1 sin(θ1) + α2 sin(θ2))) .

To further simplify the discussion, we take α1 = 1 and α2 = 0. The minimum of the
numerator of the h-ellipticity measure clearly occurs when θ2 = π/2, yielding

B̂h(θ1, θ2 = π/2) =
1

h2
(2 cos(θ1)− 4− 2ωh sin(θ1)) .

Clearly, if the product of ξ = ωh is not bounded, then the advection term will dominate
and, since sin(θ1) can be both positive and negative, the minimum of the function over the
high frequencies will go to zero and h-ellipticity measure will vanish. On the other hand, if
we make sure that ξ is bounded from above, then the symbol will stay h-elliptic. For the
particular case we analyze here, it can be observed that as long as ξ ≈ 1.12 or smaller, the
h-ellipticity of the system is still larger than 0.25. This observation implies that, for this
discretization, standard multigrid should work as long as the coarse grid is not too coarse and
one should bound h from above. We thus conclude that the central difference approximation
to the advection term is not optimal, but it can still yield a convergent multigrid scheme if
done carefully.

Next, we consider second-order upwinding for the advection term, again taking c = κ = 1,
α1 = 1, and α2 = 0. Using a similar analysis to the central difference case, we obtain that

B̂h(θ1, θ2 = π/2) =
1

h2

(
2 cos(θ1)− 4 + iωh(4eiθ1 − 3− e2iθ1)

)
.

For this discretization, it is more difficult to analyze the h-ellipticity measure and we turn to
numerical evaluation. A plot of the h-ellipticity measure, Eh, as a function of ξ is presented
in Figure 1. As can be observed, this discretization maintains its h-ellipticity for all values
of ξ. We have performed similar numerical studies for other values of α and c and over both
values of θ. The results are similar to the simple case presented above. This is not surprising,
as it is well known that upwind schemes are h-elliptic [20].
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Figure 1: h-ellipticity as a function of ξ for the upwind discretization

The boundedness of the h-ellipticity measure away from 0 for these discretizations implies
that the eigenvalues that correspond to high frequencies are bounded away from 0, and that
it is possible to generate fast (multigrid) algorithms for the solution of the problem (see [20]
and the following section for details). Realizing these algorithms, however, still requires
care. Next, we consider smoothing and two-level local Fourier analysis of a simple multigrid
algorithm for the solution of these equations.

4 A multigrid method for complex-valued advection-

diffusion-reaction equations

The h-ellipticity bounds above, particularly for the upwind discretization, imply the existence
of an optimally scaling multigrid solution algorithm for the ADR problem. Indeed, significant
literature exists on efficient solution algorithms for ADR equations with constant real-valued
coefficients [5,14–17,20,22]. To our knowledge, however, none of the existing literature deals
with the case of complex-valued coefficients. Here, we consider the most straight-forward
approach, directly applying a standard algorithm from the real-valued coefficient case to
the complex-valued coefficient problem of interest here. We stress, however, that this is the
most näıve approach, which is considered only as a proof of concept. Significant effort is
needed to develop optimal and robust solution strategies for the full range of parameters to
be considered; this will be the focus of future research.

For real-valued ADR equations, the primary concern in discretization is the stability of the
resulting discrete problem, which depends on the size of the mesh-Péclet (or grid-Reynolds)
number, Pe, the ratio of the diffusive and advective coefficients weighted by the grid size [20,
§7.1.2]. When the mesh-Péclet number is large (Pe > 2), upwind discretizations are stable
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and, thus, preferable, while upwind or central difference discretizations are acceptable for
small mesh-Péclet numbers. For Equation (6), we easily get the bound Pe ≤ 2c(ωh), and
see that the stability depends both on the choice of c and the value of ξ = ωh. However,
there are two important considerations for the setting considered here. First, it is not clear
whether the stability concerns that apply for the case of a real-valued coefficient are even
relevant in the complex-valued case considered here. Secondly, it is not clear which direction
is “upwind” in the setting of a complex-valued coefficient of the advection term.

Here, we ignore these issues of stability, and examine the multigrid solution of the
complex-valued ADR equations with both the upwind and central-difference discretizations
of the advection terms. We choose the simplest possible definition of “upwind” in this case,
ignoring the factor of i and using the signs of the entries in cα. This approach is primarily
justified by the fact that we will consider the solution of the ADR equation only as a pre-
conditioner for the direct discretization of the Helmholtz equation, as discussed in Section
5. The strong dependency of the h-ellipticity bound on ωh in the central-difference case
suggests that we should expect difficulty in defining an optimal multigrid approach for this
discretization. In contrast, the strong lower bound on Eh for the upwind discretization, as
seen in Figure 1, suggests that we should be more successful in this setting.

To examine the potential performance of multigrid methods for Equation (6), we first
consider local Fourier analysis [20]. Here, we restrict attention to the case where κ = 1,
α = 1√

2
(1, 1)> and c > 0; other cases can be treated similarly so long as attention is

paid to the identification of an “upwind” direction. From the standard case, along with
the h-ellipticity analysis above, we expect that “downwind”-ordered Gauss-Seidel relaxation
(which, in this case, is the same as lexicographical Gauss-Seidel) should be a good relaxation
scheme for these matrices when cωh is small.

Under the assumption of a uniform infinite grid, the usual Fourier functions, exp
(
iθ
>x
h

)
,

with θ = (θ1, θ2)
>, −π

2
≤ θ1, θ2 <

3π
2

, are the eigenvectors of the lexicographical Gauss-
Seidel sweep [20]. To find the corresponding eigenvalues, we split the stencils in Equations
(8)-(11) into their diagonal, lower-triangular, and upper-triangular parts, and consider a
typical eigenvector equation for the relaxation sweep. For the upwind discretization, we
have

λ

[
1

h2
(vi−1,j + vi,j−1) −

(
4

h2
+ ω2(c2 − κ2)

)
vi,j

+
iωc

h
(α1(3vi,j − 4vi−1,j + vi−2,j) + α2(3vi,j − 4vi,j−1 + vi,j−2))

]
= − 1

h2
(vi+1,j + vi,j+1) .

Now, making the Fourier ansatz, we can find the value of λ, the amplification factor of the
relaxation for the Fourier mode of frequency θ, as

λ =
−eiθ1 − eiθ2

e−iθ1 + e−iθ2 − (4 + ω2h2(c2 − κ2)) + iωhc (α1(3− 4e−iθ1 + e−2iθ1) + α2(3− 4e−iθ2 + e−2iθ2))
.
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Figure 2: The LFA amplification factors for “downwind” (lexicographic) Gauss-Seidel relax-
ation applied to the discretization of Equation (6) when c = 1 and ωh = π

32
, as a function of

the Fourier mode, θ. The upwind discretization is shown at left, while the central-difference
discretization is shown at right.

Similarly, for the central-difference discretization, we have

λ =
−eiθ1 − eiθ2 − iωhc

(
α1e

iθ1 + α2e
iθ2
)

e−iθ1 + e−iθ2 − (4 + ω2h2(c2 − κ2))− iωhc (α1e−iθ1 + α2e−iθ2)
.

Figure 2 shows contour plots of these error-amplification factors predicted by the LFA for
downwind Gauss-Seidel when c = 1 and ωh = π

32
for both the upwind and central-difference

discretizations. Note that in both pictures, there is a small range of eigenvalues around θ = 0
where the amplification factor for relaxation is greater than one. The LFA smoothing factor,

measured as the largest magnitude eigenvalue over frequencies θ ∈
[
−π

2
, 3π

2

)2 \ [−π
2
, π

2

)2
, is

0.506 for the central-difference discretization and 0.526 for the upwind discretization.
This smoothing analysis can be combined with analysis of the coarse-grid correction

stage by considering the coupling of Fourier modes in the coarse-grid correction process.
We consider only standard geometric coarsening by a factor of two in each direction, with
constant-coefficient interpolation and restriction operators. Thus, the coarse-grid correction
phase couples groups of four Fourier modes (the so-called harmonics); given a low-frequency

mode, θ = (θ1, θ2)
> ∈

[
−π

2
, π

2

)2
, the high-frequency modes with frequencies (θ1 + π, θ2)

>,
(θ1, θ2+π)>, and (θ1+π, θ2+π)> are coupled in the coarse-grid correction process. Accounting
for this coupling, we can compute the LFA eigenvalues of the two-grid cycle combining the
downwind Gauss-Seidel relaxation with a standard Galerkin coarse-grid correction operator,
using bilinear interpolation and full-weighting restriction. Figure 3 shows these eigenvalues
for a cycle using one pre-relaxation and one post-relaxation step. Note that for these values
of c and ωh, the diverging modes of the relaxation sweep are effectively attenuated by the
coarse-grid correction process. The largest-magnitude LFA eigenvalues are 0.177 for the
upwind discretization and 0.156 for the central-difference discretization.
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Figure 3: The LFA spectrum of the two-grid error-propagation operator using downwind
Gauss-Seidel relaxation with bilinear interpolation and full-weighting restriction for c =
1 and ωh = π

32
. The upwind discretization is shown at left, while the central-difference

discretization is shown at right.

For larger values of ξ, the divergence of Gauss-Seidel relaxation becomes problematic.
Figure 4 shows the LFA amplification factor for downstream Gauss-Seidel relaxation when
c = 1 and ωh = π

4
. Note that, for both discretizations, there is now a substantial region

where the amplification factor is greater than 1. Furthermore, while the amplification factors
look qualitatively similar (and have similar LFA smoothing factors of 0.765 and 0.620 for
central differences and upwind, respectively), the quantitative behaviour of the LFA two-grid
convergence factors for these problems is quite different, with a predicted factor of 1.56 for the
upwind discretization, but a predicted factor of 39.29 for the central-difference discretization.
This underscores the added stability of the upwind discretization. Looking more closely at
the LFA spectra, shown in Figure 5, we see that the eigenvalues for the upwind discretization
remain bounded away from 1 for the multigrid error-propagation operator, corresponding to
a preconditioned system for which the eigenvalues are bounded away from zero. In contrast,
not only are the eigenvalues outside the unit circle for the central-difference discretization
more spread out, but they also cluster near 1; this suggests that a preconditioned Krylov
iteration for this problem is likely to have convergence issues.

In the above calculations, we have considered only the case where c = κ = 1. From the
point-of-view of the mesh-Péclet number, choosing as small a value of c as possible seems
reasonable. However, the reaction term in (6) also plays an important role in the stability and
h-ellipticity of the resulting matrices. In particular, for either discretization, for large-enough
c, the problem becomes negative-definite. For ωh = π

4
, taking c = 2.5 but keeping κ = 1

gives the LFA amplification factors and eigenvalues shown in Figure 6. Note, in particular,
that for this value of c, the downwind Gauss-Seidel relaxation is convergent for both of
these problems, but the LFA spectrum of the two-grid operator is more spread out. This
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Figure 4: LFA amplification factors for “downwind” (lexicographic) Gauss-Seidel relaxation
applied to the discretization of Equation (6) when c = 1 and ωh = π

4
, as a function of the

Fourier mode, θ. The upwind discretization is shown at left, while the central-difference
discretization is shown at right.

Figure 5: The LFA spectrum of the two-grid error-propagation operator using downwind
Gauss-Seidel relaxation with bilinear interpolation and full-weighting restriction for c =
1 and ωh = π

4
. The upwind discretization is shown at left, while the central-difference

discretization is shown at right. Note that the axis limits here are different from one-another
and from those shown in other figures; the unit circle is given as a reference.
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c = 1 c = 1 c = 2.5
ωh = π

32
ωh = π

4
ωh = π

4

central differences 0.105 28.72 0.588
upwind 0.125 1.354 0.446

Table 1: Two-level computed asymptotic convergence factors, averaged over 100 iterations,
for multigrid V(1,1) cycles using downwind (lexicographical) Gauss-Seidel relaxation and
Galerkin coarsening with h = 1

32
.

c = 1 c = 1 c = 2.5
ωh = π

32
ωh = π

4
ωh = π

4

central differences 0.296 4.98× 103 0.626
upwind 0.312 1.89× 104 0.670

Table 2: Multigrid computed asymptotic convergence factors, averaged over 100 iterations,
for V(1,1) cycles using downwind (lexicographical) Gauss-Seidel relaxation and Galerkin
coarsening with h = 1

32
. Due to strong divergence, results for c = 1 and ωh = π

4
are averaged

over only 50 iterations.

is because the slowest-to-converge modes of relaxation are no longer those associated with

the smoothest Fourier modes but are biased towards θ =
(
−π

4
,−π

4

)>
. The LFA smoothing

factors are 0.750 and 0.366 for the central-difference and upwind discretizations, respectively,
while the LFA two-grid convergence factors are 0.642 for central differences and 0.779 for
upwind.

Numerical experiments confirm the expectations given by the Fourier analysis, that the
multigrid V-cycle converges quickly for small ξ = ωh, or for larger ξ if c is appropriately
large. When ξ is large, but c = κ = 1, we see divergence. Table 1 shows the two-level
convergence factors, averaged over 100 iterations for matrices with h = 1

32
, given a zero

right-hand side and a random initial guess. Note that these are relatively consistent with
the predictions made by LFA. Multigrid V-cycle results (coarsening down to a 3× 3 matrix)
are given in Table 2. While there is some degradation in the multigrid convergence factors,
the same qualitative behaviour is seen.

As discussed above, the two-grid LFA spectra in Figure 5 suggest that, at least for
the upwind discretization, the multigrid method may make an effective preconditioner for a
Krylov method. In Table 3, we present iteration counts for multigrid-preconditioned GMRES
to reduce the norm of the residual by a relative factor of 10−7 when c = 1, for various values of
ωh. We note that the standalone multigrid method is divergent for this range of parameters,
but that it can be effective when used as a preconditioner. For small values of ωh, the
performance is similar for both discretizations, but for larger values of ωh, the performance
for the central-difference discretization degrades quickly with increased ωh. Also, note that
these results are computed with right-hand sides given by applying the system matrix to a
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Figure 6: At left, the LFA amplification factor for “downwind” (lexicographic) Gauss-Seidel
relaxation applied to the discretization of Equation (6) when c = 2.5 and ωh = π

4
, as a func-

tion of the Fourier mode, θ. At right, the LFA spectrum of the two-grid error-propagation
operator using this smoother with bilinear interpolation and full-weighting restriction. The
top row of figures corresponds to the upwind discretization of the advection term, while the
bottom row corresponds to the central-difference discretization.
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ωh = π
16

ωh = π
12

ωh = π
8

ωh = π
6

ωh = π
5

ωh = π
4

h = 1
32

8 14 24 27 28 30
upwind differences h = 1

64
18 34 51 58 64 78

h = 1
96

30 47 75 93 110∗ > 200
h = 1

32
7 11 20 33 43 62

central differences h = 1
64

17 28 58 98 121 186
h = 1

96
30 48 97 167 > 200 > 200

Table 3: Number of iterations of multigrid-preconditioned GMRES needed to achieve a
residual reduction of 10−7 for c = 1 with various values of ωh. Results marked by a ∗ denote
a lack of convergence in GMRES, due to a detected rank deficiency.

h = 1
32

h = 1
64

h = 1
128

h = 1
256

h = 1
512

h = 1
1024

upwind differences 30 51 46 31 23 18
central differences 62 58 46 31 23 18

Table 4: Number of iterations of multigrid-preconditioned GMRES needed to achieve a
residual reduction of 10−7 for c = 1 with various values of h, with fixed ω = 8π.

randomly generated solution vector; as such, the iteration counts are somewhat subject to the
random-number generation. However, our tests show only slight variation (by an iteration or
two) over different realizations. For the upwind discretization, these results are qualitatively
similar to those seen for the shifted-Laplace preconditioners considered in [7, 18, 21], where
results degrade as ωh increases and, for fixed ωh, scale like 1/h. However, the h-ellipticity
bounds discussed above suggest that better performance is possible, with iteration counts
that are independent of h for fixed ωh, and only slight dependence on ωh, at least in the
upwind-discretization case.

In contrast, if we fix ω and vary h, the results for both discretizations show performance
similar to what is expected for standard multigrid applied to an elliptic problem. In Table
4, we show iteration counts for ω = 8π as the grid is refined. Note, in particular, that for
the coarsest meshes considered, these results reflect those shown in Table 3; however, for
the finest meshes, the performance is nearly identical between the two discretizations, and
is clearly bounded (and improving) as h→ 0.

5 Preconditioning

The Rytov decomposition could be used directly to obtain approximate solutions for the
continuous Helmholtz equation; however, it also provides a unique approach for precondi-
tioning the standard, second-order finite-difference discretization of the Helmholtz equation,
as discussed here.
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Assume that we have the discrete Helmholtz equation,

Au = b, (13)

where A is a discretization of the Helmholtz operator with the appropriate boundary condi-
tions and b is the discretization of the right-hand side. Assume also that we chose a solution
to the Eikonal equation of the form T = cα · x. Finally, let

Ba = (A1 + 2icωA2 − ω2A3)a = M−1b (14)

be a discretization of the ADR equation discussed above, where the diagonal matrix M is
defined by

M = diag(eiωcα·x),

where xj is the location of the node corresponding to the jth degree of freedom, uj ≈ u(xj).
The decomposition u = aeiωcα·x implies that

u = Ma; (15)

substituting (15) into the discrete Helmholtz equation (13) and left-multiplying with M−1

gives

M−1AMa = M−1b. (16)

Noting that, in exact arithmetic (no approximation error), Equations (14) and (16) have
the same solution and the same right-hand sides, we can now use the matrix B =
A1 + 2iωA2 − ω2A3 as a preconditioner for the scaled Helmholtz equation (16). In the
absence of discretization and round-off errors, this preconditioner is exact! This is the fun-
damental difference between our approach and other approaches known to us, particularly
the family of shifted-Laplace preconditioners [7, 12, 18, 21]. Of course, in the presence of
discretization errors, we expect this preconditioner to be only approximate. In particular,
if the discretization errors are significant, the performance may deteriorate as h increases.
However, as a preconditioner, we hope that there are few enough mistreated eigenvalues that
the outer Krylov solver remains efficient.

6 Analysis of the preconditioner

To further understand this preconditioner, we analyze it in 2D. First, we consider the problem
with simple Dirichlet boundary conditions, constant coefficients κ = c = 1, and α1 =
2−

1
2 (1, 1)>. We take ω = 2nπ and discretize the equations on a fixed grid with meshsize h =

1/64. We then generate the preconditioned matrix for the central and upwind discretizations
and numerically evaluate the eigenvalues of the preconditioned system. The results are
plotted in Figure 7.

These figures show that when the product ξ = ωh is sufficiently small, the eigenvalues
tend to concentrate around the point z = 1 in the complex plane. For larger values of
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ξ = π
16

ξ = π
8

ξ = π
4

Upwind

Central

Figure 7: Eigenvalues of the preconditioned Helmholtz system with h = 64−1. The top
row corresponds to the upwind discretization of the advection term, while the bottom row
corresponds to central differences. Note that for the central difference discretization the
eigenvalues are real.
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ξ, there is deterioration, and the eigenvalues are spreading. Nevertheless, for the upwind
discretization, the eigenvalues remain away from 0, which indicates that our approach could
lead to a very efficient preconditioner. For the central difference discretization, however, while
the eigenvalues are real (as both the system matrix, A, and the preconditioning matrix, B,
are Hermitian), they are much more spread out than those for the upwind discretization.
Overall, it appears that the upwind preconditioner is better suited for this problem.

To better understand these observations, we use local Fourier analysis of the precondi-
tioned system. It seems at first that this approach is not viable, because the multiplication
of the Helmholtz equation by the matrix M = diag(eiωcα·x) yields non-constant coefficients
in the discretized operator. However, we will show by direct calculation that the similar-
ity transformation with the infinite-grid extension of M in the preconditioning step does
not change the diagonalization property of the Fourier basis (although it does change which
eigenvector is associated with each eigenvalue). The goal of this analysis is to see the effect of
the preconditioner on eigenvalues which are not 0. For simplicity, we again choose κ = c = 1.

We can view the preconditioned operator in two steps. First, we ”scale” the discrete
Helmholtz matrix

As = diag(e−iωα·x)(∆h + ω2) diag(eiωα·x).

To analyze the effect of the scaling, we look at its effect on a Fourier component of the form

v = ei
θ·x
h θ ∈ (−π, π]2.

It is straightforward to verify that the vector v is an eigenvector, since

h2Asv = h2 diag(e−iωα·x)(∆h + ω2) diag(eiωα·x)v = h2e−iωα·x(∆h + ω2)ei(
ωhα+θ

h
)·x

= e−iωα·x(2 cos(ωhα1 + θ1) + 2 cos(ωhα2 + θ2)− 4 + h2ω2)ei
ωhα+θ

h
·x

= (2 cos(ωhα1 + θ1) + 2 cos(ωhα2 + θ2)− 4 + h2ω2)ei
θ·x
h .

Next, consider the action of the convection-diffusion discretized using the upwind method.

h2Bv = h2(∆h + 2iωα ·∇h)v

=
(
2 cos(θ1) + 2 cos(θ2)− 4 + iωh

(
α1(3− 4e−iθ1 + e−2iθ1) + α2(3− 4e−iθ2 + e−2iθ2)

))
v.

Thus, we have as usual that v = ei
θ·x
h is an eigenvector of the preconditioned system B−1As,

with eigenvalues

λupwind(θ) =
2 cos(ωhα1 + θ1) + 2 cos(ωhα2 + θ2)− 4 + h2ω2

2 cos(θ1) + 2 cos(θ2)− 4 + iωh (α1(3− 4e−iθ1 + e−2iθ1) + α2(3− 4e−iθ2 + e−2iθ2))
.

Similar calculations for the central discretization of the gradient yield

λcentral(θ) =
2 cos(ωhα1 + θ1) + 2 cos(ωhα2 + θ2)− 4 + h2ω2

2 cos(θ1) + 2 cos(θ2)− 4− 2ωh (α1 sin(θ1) + α2 sin(θ2))
.

To see the effect of this preconditioner, we need to look at its behavior for different values
of ξ = ωh, and for different frequencies, θ. Fixing α = 2−

1
2 (1, 1)>, in Figure 8, we plot the
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Figure 8: Eigenvalues of the preconditioned Helmholtz system, computed using Fourier
analysis, for different value of ξ = ωh. The top row corresponds to the upwind discretization
of the advection term, while the bottom row corresponds to central differences. Note that
for the central difference discretization the eigenvalues are real.

eigenvalues of the system for different ξ’s. Notice that while there is some difference in the
eigenvalues shown here and those computed in Figure 7, particularly in the extreme parts
of the spectrum, the general shape and clustering of the eigenvalues is quite similar in these
two calculations.

We see that, as we observed in our numerical experiments, for small values of ξ the pre-
conditioner is indeed very efficient. On the other hand, as ξ becomes larger, the eigenvalues
spread and some get closer to 0, which implies worse conditioning. By the time ξ = π

4
,

this approach seems to lose some of its appeal as a preconditioner. These results are not
surprising as, for large values of ξ, the discrete Helmholtz equation does not resolve the high
frequencies and, thus, it is not faithful to the continuous PDE. Since our preconditioner is
based on an equivalence between two continuous forms, we require both PDEs to be faithfully
represented on the computational grid.

7 Numerical experiments

In this section, we conduct numerical experiments that demonstrate the strengths and weak-
nesses of our proposed method. Following the papers [6, 7], we conduct experiments in two
dimensions, where all problems are solved on the interval [0, 1]2, and we experiment with fre-
quencies ω = 2πf with f ∈ {1

2
, 1, 2, 4, 8, 16}. For each of our test problems, we conduct tests
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ω n 32 64 128 256 512
Dirichlet
π 3 6 2 5 2 4 2 4 2 3
2π 4 8 3 6 3 5 3 4 2 4
4π 8 22 6 10 4 7 3 5 3 4
8π 29 94 15 55 8 19 6 9 4 6
16π nc nc 92 nc 32 56 14 48 8 19
32π nc nc nc nc nc nc nc nc 38 79

Sommerfeld
π 9 8 8 7 7
2π 11 9 9 9 9
4π 24 13 10 9 9
8π 60 43 19 12 10
16π nc nc 66 32 16
32π nc nc nc nc 63

Table 5: Number of exact-preconditioned GMRES iterations for a uniform media as a func-
tion of the mesh size, n, and the frequency, ω, for the central-difference approximation of
the advection term (left number in top half) and an upwind approximation (right number
in top half and data in lower half). In these results, nc indicates no convergence after 100
iterations.

using various meshsizes and frequencies. We use both homogeneous Dirichlet boundary con-
ditions and a combination of Neumann with Sommerfeld radiation boundary conditions. In
these tests, a homogeneous Neumann boundary condition is applied on the boundary x2 = 0
and, for all other sides of the box, the Sommerfeld boundary condition is implemented. This
is a common set of boundary conditions for geophysical problems. For Dirichlet boundary
conditions, we use the central approximation to the advection term as well as the upwind
scheme. We use only the upwind discretization for the Sommerfeld boundary conditions.
For the solution of the linear system, we then use full GMRES [19] as a driving iterative
technique. We terminate the iteration when the relative residual is smaller than 10−7 or
when the number of iterations exceeds either 100, in the case of exact preconditioning, or
200, in the case of multigrid preconditioning.

7.1 Constant coefficient experiment

Our first experiment deals with constant coefficients, and we set κ = c = 1. We choose a
point source for the right-hand side. Results for the exact preconditioner (i.e., with direct
inversion of the preconditioning matrix, B) with both Dirichlet and Sommerfeld boundary
conditions are recorded in Table 5. Results for the multigrid preconditioner (i.e., using a
single multigrid V-cycle per iteration to approximate the inversion of the preconditioning
matrix, B) with both Dirichlet and Sommerfeld boundary conditions are recorded in Table 6.
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ω n 32 64 128 256 512
Dirichlet
π 8 8 7 8 7 8 7 8 7 8
2π 8 10 8 9 8 8 8 8 8 8
4π 19 19 18 17 16 17 15 15 14 14
8π 87 116 92 99 82 85 76 77 68 73
16π nc nc nc nc nc nc 101 116 89 95
32π nc nc nc nc nc nc nc nc 93 106

Sommerfeld
π 8 7 8 8 8
2π 9 9 8 8 8
4π 20 19 17 16 14
8π 119 101 91 79 76
16π nc nc nc 126 99
32π nc nc nc nc 115

Table 6: Number of multigrid-preconditioned GMRES iterations for a uniform media as a
function of the mesh size, n, and the frequency, ω, for the central-difference approximation
of the advection term (left number in top half) and an upwind approximation (right number
in top half and data in lower half). In these results, nc indicates no convergence after 200
iterations.

The results in Table 5 clearly indicate that as long as ωh = ξ ≤ 0.2 ≈ π
15

we obtain an
efficient preconditioner. For ξ ≤ 0.1 ≈ π

30
, we obtain a truly remarkable preconditioner that

converges in very few iterations. The experiment above is conducted with a point source
for the right-hand side; we have also run the experiment with random right-hand side and
obtained similar results.

7.2 The wedge example

One common test problem is the so-called wedge problem. In this case, we assume a non-
uniform slowness model, κ, with binary values of 1

2
and 1. The model and the solution for a

point source with Sommerfeld boundary conditions is plotted in Figure 9.
We conduct the same experiments as in the previous subsection, varying the frequencies

and mesh. The results are recorded in Table 7. Results for the multigrid preconditioner (i.e.,
using a single multigrid V-cycle per iteration to approximate the inversion of the precondi-
tioning matrix, B) with both Dirichlet and Sommerfeld boundary conditions are recorded in
Table 8.

As can be observed, the performance of our preconditioner in this case is almost identical
to the performance obtained for the constant coefficient problem.
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Figure 9: The wedge model (left) and its response to a point source function with frequency
of 16π (right).

ω n 32 64 128 256 512
Dirichlet
π 3 6 2 5 2 4 2 3 2 3
2π 4 8 3 6 3 5 2 4 2 3
4π 10 24 6 11 4 7 4 5 3 4
8π 37 99 17 58 10 18 6 9 4 6
16π nc nc nc nc 42 96 19 28 10 18
32π nc nc nc nc nc nc nc nc 46 89

Sommerfeld
π 11 8 8 8 7
2π 25 10 9 9 8
4π 24 14 12 10 10
8π 96 53 21 14 12
16π nc nc 96 40 20
32π nc nc nc nc 93

Table 7: Number of exact-preconditioned GMRES iterations for the wedge model as a func-
tion of the mesh size, n, and the frequency, ω, for the central-difference approximation of
the advection term (left number in top half) and an upwind approximation (right number
in top half and data in lower half). In these results, nc indicates no convergence after 100
iterations.
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ω n 32 64 128 256 512
Dirichlet
π 8 9 7 8 7 8 7 8 7 8
2π 9 11 9 10 9 10 8 10 8 10
4π 15 28 15 27 15 26 15 25 14 25
8π 64 97 63 77 54 71 54 69 52 62
16π nc nc nc nc nc nc nc nc 99 107
32π nc nc nc nc nc nc nc nc 178 165

Sommerfeld
π 9 8 8 8 8
2π 10 9 8 8 8
4π 19 17 16 15 15
8π 116 99 90 77 75
16π nc nc nc 122 91
32π nc nc nc nc 103

Table 8: Number of multigrid-preconditioned GMRES iterations for the wedge example as a
function of the mesh size, n, and the frequency, ω, for the central-difference approximation
of the advection term (left number in top half) and an upwind approximation (right number
in top half and data in lower half). In these results, nc indicates no convergence after 200
iterations.
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Figure 10: The Marmousi model (left) and its response to a point source function with
frequency of 16π (right).

7.3 The Marmousi model

In our third experiment, we attempt to solve a standard test problem in geophysical prospect-
ing, namely the Marmousi model [10]. The velocity model here is rather complicated and
has a contrast ratio between the smallest and largest velocities of 1 to 5.5. The model and
the result of a point source wave spreading within the media are plotted in Figure 10.

The results for the Marmousi model are summarized in Table 9. Results for the multi-
grid preconditioner (i.e., using a single multigrid V-cycle per iteration to approximate the
inversion of the preconditioning matrix, B) with both Dirichlet and Sommerfeld boundary
conditions are recorded in Table 10.

As can be observed in the table, the number of iterations is generally not sensitive to the
overall complicated structure of the Marmousi model, and we obtain a good preconditioner
as long as ξ ≤ 0.2.

8 Conclusions

In this paper, we have developed a preconditioner for Helmholtz equation. While our devel-
opment focuses on the 2D case, the extension to 3D is straightforward. The preconditioner
is based on the Rytov decomposition of the solution, which yields an Eikonal equation and
a complex-valued advection-diffusion-reaction equation. We use an analytic solution for the
Eikonal equation and a multigrid method for the advection-diffusion-reaction equation. We
show that the linear system obtained is h-elliptic for the upwind discretization but loses its
h-ellipticity for coarse grids when central differences are used. The preconditioner seems to
yield reasonable results and converges in very few iterations as long as the discretization of
the finest problem is sufficiently resolved, which implies that the value of ξ = ωh is suffi-
ciently small. Although this restriction may seem problematic at first, one should note that
reliable error estimates requires that ω3h2 is bounded [2], which dictates a small value for
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ω n 32 64 128 256 512
π 3 6 2 5 2 4 2 3 2 3
2π 4 8 3 6 3 5 3 4 3 3
4π 8 19 6 9 5 6 3 5 3 4
8π 31 91 16 43 9 16 7 9 4 6
16π nc nc 98 nc 34 86 15 35 9 15
32π nc nc nc nc nc nc nc nc 43 89

Sommerfeld
π 9 9 8 8 8
2π 12 10 10 9 9
4π 22 15 13 12 11
8π 74 41 20 15 14
16π nc nc 93 33 19
32π nc nc nc nc 67

Table 9: Number of exact-preconditioned GMRES iterations for the Marmousi model as a
function of the mesh size, n, and the frequency, ω, for the central-difference approximation
of the advection term (left number in top half) and an upwind approximation (right number
in top half and data in lower half). In these results, nc indicates no convergence after 100
iterations.

ωh if a reliable solution is needed. Our multigrid method is not ξ-independent; although
theory suggest that it is possible to obtain a convergent multigrid method for all ξ’s (due to
h-ellipticity), we have observed that a simple Gauss-Seidel smoother does not lead to such
method. Therefore, we intend to explore other multigrid strategies that will allow for better
performance for even higher wave numbers.
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