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Abstract

We consider the numerical solution, by a Petrov-Galerkin finite-element method, of a singularly

perturbed reaction-diffusion differential equation posed on the unit square. In Lin & Stynes (2012),

it is argued that the natural energy norm, associated with a standard Galerkin approach, is not an

appropriate setting for analysing such problems, and there they propose a method for which the natural

norm is “balanced”. In the style of a first-order system least squares (FOSLS) method, we extend the

approach of Lin & Stynes (2012) by introducing a constraint which simplifies the associated finite-

element space and the method’s analysis. We prove robust convergence in a balanced norm on a

piecewise uniform (Shishkin) mesh, and present supporting numerical results. Finally, we demonstrate

how the resulting linear systems are solved optimally using multigrid methods.

1 Introduction

This paper considers the robust numerical solution of a linear two-dimensional reaction-diffusion problem,

posed on the unit square:

Lu := −ε2∆u+ bu = f in Ω := (0, 1)2, u = 0 on ∂Ω, (1)

where ε ∈ (0, 1] is a positive parameter, and b is a continuous positive function on Ω (precise details of our

assumptions on the data are given below in Section 1.1). The problem is singularly perturbed in the sense

that, as ε → 0, it becomes ill-posed. More interestingly, from the point of view of computing accurate

numerical solutions, if ε is small, the solution features boundary and corner layers. Unless one makes some

unreasonable assumptions on a lower bound for ε, the accuracy of classical methods is greatly compromised

in the singularly perturbed regime: since derivatives of the solution are large, so too are the errors in the

numerical method.
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The challenge, then, of designing parameter robust methods (also known as ε-uniform methods) is to

compute solutions that resolve all layers present, and with accuracy that does not depend adversely on ε.

We refer to Roos et al. (2008) for references to the extensive literature on this topic.

Much of the published work in the field of robustly solving problems such as (1) centers on the use of a

priori fitted meshes. In particular, seminal works on parameter robust methods for singularly perturbed

problems, which were based on the use of standard finite-difference methods, involved the graded meshes

of Bakhvalov (1969), and the piecewise-uniform meshes of Shishkin (1992). The latter have been studied

greatly, with numerous refinements and extensions to various classes of convection-diffusion problems,

time-dependent problems, coupled systems, etc; see (Miller et al., 1996; Farrell et al., 2000; Shishkin &

Shishkina, 2009) and their references. A detailed analysis of finite-difference methods applied on a Shishkin

mesh to (1) is given by Clavero et al. (2005). See also Andreev (2006), Kellogg et al. (2008b) and Linß

(2010, Chap. 8).

The literature on numerical solutions of singularly perturbed reaction-diffusion problems also includes

numerous studies of finite-element methods. Most directly relevant to this article is the analysis of the

standard Galerkin method with bilinear elements on a Shishkin mesh applied to (1), which is provided in

Liu et al. (2009), and includes improvements on some earlier works (Li & Navon, 1998; Apel, 1999), as

well as an extension to a two-scale sparse grid method. For this method, the weak form of (1) is: find

u ∈ H1
0 (Ω) such that

B(u, v) := ε2(~∇u, ~∇v) + (bu, v) = (f, v) ∀v ∈ H1
0 (Ω). (2)

It is natural to conduct the analysis with respect to the energy norm,

‖v‖E =
(
ε2‖~∇v‖20 + ‖v‖20

)1/2
. (3)

It is shown in Liu et al. (2009, Thm. 3.1) that if uN is the solution obtained using the standard Galerkin

method on an N × N tensor-product mesh with bilinear basis functions on a Shishkin mesh (which we

describe in detail in Section 3.1), then there exists a constant C, independent of ε and N , such that

‖u− uN‖E ≤ C(N−2 + ε1/2N−1 lnN). (4)

This bound is robust in the sense that C does not depend on ε. However, it is the contribution of the

ε2‖~∇v‖20 term in the energy norm, (3), that provides the O(ε1/2N−1 lnN) quantity in (4). Thus, as ε→ 0,

the energy norm does not express the boundary layers in the solution. Such a bound is not unique to

estimates for bilinear elements on layer-adapted meshes; analogous results are given by Melenk (2002) for

the hp-FEM on the so-called spectral boundary layer mesh. It has long been asserted, notably in (Farrell

et al., 2000, §1.2), that the energy norm (3) is inappropriate for reaction-diffusion problems. As support for

this, they cite the result of Bagaev & Shăıdurov (1998) showing that, for the one-dimensional analogue of

(1), if uN is the solution obtained using the standard finite-element method with piecewise linear elements

on a uniform N ×N mesh, then, independently of ε,

‖u− uN‖E ≤ CN−1/2.

This holds even if ε � N−1, when the solution’s boundary layers are not resolved, and ‖u − uN‖∞ is

O(1). Similar results are also possible for linear or bilinear finite-elements applied to the two-dimensional

problem; see Schopf (2014, Chap. 2).

Standard finite-elements, applied on a suitable mesh, often yield solutions that converge (with optimal

order) uniformly in the maximum norm, although full, general analysis is difficult. For example, Schatz

& Wahlbin (1983) give a best approximation result in the maximum norm on quasi-uniform meshes.

However, Kopteva (2014) notes that there is no such result for strongly-anisotropic triangulations, and

gives an example of a triangulation on which the pointwise interpolation error is O(N−2) but the error

in the finite-element solution is O(N−1). Leykekhman (2008) does provide an ε-uniform estimate for a

problem in arbitrary dimensions, though for a problem with homogeneous Neumann boundary conditions,

where layers are only weakly expressed. For a problem with strong layers, Kopteva (2007) proves second-

order convergence for a two-dimensional semi-linear problem on a layer-adapted mesh. However, this is on

a smooth domain and with finite elements only in the interior, and finite differences in the boundary-layer

region. Similar results, though, using a different style of analysis for finite-element methods applied on

graded meshes to problems on smooth domains are given by Blatov (1992a,b).

The weakness of the energy norm, (3), is discussed at length by Lin & Stynes (2012), who are then

motivated to investigate what they term as a balanced finite-element method. It is balanced in the sense that
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the natural norm associated with the method involves terms like ε‖~∇v‖20, which are bounded independently

of ε, unlike the term ε2‖~∇v‖20 in (3), which is not. The method is constructed by rewriting (1) as a system

of first-order equations. A careful weighting of the components of this system leads to a new finite-element

method, which is coercive with respect to a balanced norm, and which is then analysed on a tensor-product

Shishkin mesh. However, this approach introduces several complications stemming from the fact that the

solution to the reformulated problem is found in H1
0 (Ω) × H(div). Whereas more classical methods on

such grids can be based on, say, bilinear elements, in Lin & Stynes (2012), the H(div) terms are discretised

using Raviart-Thomas elements. This complicates both the analysis and the implementation.

An alternative approach, taken by Roos & Schopf (2014), is to analyse the standard Galerkin method

with respect to a balanced norm, where the ε-weighting in (3) is reduced:

‖v‖bal :=
(
ε‖~∇v‖20 + ‖v‖20

)1/2
.

Their analysis is based on the L∞-stability of the L2-projection, and relies on delicate results of Oswald

(2013). They prove that

‖u− uN‖bal ≤ CN−1 ln3/2N,

where, again, uN is the Galerkin solution on an N × N Shishkin mesh. A similar result for an hp-FEM

approach on a Spectral Boundary Layer mesh has recently been established by Melenk & Xenophontos

(2015). However, in the standard Galerkin setting, the bilinear form is not coercive with respect to the

balanced norm. This, in part, motivates the construction of a C0 interior penalty (CIP) method (Roos

& Schopf, 2014, §3). By a careful local choice of the penalty parameter for each element edge—which

depends on N and ε, and is determined by the region of the fitted mesh where the edge is found—uniform

convergence in a balanced norm is established.

In this paper, we present a Petrov-Galerkin finite-element discretisation based on a first-order system

reformulation of the continuum partial differential equation. Thus, the approach is similar in spirit to that

of Lin & Stynes (2012), in that the analysis is conducted with respect to a strong norm induced by the

bilinear form. However, by the inclusion of a curl constraint, it has the advantage that it can be directly

discretised using bilinear elements in a weighted H1 product space, rather than requiring H(div) elements

as in Lin & Stynes (2012). The primary advantage of this is the same as that of First-Order System Least-

Squares (FOSLS) finite-element methods (Cai et al., 1994, 1997) over standard Galerkin or Petrov-Galerkin

discretisations of second-order equations: ensuring coercivity and continuity in the weighted H1 product

space ensures both optimal approximation in that norm and the ability to solve the resulting linear systems

with optimal computational cost through multigrid methods. Additionally, discretization in a weighted H1

product space allows the potential of using existing a posteriori error estimates on anisotropic meshes for

adaptive mesh refinement (Huang et al., 2010). Such refinement strategies are necessary in the extension

of the current work to problems where interior layers arise, such as with semilinear partial differential

equations (PDEs).

The outline of this paper is as follows. In Section 1.1, we detail the assumptions we make on the

problem data in (1) and, in Section 1.2, we introduce the notation that is used throughout the paper. In

Section 2, we propose a new Petrov-Galerkin formulation, and establish the coercivity and continuity of

the bilinear form. Next, we describe the piecewise uniform Shishkin mesh in Section 3.1 and the finite-

element spaces used in Section 3.2, along with a decomposition that complements this partitioning in

Section 3.3. Following some preliminary technical discussion in Section 3.4, we analyse the approximation

to the solution to (1) in Section 3.5, which culminates in a proof of the uniform convergence of the method

in Theorem 3.6. In Section 4, we confirm the theoretical findings and compare the quality of the solution

obtained with that of both classical Galerkin and the method of Lin & Stynes (2012). We also investigate

the construction and efficiency of a suitable multigrid solver. Finally, we conclude with a discussion of

future work in Section 5.

1.1 Assumptions

As mentioned above, the reaction coefficient, b, in (1) is positive and continuous. Therefore, there is a

positive β such that b ≥ 2β2. The relative magnitudes of ε and β determine if the problem is classified as

being singularly perturbed. Since we are interested in this case, we make the following assumption on ε.

Assumption 1.1. Assume that

ε ≤ CβN−1, (5)
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where C is independent of the problem data, as otherwise (1) may be solved successfully on a uniform

mesh, and the analysis can be done using standard techniques, see, e.g., Cai et al. (1997).

Next, to simplify the notation in Sections 2 and 3 below, we make the following assumptions on the

reaction coefficient.

Assumption 1.2. (i) Assume that β is bounded away from zero. Specifically,

β−1 ≤ C,

where C is independent of the problem data.

(ii) Assume that b is bounded above by a term that may be absorbed into other constants in the analysis.

If necessary, these assumptions may be realised with a suitable rescaling of (1) that is accommodated

by Assumption 1.1, or by introducing suitable constants in the norms defined below in (12).

Finally, to ensure the existence of a suitable decomposition of the solution to (1), which is used to

perform the analysis, we require that the problem data satisfy the assumptions made in Liu et al. (2009,

§2.1).

Assumption 1.3. Assume that

f, b ∈ C4,α(Ω̄),

for some α ∈ (0, 1] and that f vanishes at the corners of the domain.

It may be possible to obtain the necessary decomposition employing weaker assumptions. See, for

example, Andreev (2006) for a study of the convergence of a finite-difference method for (1) subject to

weaker assumptions. A review of results and open problems relating to corner singularities is given by

Kellogg & Stynes (2008). Discussions of the effect on weakened regularity assumptions for singularly-

perturbed PDEs is discussed, e.g., by Ludwig & Roos (2012); that is in the context of superconvergence of

convection-diffusion problems, but includes a model problem with a reaction term. Ludwig & Roos (2014)

also consider the effects of relaxing compatibility conditions on non-square domains.

1.2 Notation

In this paper, we consider a two-dimensional domain, Ω = (0, 1)2, with boundary, ∂Ω, and its edges

denoted by

Γ1 := {(x, 0)| 0 ≤ x ≤ 1}, Γ2 := {(0, y)| 0 ≤ y ≤ 1},

Γ3 := {(x, 1)| 0 ≤ x ≤ 1}, Γ4 := {(1, y)| 0 ≤ y ≤ 1}.

The corners of Ω̄ are c1, c2, c3, and c4, and are labelled clockwise from c1 = (0, 0). See Figure 1. We

consider the space of square-integrable functions L2(Ω), defined on this domain along with its scalar

product and norm denoted by 〈·, ·〉 and ‖ · ‖0, respectively. We also consider the associated Sobolev spaces

and norms:

H1(Ω) = {u ∈ L2(Ω) : ~∇u ∈ (L2(Ω))
2} ‖u‖1 =

(
||u||20 + ||~∇u||20

)1/2

,

H(div) = {~w ∈ (L2(Ω))
2

: ~∇ · ~w ∈ L2(Ω)} ‖~w‖div =
(
||~w||20 + ||~∇ · ~w||20

)1/2

,

H(curl) = {~w ∈ (L2(Ω))
2

: ~∇× ~w ∈ L2(Ω)} ‖~w‖curl =
(
||~w||20 + ||~∇× ~w||20

)1/2

.

Since ~w is defined on Ω ⊂ R2, the curl operator is interpreted by considering ~w to be defined on R3, but only

supported on the (x, y)-hyperplane in R3 (see Cai et al. (1997)). This means that ~∇× ~w =
(
∂
∂xw2− ∂

∂yw1

)
.

Throughout this paper, C always represents a constant that is independent of ε and the discretisation

parameter N , and may take different values in difference places.
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2 The Petrov-Galerkin weak formulation

Similar to what is done in Cai et al. (1994, 1997) and Lin & Stynes (2012), we begin with rewriting (1) as

a first-order system of equations, by defining ~w = ~∇u, U = (u, ~w)T , and writing the first-order system as

Ldiv U = Fdiv,

Ldiv U =
√
ε
(
~w − ~∇u

)
= ~0, (7a)

−ε2~∇ · ~w + bu = f, (7b)

plus appropriate boundary conditions (discussed below in Section 3.2). Rather than directly discretising

these equations with a Galerkin finite-element method, leading to a saddle-point system for U , in Lin &

Stynes (2012), they propose a weak form of

adiv(U ,V) := 〈Ldiv U ,MdivV〉 = 〈Fdiv,MdivV〉 ∀V ∈ H1(Ω)×H(div), (8)

with V = (v, ~z)T , and

MdivV =
√
ε
(
~z − ~∇v

)
,

− ε~∇ · ~z + bv.

As written, the natural Sobolev space for ~w and ~z is H(div), requiring approximations with specialised

finite-element methods, such as the Raviart-Thomas elements used in Lin & Stynes (2012). However,

following the continuum equation, since ~w = ~∇u, we can freely add a weighted “curl constraint”, imposing

that ~∇× ~w = ~0; with such a constraint, ~w is naturally represented in
(
H1(Ω)

)2
, at least on domains, Ω,

where H(div)∩H(curl) =
(
H1(Ω)

)2
. This is the premise behind the FOSLS methodology, which allows one

to get symmetric positive-definite discrete linear systems that are amenable to multigrid solution methods

(Cai et al., 1994, 1997). With this constraint, we write the first-order system as LU = F ,

√
ε
(
~w − ~∇u

)
= ~0, (9a)

LU = −ε2~∇ · ~w + bu = f, (9b)

ε2~∇× ~w = ~0. (9c)

In a standard FOSLS discretisation, the L2-norm of the residual of this system would be minimized over

an appropriate H1 product space. This would yield the bilinear form system,

〈LU , LV〉 = 〈F , LV〉 ∀V ∈
(
H1(Ω)

)3
.

Alternately, we could use a mixed finite-element method to close the system, yielding the bilinear form

〈LU ,W〉 = 〈F ,W〉. Since we have more equations in LU = F than unknowns in U , this necessitates a

Petrov-Galerkin approach. Motivated by the FOSLS approach and Lin & Stynes (2012), as well as the

error analysis that follows, we close the system by testing against a space different from the image of(
H1(Ω)

)3
under L. Thus, we introduce the following operator,

√
ε
(
~z − ~∇v

)
, (10a)

MkV = −ε~∇ · ~z + bv, (10b)

εk ~∇× ~z, (10c)

and use this to close the system with (9), obtaining the weak form,

ak(U ,V) := 〈LU ,MkV〉 = 〈F ,MkV〉 ∀V ∈
(
H1(Ω)

)3
. (11)

Again, appropriate boundary conditions, discussed below, are easily incorporated. A natural choice for

this formulation would be to set k = 1 in (10). Then, the ε-weighting is the same for the divergence term

and the curl constraint. Although this seems intuitive, as we discuss below in Remark 2, and as supported

by the analysis of Lemma 3.5, it can be argued that this leads to an “underweighting” of the curl constraint

relative to the finite-element error analysis. To achieve equivalence with a norm that “balances” the curl

term’s contribution to the error analysis, we also consider (11) with k = 0. We note that the ellipticity
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result that follows is valid for any k ∈ R; however, we focus on the cases of k = 0 and k = 1, following the

above arguments.

As is shown below, the two specific bilinear forms we consider, a0(U ,V) and a1(U ,V), have the associ-

ated energy norms,

|||U|||20 =
ε

2
‖~∇u‖20 + β‖u‖20 +

ε

2
‖~w‖20 + ε3‖~∇ · ~w‖20 + ε2‖~∇× ~w‖20, (12a)

|||U|||21 =
ε

2
‖~∇u‖20 + β‖u‖20 +

ε

2
‖~w‖20 + ε3‖~∇ · ~w‖20 + ε3‖~∇× ~w‖20. (12b)

Note that closing the system against the image of
(
H1(Ω)

)3
under M1 leads to an equal weighting factor

of ε3 on both the divergence and curl terms in (12b), while closing against the image under M0 gives the

unequal weighting in (12a). As noted in Remark 3 below, the k = 1 formulation appears to offer superior

performance when measured in the discrete maximum norm, although both k = 0 and k = 1 offer good

convergence in their respective energy norms. We also note that the difference in weights on the divergence

terms in (9b) and (10b) is necessary here in order to ensure the “balancing” of these norms, with weighting

of ε3 on the divergence term, as in Lin & Stynes (2012). The main difference between the formulation that

arises from (9)–(10) and the approach of Lin & Stynes (2012) is the introduction on the curl constraints

in (9c) and (10c). The coercivity and continuity of ak(U ,V) follows immediately from Lin & Stynes (2012,

Theorem 3.1).

Lemma 2.1. There exists a constant, C ≥ 1, independent of ε and k such that

|ak(U ,V)| ≤ C|||U|||k|||V|||k ∀U ,V ∈
(
H1(Ω)

)3
, (13a)

ak(U ,U) ≥ |||U|||2k ∀U ∈
(
H1(Ω)

)3
, (13b)

for k ∈ R.

Proof. Consider the simpler bilinear form, adiv(U ,V), defined in (8), and note that it differs from that in

(11) in omitting the curl term:

ak(U ,V)− adiv(U ,V) = ε2+k〈~∇× ~w, ~∇× ~z〉.

From (Lin & Stynes, 2012, Theorem 3.1), we know there is a positive constant, Cdiv, such that

|adiv(U ,V)| ≤ Cdiv|||U|||div|||V|||div ∀U ,V ∈
(
H1(Ω)

)3
, (14a)

adiv(U ,U) ≥ |||U|||2div ∀U ∈
(
H1(Ω)

)3
, (14b)

for the corresponding norm,

|||U|||2div :=
ε

2
‖~∇u‖20 + β‖u‖20 +

ε

2
‖~w‖20 + ε3‖~∇ · ~w‖20. (15)

Thus,

ak(U ,U) = adiv(U ,U) + ε2+k‖~∇× ~w‖20 ≥ |||U|||2k,

ensuring coercivity of ak with respect to the weighted energy norms in (12).

For continuity, note that

|ak(U ,V)| ≤ |adiv(U ,V)|+ ε2+k
∣∣∣〈~∇× ~w, ~∇× ~z〉

∣∣∣
≤ Cdiv|||U|||div|||V|||div + ε2+k‖~∇× ~w‖0‖~∇× ~z‖0
≤ C|||U|||k|||V|||k.

where C = max(Cdiv, 1), and the last inequality follows from the usual arithmetic-geometric mean inequal-

ity, noting that

|||U|||2k = |||U|||2div +
(
ε1+ k

2 ‖~∇× ~w‖0
)2

.
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From here, the Lax-Milgram lemma establishes uniqueness of the continuum weak solution, U∗, for any

suitably smooth right-hand side, F , by noting that 〈F ,MkV〉 is a continuous linear operator. Similarly,

Céa’s Lemma establishes the quasi-optimality of the finite-dimensional approximations: if VN is a finite

dimensional subspace of H1(Ω)3, then there is UN ∈ VN that satisfies

ak(UN ,VN ) = 〈LUN ,MkVN 〉 = 〈F ,MkVN 〉 ∀VN ∈ VN , (16)

giving

|||U∗ − UN |||k ≤ C inf
VN∈VN

|||U∗ − VN |||k, (17)

for the same constant, C, as in (13a), for all k ∈ R. We note that the resulting formulation could also be

viewed as a Galerkin discretization of the weak form in (11), since UN ,VN ∈ VN ; however, we retain the

Petrov-Galerkin terminology to highlight the distinction from the FOSLS approach.

Further, we note that Lemma 2.1, the existence and uniqueness of both the continuum and discrete

weak solutions, and the quasi-optimality bound in (17) all hold for more general domains than the unit

square. As Theorem 3.1 of Lin & Stynes (2012), from which Lemma 2.1 follows, relies on integration-by-

parts, all of these results hold under an assumption of a sufficiently smooth domain, Ω ∈ Rd, for d = 2 or

3, with ellipticity always being in H1 × (H(div)∩H(curl)). In the case of the unit square and this paper,

H1 × (H(div) ∩H(curl)) = (H1)3.

3 The numerical method and analysis

From (17), one sees that the key step in the analysis of the accuracy of the discretisation on any mesh is to

bound infVN∈VN |||U∗−VN |||k. This is typically done by choosing a particular VN ∈ VN and showing that

|||U∗ − VN |||k is suitably small. In this section, we first introduce the Shishkin mesh and finite-element

space that we consider for VN . Then, in Section 3.3, we review some properties of the continuum solution

of (1) that are useful in the analysis, before describing the non-standard choice of the modified interpolant

used in the analysis in Section 3.4. The analysis for bounding the error of this modified interpolant follows

in Section 3.5.

3.1 The Shishkin mesh

The piecewise uniform mesh of Shishkin that we employ is very commonly used for problems such as (1).

We provide a minimal description here, and refer the reader to, e.g., Liu et al. (2009) and Lin & Stynes

(2012) for more details.

We start with a one-dimensional mesh, ωx, with N intervals, where we assume that N is an integer

multiple of 4. This mesh is uniform on each of the three subintervals: [0, τ ], [τ, 1− τ ] and [1− τ, 1], which

are partitioned into, respectively, N/4, N/2 and N/4 subintervals. The mesh parameter τ is defined to be

τ = min
{1

4
, 2εβ−1 lnN

}
.

In the case of interest, ε ≤ CβN−1, so τ = 2εβ−1 lnN � 1. Thus, it represents a transition between a

fine mesh near the boundaries, where the local mesh-width is hB = 8(ε/β)N−1 lnN , and a coarse mesh

in the interior, where the mesh-width is hI = 2(1 − 2τ)N−1 = O(N−1). We then let ωNy = ωNx , and

create the two-dimensional mesh, ΩN , by taking the tensor product of ωNx and ωNy , as shown in Figure

1. That figure also shows the labelling for the interior, edge and boundary regions that we employ:

Ω̄ = ΩII ∪ ΩBI ∪ ΩIB ∪ ΩBB , where

ΩII = [τ, 1− τ ]× [τ, 1− τ ],

ΩIB = [τ, 1− τ ]× ([0, τ ] ∪ [1− τ, 1]),

ΩBI = ([0, τ ] ∪ [1− τ, 1])× [τ, 1− τ ],

ΩBB = ([0, τ ] ∪ [1− τ, 1])× ([0, τ ] ∪ [1− τ, 1]).

(18)
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1− τ

τ 1− τ

τ

c4

ΩIB ΩBB

ΩBBΩBB

ΩBB

ΩIB

Γ1c1

c3

ΩII ΩBI Γ4Γ2 ΩBI

Γ3c2

Figure 1: A Shishkin mesh for problem (1) (left). The labelling of the domain as used in the analysis

(right).

3.2 The finite-element space

On the one-dimensional mesh, ωNx , defined above, let {ζ0, ζ1, ζ2, . . . , ζN−1, ζN} represent the usual basis

for the space of piecewise linear functions on ωx. That is, each ζi is piecewise linear on ωNx , and

ζi(xj) =

{
1 i = j,

0 i 6= j.

Let {η0, η1, η2, . . . , ηN−1, ηN} be the corresponding basis for piecewise linear functions on ωNy .

Now let V N be the space of piecewise bilinear functions on the tensor-product Shishkin mesh, ΩN ,

defined above, excluding boundaries (where homogeneous Dirichlet data for u(x, y) is prescribed). Thus,

V N is the space generated by the basis functions {ζi(x)ηj(y)}i,j=1,...,N−1. For the vector field, ~w, we

prescribe homogeneous tangential components of ~w along the boundary, since the tangential component

of ~∇u must also be zero. Thus, we define a vector space,
(
V N
)2

, of piecewise bilinear functions on ΩN as

the space generated by the functions,{(
ζi(x)ηj(y)

0

)}
i=0,...,N ;j=1,...,N−1

,

{(
0

ζi(x)ηj(y)

)}
i=1,...,N−1;j=0,...,N

.

Defining
(
H1

0 (Ω)
)3

to be the Sobolev space of three-component vectors under these boundary conditions,

we have that V N ×
(
V N
)2 ⊂ (H1

0 (Ω)
)3

. Our finite-element method is then obtained by taking VN =

V N ×
(
V N
)2

in (16).

Recalling (17), the accuracy of the method depends on the approximation properties of VN , and the

analysis is conducted by estimating |||U−UN |||k, where UN is the image of U under some suitable projection

from
(
H1

0 (Ω)
)3

to VN . The natural choice of projection is the nodal interpolation for each component: for

any φ ∈ H1
0 (Ω), let φI ∈ V N be the element of V N such that φI(xi, yi) = φ(xi, yi) for all (xi, yi) ∈ ΩN .

The definition extends easily to an interpolant from
(
H1

0 (Ω)
)3

to VN .

One can avail of standard interpolation estimates in order to establish a bound for |||U − UN |||k.

However, since the Shishkin mesh ΩN is highly anisotropic, the classical estimates of, say, Ciarlet (2002,

Thm. 3.1.6) are insufficient (see Roos et al., 2008, Remark 3.105). Instead, we require the following results,

originally due to Apel (1999), which hold independently of the aspect ratio of mesh rectangles (see also,

Roos et al. (2008, (3.124)) and Lin & Stynes (2012, Lemma 4.2)).

Lemma 3.1. Let K be a rectangle in ΩN with sides hx and hy. Then, for any φ ∈ H2(K),

‖φ− φI‖0,K ≤ C(hx‖φx‖0,K + hy‖φy‖0,K), (19a)

‖φ− φI‖0,K ≤ C(h2
x‖φxx‖0,K + h2

y‖φyy‖0,K), (19b)

‖(φ− φI)x‖0,K ≤ C(hx‖φxx‖0,K + hy‖φxy‖0,K), (19c)

‖(φ− φI)y‖0,K ≤ C(hx‖φxy‖0,K + hy‖φyy‖0,K). (19d)
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3.3 Solution decomposition

The Shishkin mesh described above in Section 3.1, which distinguishes the corner, edge, and interior

regions of the domain, motivates a decomposition of u, the solution to (1), in a way that complements

the partitioning of the domain in (18). This decomposition was first established by Shishkin (1992) for

problems in arbitrary dimensions (see also Chap. 3 of Shishkin & Shishkina (2009)), where it is shown that

u can be expressed as the sum of a regular component (i.e., with no strong dependency on ε), boundary

layer components that are supported only along the edges of Ω, and corner layer components on each corner

of Ω. Clavero et al. (2005, Theorem 2.2) provide full technical details for the case d = 2. Their arguments

can be adapted to give the variant of decomposition we use, which is taken directly from Lemmas 1.1 and

1.2 of Liu et al. (2009).

Lemma 3.2 (Liu et al. (2009, Lemmas 1.1 and 1.2)). Under Assumption 1.3, the solution u of (1) can be

decomposed as

u = V +W + Z = V +

4∑
i=1

Wi +

4∑
i=1

Zi, (20a)

where each Wi is a layer associated with the edge Γi and each Zi is a layer associated with the corner ci.

There exists a constant C such that∣∣∣∣ ∂m+nV

∂xm∂yn
(x, y)

∣∣∣∣ ≤ C(1 + ε2−m−n), 0 ≤ m+ n ≤ 4, (20b)∣∣∣∣∂m+nW1

∂xm∂yn
(x, y)

∣∣∣∣ ≤ C(1 + ε2−m)ε−ne−βy/ε 0 ≤ m+ n ≤ 3, (20c)∣∣∣∣∂m+nW2

∂xm∂yn
(x, y)

∣∣∣∣ ≤ Cε−m(1 + ε2−n)e−βx/ε 0 ≤ m+ n ≤ 3, (20d)∣∣∣∣∂m+nZ1

∂xm∂yn
(x, y)

∣∣∣∣ ≤ Cε−m−ne−β(x+y)/ε 0 ≤ m+ n ≤ 3, (20e)

with analogous bounds for W3, W4, Z2, Z3 and Z4.

Recalling Assumption 1.1, we have that

τ = 2εβ−1 lnN,

and so the mesh is not uniform. The significance of this, and the value of τ , is that, for any point

(x, y) ∈ ΩII ,

e−βx/ε ≤ e−βτ/ε = N−2, e−βy/ε ≤ e−βτ/ε = N−2. (21a)

We use these bounds in the remaining analysis. Furthermore, we have the following inequalities:

‖e−βy/ε‖0,ΩII∪ΩBI
= ‖e−βx/ε‖0,ΩII∪ΩIB

≤
√

ε

2β
N−2, (21b)

‖e−βy/ε‖0,ΩBB∪ΩIB
= ‖e−βx/ε‖0,ΩBB∪ΩBI

≤
√

ε

2β
, (21c)

‖e−β(x+y)/ε‖0,Ω/ΩBB
≤ ε

2β
N−2, and ‖e−β(x+y)/ε‖0,ΩBB

≤ ε

2β
. (21d)

3.4 The modified interpolant

The standard nodal interpolant from
(
H1

0 (Ω)
)3

to VN is not sufficient to derive all the results we need for

higher order terms in (12). This is because we require that certain components in the decomposition (20)

decay rapidly in the interior of the domain, and satisfy bounds derived from those in (21). However, in the

interior of the domain, interpolants of such components do not decay as rapidly. Therefore, we use an idea

outlined in Lin & Stynes (2012) (see the discussion leading up to Corollary 4.6), and define a specialised

operator that maps U onto VN .

Let u be a function in H1
0 (Ω) that possesses a decomposition that satisfies (20). Recall that we write

~w = ~∇u, so, given the decomposition of Lemma 3.2, we decompose w1 as

w1 = ux = Vx +Wx + Zx = Vx +

4∑
i=1

(Wi)x +

4∑
i=1

(Zi)x, (22)
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Then, there is a piecewise bilinear function, wĨ1 in V N , such that

wĨ1 = V Ĩx +

4∑
i=1

(Wi)
Ĩ
x +

4∑
i=1

(Zi)
Ĩ
x, (23)

where V Ĩx = V Ix , the standard nodal interpolant of Vx, and

(Wk)Ĩx(xi, yj) =

{
(Wk)x(xi, yj) (xi, yj) ∈ ΩN/(ΩII ∪ ΩBI),

0 (xi, yj) ∈ ΩII ∪ ΩBI ,
for k = 1, 3,

(Wk)Ĩx(xi, yj) =

{
(Wk)x(xi, yj) (xi, yj) ∈ ΩN/(ΩII ∪ ΩIB),

0 (xi, yj) ∈ ΩII ∪ ΩIB ,
for k = 2, 4,

and

(Zk)Ĩx(xi, yj) =

{
(Zk)x(xi, yj) (xi, yj) ∈ ΩN/(ΩII ∪ ΩIB ∪ ΩBI),

0 (xi, yj) ∈ ΩII ∪ ΩIB ∪ ΩBI ,
for k = 1, 2, 3, 4.

Define wĨ2 analogously, and then set U Ĩ := (uI , wĨ1 , w
Ĩ
2)T ∈ VN . Note that, by φIx, we always mean (φx)I ,

and never (φI)x.

Then, by definition, (W1)Ix and (W1)Ĩx are identical on the subregion [0, 1]× [0, τ ], except on the narrow

strip [0, 1] × [τ − hB , τ ]. Therefore, (W1)Ix − (W1)Ĩx is a piecewise bilinear function that vanishes along

y = τ − hB , and is equal to (W1)x along y = τ . Then, on an arbitrary rectangle [xi, xi+1]× [τ − hB , τ ], it

is a simple calculation to show that

‖(W1)Ix − (W1)Ĩx‖20,[xi,xi+1]×[τ−hB ,τ ] ≤
1

9
hB(xi+1 − xi)

(
W1(xi, τ) +W1(xi+1, τ)

)2
.

A similar bound is possible on an arbitrary rectangle in [0, 1] × [1 − τ, 1 − τ + hB ]. Then the bounds in

(20c) and (21) combine to show that

‖(W1)Ix − (W1)Ĩx‖0,ΩBB∪ΩIB
≤ Cε1/2N−5/2 ln1/2N. (24a)

Similarly,

‖(W2)Ix − (W2)Ĩx‖0,ΩBB∪ΩBI
≤ Cε−1/2N−5/2 ln1/2N, (24b)

and

‖(Z1)Ix − (Z1)Ĩx‖0,ΩBB
≤ CN−5/2 lnN. (24c)

These results are used below in the proof of Lemma 3.3. The proofs of Lemmas 3.4 and 3.5 rely on

analogous results for derivatives of (W1)Ix − (W1)Ĩx, and similar terms. A direct calculation shows that, on

an arbitrary rectangle [xi, xi+1]× [τ − hB , τ ],

‖
(
(W1)Ix − (W1)Ĩx

)
x
‖20,[xi,xi+1]×[τ−hB ,τ ] =

1

3

hB
(xi+1 − xi)

(
W1(xi+1, τ)−W1(xi, τ)

)2
.

Consequently,

‖
(
(W1)Ix − (W1)Ĩx

)
x
‖0,ΩBB∪ΩIB

≤ CN−3/2. (25a)

Similarly,

‖
(
(W2)Ix − (W2)Ĩx

)
x
‖0,ΩBB∪ΩBI

≤ Cε−3/2N−3/2 ln−1/2N, (25b)

‖
(
(W1)Ix − (W1)Ĩx

)
y
‖0,ΩBB∪ΩIB

≤ Cε−1/2N−3/2 ln−1/2N, (25c)

‖
(
(W2)Ix − (W2)Ĩx

)
y
‖0,ΩBB∪ΩBI

≤ Cε−1N−3/2, (25d)

and

‖
(
(Z1)Ix − (Z1)Ĩx

)
x
‖0,ΩBB

≤ Cε−1N−3/2. (25e)

Similar bounds exist for the norm of the difference between the nodal and modified interpolants of other

terms in (22), and for terms in an analogous decomposition of w2 = uy.

10



3.5 Approximation of U in VN

In order to get the estimate for Céa’s Lemma, we wish to establish a bound for

|||U − U Ĩ |||2k =
ε

2
‖~∇(u− uI)‖20 + β‖(u− uI)‖20

+
ε

2
‖~w − ~wĨ‖20 + ε3‖~∇ · (~w − ~wĨ)‖20 + ε2+k‖~∇× (~w − ~wĨ)‖20, (26)

by providing a bound for each of the five normed expressions on the right-hand side of this inequality.

From Liu et al. (2009, Lemma 2.3),

‖(u− uI)‖0 ≤ CN−2, (27)

and from Lin & Stynes (2012, Lemma 4.4),

ε1/2‖~∇(u− uI)‖0 ≤ CN−1 lnN. (28)

We now prove bounds for the remaining terms, in the order in which they appear in (26).

Lemma 3.3. There exists a constant C such that

ε1/2‖~w − ~wĨ‖0 ≤ C(ε1/2N−1 +N−2 ln2N).

Proof. Recall that ~w = (ux, uy)T . We give the analysis for ‖ux − wĨ1‖0; the techniques for analysing

‖uy − wĨ2‖0 are the same.

From (19a), (20b), and (22), and noting that V Ix = V Ĩx

‖Vx − V Ĩx ‖0 ≤ CN−1. (29)

Next, we consider ‖(W1)x−(W1)Ĩx‖0. Recall that the mesh-widths in the boundary and interior regions

are, respectively, hB = 8(ε/β)N−1 lnN , and hI = 2(1 − 2τ)N−1. On ΩBB ∪ ΩIB , we apply (19b), (20c),

and (21c) to get

‖(W1)x − (W1)Ix‖0,ΩBB∪ΩIB
≤ C(h2

I‖(W1)xxx‖0,ΩBB∪ΩIB
+ h2

B‖(W1)xyy‖0,ΩBB∪ΩIB

≤ C
(
h2
Iε
−1 + h2

Bε
−2
)
‖e−yβ/ε‖0,ΩBB∪ΩIB

≤ C
(
N−2ε−1 +N−2 ln2N

)
(ε/β)1/2

≤ Cε−1/2N−2.

It follows from this, and (24a), that

‖(W1)x − (W1)Ĩx‖0,ΩBB∪ΩIB
≤ ‖(W1)x − (W1)Ix‖0,ΩBB∪ΩIB

+ ‖(W1)Ix − (W1)Ĩx‖0,ΩBB∪ΩIB
≤ Cε−1/2N−2. (30a)

On ΩII ∪ ΩBI , we note that the modified interpolant vanishes, and so, using (21b), we get

‖(W1)x − (W1)Ĩx‖0,ΩII∪ΩBI
= ‖(W1)x‖0,ΩII∪ΩBI

≤ Cε1/2N−2. (30b)

Thus, ‖(W1)x − (W1)Ĩx‖0 ≤ Cε−1/2N−2. The same bound holds for ‖(W3)x − (W3)Ĩx‖0.

For the term ‖(W2)x − (W2)Ĩx‖0, we first use (19b) on ΩBB ∪ ΩBI , to get

‖(W2)x − (W2)Ix‖0,ΩBB∪ΩBI
≤ C(h2

B‖(W2)xxx‖0,ΩBB∪ΩBI
+ h2

I‖(W2)xyy‖0,ΩBB∪ΩBI

≤ C
(
h2
Bε
−3 + h2

Iε
−1
)
‖e−xβ/ε‖0,ΩBB∪ΩBI

≤ C
(
ε−1N−2 ln2N + ε−1N−2)(ε/β)1/2

≤ Cε−1/2N−2 ln2N.

This, along with (24b), gives

‖(W2)x − (W2)Ĩx‖0,ΩBB∪ΩBI
≤ Cε−1/2N−2 ln2N. (31a)
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On the remainder of the domain, ΩII ∪ ΩIB ,

‖(W2)x − (W2)Ĩx‖0,ΩII∪ΩIB
= ‖(W2)x‖0,ΩII∪ΩIB

≤ Cε−1/2N−2. (31b)

Thus, ‖(W2)x − (W2)Ĩx‖0 ≤ Cε−1/2N−2 ln2N . The same bound holds for ‖(W4)x − (W4)Ĩx‖0.

Finally, we consider Z1, the term in the decomposition associated with the corner layer at the origin.

First, on ΩBB , we use (19b) and (21d) to show

‖(Z1)x − (Z1)Ix‖0,ΩBB
≤ Ch2

B(‖(Z1)xxx‖ΩBB
+ ‖(Z1)xyy‖ΩBB

)

≤ C(εN−1 lnN)2ε−3(ε/β) ≤ CN−2 ln2N.

This combines with (24c) to show that ‖(Z1)x − (Z1)Ĩx‖0,ΩBB
≤ CN−2 ln2N . On Ω/ΩBB , (Z1)Ĩx = 0, so

(21d) gives that ‖(Z1)x − (Z1)Ĩx‖0,Ω/ΩBB
≤ CN−2, and so

‖(Z1)x − (Z1)Ĩx‖0 ≤ CN−2 ln2N. (32)

The same bound holds for ‖(Z2)x − (Z2)Ĩx‖0, ‖(Z3)x − (Z3)Ĩx‖0, and ‖(Z4)x − (Z4)Ĩx‖0.

Combining these results for (Zk)x with (29), (30) and (31) completes the proof.

Remark 1. The result of Lemma 3.3 is sufficient for our analysis, and its contribution to the bound for

(26) is dominated by O(N−1 lnN) terms. Subject to stronger assumptions on the problem data and, in

particular, the compatibility conditions in Assumption 1.3, one may be able to form a decomposition of

u as in (20), but with the third derivatives of V bounded independently of ε. Then, (19b) could be used

instead of (19a) in the arguments leading to (29), which would yield that

ε1/2‖~w − ~wĨ‖0 ≤ CN−2 ln2N.

However, there would be no change in the consequent bounds for |||U − U Ĩ |||k.

Lemma 3.4. There exists a constant C such that

ε3/2‖~∇ · (~w − ~wĨ)‖0 ≤ CN−1 lnN. (33)

Proof. The arguments are essentially the same as in Theorem 3.3: appeal to (19c) and (19d) in place of

(19a) and (19b), and use the bounds in (25) instead of (24).

Remark 2. Using exactly the same arguments as in Lemma 3.4, one can show that

ε3/2‖~∇× (~w − ~wĨ)‖0 ≤ CN−1 lnN. (34)

Then (27), (28), Lemmas 3.3 and 3.4, with (34), give that |||U −U Ĩ |||k ≤ CN−1 lnN for k ≥ 1. Combined

with Lemma 2.1, this is enough to show that there is a constant, independent of ε and N , such that

|||U − UN |||k ≤ CN−1 lnN, for k ≥ 1.

Note, however, that the O(ε−3/2) terms in ‖~∇ · (~w− ~wĨ)‖0 arise from the edge layer terms, Wi; in the

decomposition that leads to (33), the regular and corner components, V and Z, contribute terms that are

O(ε−1). Furthermore, from (20), the ε-dependency of the pointwise bounds on derivatives of V and Z

depends only on the order of the derivatives. In contrast, ε-dependency in W is weaker for cross derivative

terms than pure derivatives. Therefore, as we now show, it is possible to obtain sharper terms than those

presented in (34).

Lemma 3.5. There exists a constant C such that

ε‖~∇× (~w − ~wĨ)‖0 ≤ CN−1 lnN.

Proof. By the triangle inequality, ‖~∇×(~w− ~wĨ)‖0 ≤ ‖(ux−wĨ1)y‖0 +‖(uy−wĨ2)x‖0. We present arguments

to show that ‖(ux − wĨ1)y‖0 ≤ Cε−1N−1 lnN ; the analysis for ‖(uy − wĨ2)x‖0 is the same.
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As usual, we decompose ux as in (22). From (20), all partial derivatives of V of order k are bounded,

pointwise, by Cε2−k. Therefore, we imitate the arguments of (29) and (32), but using (25) instead of (24),

to show that

‖(Vx − V Ĩx )y‖0 ≤ Cε−1N−1, (35)

and

‖((Zi)x − (Zi)
Ĩ
x)y‖0 ≤ Cε−1N−1 lnN for i = 1, 2, 3, 4. (36)

Therefore, it is only necessary to consider the W terms in detail.

On the region, ΩBB ∪ ΩIB , (19d) gives that

‖
(
(W1)x − (W1)Ix

)
y
‖0,ΩBB∪ΩIB

≤ C(hI‖(W1)xxy‖0,ΩBB∪ΩIB
+ hB‖(W1)xyy‖0,ΩBB∪ΩIB

≤ C
(
N−1ε−1 + (εN−1 lnN)ε−2

)
(ε/β)1/2

≤ Cε−1/2N−1 lnN.

Recalling the bound for ‖
(
(W1)Ix − (W1)Ĩx

)
y
‖0,ΩBB∪ΩIB

in (25c), we get that

‖
(
(W1)x − (W1)Ĩx

)
y
‖0,ΩBB∪ΩIB

≤ Cε−1/2N−1 lnN. (37a)

On ΩII ∪ ΩBI , we use (21b) and (23) to get

‖
(
(W1)x − (W1)Ĩx

)
y
‖0,ΩII∪ΩBI

= ‖(W1)xy‖0,ΩII∪ΩBI
≤ Cε−1/2N−2. (37b)

Bounds analogous to those in (37) hold for ‖
(
(W3)x − (W3)Ĩx

)
y
‖0.

For the term ‖
(
(W2)x−(W2)Ĩx

)
y
‖0, recall (25d) gives that ‖

(
(W2)Ix−(W2)Ĩx

)
y
‖0,ΩBB∪ΩBI

≤ Cε−1N−3/2;

then we use (19d) on ΩBB ∪ ΩBI , to get

‖
(
(W2)x − (W2)Ix

)
y
‖0,ΩBB∪ΩBI

≤ C(hB‖(W2)xxy‖0,ΩBB∪ΩBI
+ hI‖(W2)xyy‖0,ΩBB∪ΩBI

≤ C
(
hBε

−2 + hIε
−1
)
‖e−xβ/ε‖0,ΩBB∪ΩBI

≤ Cε−1/2N−1 lnN.

We now conclude that

‖
(
(W2)x − (W2)Ĩx

)
y
‖0,ΩBB∪ΩBI

≤ Cε−1/2N−1 lnN,

while on the remainder of the domain, ΩII ∪ ΩIB ,

‖
(
(W2)x − (W2)Ĩx

)
y
‖0,ΩII∪ΩIB

= ‖(W2)xy‖0,ΩII∪ΩIB
≤ Cε−1/2N−2.

Thus,

‖
(
(W2)x − (W2)Ĩx

)
y
‖0 ≤ Cε−1/2N−1 lnN.

The same bound holds for ‖
(
(W4)x − (W4)Ĩx

)
x
‖0. Combining this with (35), (36) and (37) completes the

proof.

Finally, using Lemma 2.1, along with the bounds in (27), (28), and Lemmas 3.3, 3.4, and 3.5, we now

state our main theorem.

Theorem 3.6. There exists a constant, C, which is independent of ε and N , such that

|||U − UN |||k ≤ CN−1 lnN, for k ≥ 0.

4 Numerical results

In this section, we verify the accuracy of our proposed method by presenting sets of numerical results

obtained on various meshes. We begin by demonstrating the sharpness of the error bounds of Theorem

3.6 on the Shishkin mesh, in Section 4.1. This is followed, in Section 4.2, by comparisons to both the

classical Galerkin method and the method of Lin & Stynes (2012). In Section 4.3, we provide some

remarks from numerical investigation of its behaviour on uniform and Bakhvalov meshes. Since one of
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our motivations for proposing the method is the possibility of designing a suitable solver, in Section 4.4,

we consider the use of AMG-preconditioned GMRES as an iterative method with optimal cost for the

discretisation matrices that arise.

We take as a test problem a specially constructed example, taken from Kopteva (2008) (see also Russell

& Madden, 2014), for which b = 1, and f is chosen such that the exact solution to (1) is

u =

(
cos
(πx

2

)
− e−x/ε − e−1/ε

1− e−1/ε

)(
1− y − e−y/ε − e−1/ε

1− e−1/ε

)
. (38)

This problem exhibits exponential boundary layers near x = 0 and y = 0, and a corner layer close to

the origin as shown in Figure 2; however, no other corner or boundary layers appear in this solution.

Therefore, we have adjusted the construction of the mesh described in Section 3.1 slightly: we take

τ = min{1/2, 2εβ−1 lnN} and form the one-dimensional meshes with N/2 intervals on the two sub-regions

[0, τ ] and [τ, 1].

(a) Solution (38) with ε = 10−3. (b) Solution (38) with ε = 10−6.

Figure 2: Exact solution showing boundary and corner layers.

The Petrov-Galerkin formulation defined in (11) is discretised using bilinear elements for each com-

ponent of solution, U = (u,w1, w2)T . All matrices and vectors for the tests were constructed using the

modular finite-element library, MFEM. For the first set of results, the resulting linear systems were solved

using the UMFPACK LU decomposition (Davis, 2004a,b; Davis & Duff, 1997, 1999).

4.1 Shishkin mesh

Tables 1 and 2 provide the data for discretisations with the two weak forms, for k = 0, 1, on the

Shishkin mesh, corresponding to the analysis in Section 3.5. Writing the continuum (exact) solution

U∗ = (u∗, w∗1 , w
∗
2)T and the discrete solution in VN = V N ×

(
V N
)2

as U = (uN , wN1 , w
N
2 )T , these tables

(and that which follows for the uniform mesh) give three measures of the error:

• The error measured in the energy norm induced by the bilinear forms presented in (12),

|||U∗ − UN |||k. For the Shishkin mesh, it is these norms that are analysed in Section 3.5.

• The classical energy norm, ‖u∗ − uN‖E (defined in (3)), of the error for the first component alone,

for comparison with performance of a typical Galerkin discretisation.

• The discrete maximum norm, ‖u∗−uN‖`∞ , of the error of the first component alone, for comparison

with performance of a typical finite-difference discretisation.

For ease of comparison to the theoretical analysis, we include reduction rates in the tables, giving the ratio

of each entry to that of the previous column, comparing errors in UN with those from UN/2. Standard

first-order convergence, then should yield ratios approaching 0.5, while second-order convergence yields

ratios approaching 0.25. Convergence at the rate of N−1 lnN would give ratios of

N 128 256 512 1024
N−1 ln(N)

(N/2)−1 ln(N/2) 0.58 0.57 0.56 0.56.
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The most obvious conclusion from these tables is that the error analysis is sharp, with reduction in the

induced energy norms clearly matching the N−1 lnN prediction of that theory for both formulations. In

both cases, for ε = 1 and ε = 0.1, convergence in the induced norm is fully first order (as expected for the

standard FOSLS discretisation), but reduces to N−1 lnN for smaller ε. Also of note is that there remains

slight variation in the values of |||U∗ − UN |||0 for fixed N and varying ε with the k = 0 formulation,

in contrast to the typical extremely uniform asymptotic performance observed with many schemes for

singularly perturbed problems, and for the values of |||U∗ − UN |||1 for fixed N and varying ε with the

k = 1 formulation.

|||U∗ − UN |||0 (Reduction Rate w.r.t. N)

ε/N 64 128 256 512 1024

10−0 5.521e-03 2.761e-03(0.50) 1.380e-03(0.50) 6.901e-04(0.50) 3.451e-04(0.50)

10−1 4.342e-02 2.176e-02(0.50) 1.089e-02(0.50) 5.444e-03(0.50) 2.722e-03(0.50)

10−2 1.067e-01 6.403e-02(0.60) 3.715e-02(0.58) 2.104e-02(0.57) 1.172e-02(0.56)

10−3 9.880e-02 6.049e-02(0.61) 3.598e-02(0.59) 2.079e-02(0.58) 1.172e-02(0.56)

10−4 9.174e-02 5.518e-02(0.60) 3.299e-02(0.60) 1.947e-02(0.59) 1.127e-02(0.58)

10−5 8.988e-02 5.261e-02(0.59) 3.050e-02(0.58) 1.773e-02(0.58) 1.033e-02(0.58)

10−6 8.965e-02 5.216e-02(0.58) 2.975e-02(0.57) 1.681e-02(0.57) 9.512e-03(0.57)

‖u∗ − uN‖E (Reduction Rate w.r.t. N)

ε/N 64 128 256 512 1024

10−0 1.593e-03 7.964e-04(0.50) 3.982e-04(0.50) 1.991e-04(0.50) 9.955e-05(0.50)

10−1 7.680e-03 3.838e-03(0.50) 1.919e-03(0.50) 9.594e-04(0.50) 4.797e-04(0.50)

10−2 6.889e-03 3.992e-03(0.58) 2.272e-03(0.57) 1.275e-03(0.56) 7.081e-04(0.56)

10−3 2.255e-03 1.307e-03(0.58) 7.396e-04(0.57) 4.126e-04(0.56) 2.282e-04(0.55)

10−4 7.104e-04 4.180e-04(0.59) 2.386e-04(0.57) 1.332e-04(0.56) 7.320e-05(0.55)

10−5 2.235e-04 1.301e-04(0.58) 7.516e-05(0.58) 4.255e-05(0.57) 2.359e-05(0.55)

10−6 7.915e-05 4.157e-05(0.53) 2.339e-05(0.56) 1.326e-05(0.57) 7.444e-06(0.56)

‖u∗ − uN‖`∞ (Reduction Rate w.r.t. N)

ε/N 64 128 256 512 1024

10−0 1.600e-05 4.014e-06(0.25) 1.005e-06(0.25) 2.515e-07(0.25) 6.290e-08(0.25)

10−1 2.389e-03 6.198e-04(0.26) 1.579e-04(0.25) 3.987e-05(0.25) 1.002e-05(0.25)

10−2 4.144e-02 1.730e-02(0.42) 6.434e-03(0.37) 2.144e-03(0.33) 6.749e-04(0.31)

10−3 1.513e-01 8.557e-02(0.57) 4.091e-02(0.48) 1.656e-02(0.40) 5.821e-03(0.35)

10−4 3.290e-01 2.467e-01(0.75) 1.573e-01(0.64) 8.623e-02(0.55) 3.985e-02(0.46)

10−5 4.281e-01 4.207e-01(0.98) 3.504e-01(0.83) 2.499e-01(0.71) 1.554e-01(0.62)

10−6 4.449e-01 4.832e-01(1.09) 4.924e-01(1.02) 4.467e-01(0.91) 3.520e-01(0.79)

Table 1: Induced energy, classical energy, and discrete maximum norms for solutions on Shishkin meshes

using the bilinear form, a0, defined in (11)

For both formulations, classical energy norm convergence with respect to N follows naturally as a

corollary to Theorem 3.6, since

‖u∗ − uN‖E ≤
1

β
|||U∗ − UN |||k,

for ε ≤ 1/(2β) (to account for the scaling in (26)). However, we note (as expected) that the energy norms

show ε-dependence, scaling like
√
ε. As for the uniform mesh case results that follow, this agrees with the

scaling of classical energy-norm errors for the Galerkin discretisation, as detailed in Liu et al. (2009, Thm.

3.1) (see Equation (4)). An important distinction between the two formulations appears in the discrete

maximum norm errors, however, with much better performance for the k = 1 formulation in comparison

to the k = 0 formulation. For k = 0, when ε is small, we see extremely poor convergence (particularly

for small N) in the discrete maximum norm. In contrast, for k = 1, the discrete maximum norm of the

error in u converges perfectly, at a rate of N−2 ln2N , matching the convergence of the finite-difference

discretisation on the Shishkin mesh (Clavero et al., 2005). We note, however, that the k = 0 formulation

still offers convergence in the norm associated with k = 1, since |||V|||1 ≤ |||V|||0 for any ε ≤ 1 (and such

convergence has been observed numerically as well).
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|||U∗ − UN |||1 (Reduction Rate w.r.t. N)

ε/N 64 128 256 512 1024

10−0 5.521e-03 2.761e-03(0.50) 1.380e-03(0.50) 6.901e-04(0.50) 3.451e-04(0.50)

10−1 3.106e-02 1.554e-02(0.50) 7.771e-03(0.50) 3.886e-03(0.50) 1.943e-03(0.50)

10−2 8.311e-02 4.865e-02(0.59) 2.784e-02(0.57) 1.566e-02(0.56) 8.704e-03(0.56)

10−3 8.416e-02 4.927e-02(0.59) 2.819e-02(0.57) 1.586e-02(0.56) 8.814e-03(0.56)

10−4 8.426e-02 4.933e-02(0.59) 2.823e-02(0.57) 1.588e-02(0.56) 8.825e-03(0.56)

10−5 8.427e-02 4.934e-02(0.59) 2.823e-02(0.57) 1.589e-02(0.56) 8.826e-03(0.56)

10−6 8.427e-02 4.934e-02(0.59) 2.823e-02(0.57) 1.589e-02(0.56) 8.826e-03(0.56)

‖u∗ − uN‖E (Reduction Rate w.r.t. N)

ε/N 64 128 256 512 1024

10−0 1.593e-03 7.964e-04(0.50) 3.982e-04(0.50) 1.991e-04(0.50) 9.955e-05(0.50)

10−1 7.674e-03 3.838e-03(0.50) 1.919e-03(0.50) 9.594e-04(0.50) 4.797e-04(0.50)

10−2 6.787e-03 3.962e-03(0.58) 2.265e-03(0.57) 1.274e-03(0.56) 7.079e-04(0.56)

10−3 2.181e-03 1.273e-03(0.58) 7.279e-04(0.57) 4.095e-04(0.56) 2.275e-04(0.56)

10−4 6.918e-04 4.034e-04(0.58) 2.306e-04(0.57) 1.297e-04(0.56) 7.206e-05(0.56)

10−5 2.218e-04 1.279e-04(0.58) 7.296e-05(0.57) 4.103e-05(0.56) 2.279e-05(0.56)

10−6 7.892e-05 4.141e-05(0.52) 2.318e-05(0.56) 1.299e-05(0.56) 7.209e-06(0.55)

‖u∗ − uN‖`∞ (Reduction Rate w.r.t. N)

ε/N 64 128 256 512 1024

10−0 1.600e-05 4.014e-06(0.25) 1.005e-06(0.25) 2.515e-07(0.25) 6.290e-08(0.25)

10−1 2.331e-03 6.124e-04(0.26) 1.570e-04(0.26) 3.975e-05(0.25) 1.000e-05(0.25)

10−2 1.352e-02 5.062e-03(0.37) 1.754e-03(0.35) 5.748e-04(0.33) 1.810e-04(0.31)

10−3 1.361e-02 5.096e-03(0.37) 1.765e-03(0.35) 5.786e-04(0.33) 1.822e-04(0.31)

10−4 1.362e-02 5.098e-03(0.37) 1.766e-03(0.35) 5.787e-04(0.33) 1.823e-04(0.32)

10−5 1.362e-02 5.098e-03(0.37) 1.766e-03(0.35) 5.787e-04(0.33) 1.823e-04(0.32)

10−6 1.362e-02 5.098e-03(0.37) 1.766e-03(0.35) 5.787e-04(0.33) 1.823e-04(0.32)

Table 2: Induced energy, classical energy, and discrete maximum norms for solutions on Shishkin meshes

using the bilinear form, a1, defined in (11)

Remark 3. There is, thus, a fundamental difference between the solutions generated by the two formu-

lations, with the k = 1 formulation offering superior performance when the discrete maximum norm is

considered, as is typical for singularly perturbed problems. The analysis of the connection between these

induced energy norms and the discrete maximum norm is a focus for future research.

4.2 Comparison with other approaches

A natural comparison is with the accuracy of other approaches, such as the classical Galerkin discretization

or the similar approach from Lin & Stynes (2012), using H(div) elements for ~w and ~z. For the classical

Galerkin discretization using piecewise bilinear elements (to match the space V N used for uN in the

formulation presented here), we can only compare results for the scalar variable, u, computing ‖u∗−uN‖E
and ‖u∗ − uN‖`∞ . These values closely match those reported in Table 2 for the a1 formulation proposed

here. We note, however, that the discretization proposed here provides much more information than the

Galerkin discretization and, in particular, gives two representations of ~∇u, as ~∇uN (obtained by directly

differentiating the bilinear approximation uN ) and as ~wN ∈
(
V N
)2

from the reformulation as a first-

order system. Thus, while the L2 errors, ‖u∗ − uN‖0 and ‖~∇u∗ − ~∇uN‖0, are comparable between the

methods, we see much better approximation of ~∇u∗ by ~wN ; see Table 3. Numerically, we observe that

ε1/2‖~w∗− ~wN‖0 scales as O(N−2 ln2N), as discussed in Remark 1, rather than the scaling of O(N−1 lnN)

that bounds ε1/2‖~∇u∗ − ~∇uN‖ for the Galerkin solution (Liu et al., 2009) and both our solution and the

method of Lin & Stynes (2012). Since the error in the gradient dominates the classical Galerkin energy

norm, it can be argued that our approach provides a better approximation in this norm than the Galerkin

solution, as observed numerically, since(
‖u∗ − uN‖20 + ε2‖~w∗ − ~wN‖20

)1/2
= O

(
N−2

(
1 + ε1/2 ln2N

))
.
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ε1/2‖~∇u∗ − ~∇uN‖0, classical Galerkin (Reduction Rate w.r.t. N)

ε/N 64 128 256 512 1024

10−0 1.592e-03 7.965e-04(0.50) 3.982e-04(0.50) 1.991e-04(0.50) 9.955e-05(0.50)

10−1 2.424e-02 1.213e-02(0.50) 6.067e-03(0.50) 3.033e-03(0.50) 1.517e-03(0.50)

10−2 6.736e-02 3.953e-02(0.59) 2.263e-02(0.57) 1.274e-02(0.56) 7.078e-03(0.56)

10−3 6.846e-02 4.016e-02(0.59) 2.300e-02(0.57) 1.295e-02(0.56) 7.194e-03(0.56)

10−4 6.858e-02 4.023e-02(0.59) 2.304e-02(0.57) 1.297e-02(0.56) 7.205e-03(0.56)

10−5 6.858e-02 4.023e-02(0.59) 2.304e-02(0.57) 1.297e-02(0.56) 7.207e-03(0.56)

10−6 6.859e-02 4.023e-02(0.59) 2.304e-02(0.57) 1.297e-02(0.56) 7.207e-03(0.56)

ε1/2||~w∗ − ~wN ||0, method of Lin & Stynes (2012) (Reduction Rate w.r.t. N)

ε/N 64 128 256 512 1024

10−0 1.405e-03 7.023e-04(0.50) 3.512e-04(0.50) 1.756e-04(0.50) 8.779e-05(0.50)

10−1 9.686e-03 4.840e-03(0.50) 2.419e-03(0.50) 1.210e-03(0.50) 6.048e-04(0.50)

10−2 1.180e-02 6.070e-03(0.51) 3.192e-03(0.53) 1.697e-03(0.53) 9.059e-04(0.53)

10−3 1.055e-02 5.094e-03(0.48) 2.514e-03(0.49) 1.258e-03(0.50) 6.343e-04(0.50)

10−4 1.043e-02 4.989e-03(0.48) 2.438e-03(0.49) 1.207e-03(0.50) 6.014e-04(0.50)

10−5 1.041e-02 4.979e-03(0.48) 2.430e-03(0.49) 1.202e-03(0.49) 5.980e-04(0.50)

10−6 1.041e-02 4.978e-03(0.48) 2.429e-03(0.49) 1.201e-03(0.49) 5.977e-04(0.50)

ε1/2||~w∗ − ~wN ||0, a1 formulation (Reduction Rate w.r.t. N)

ε/N 64 128 256 512 1024

10−0 1.796e-05 4.489e-06(0.25) 1.122e-06(0.25) 2.806e-07(0.25) 7.014e-08(0.25)

10−1 7.112e-04 1.780e-04(0.25) 4.451e-05(0.25) 1.113e-05(0.25) 2.782e-06(0.25)

10−2 4.163e-03 1.425e-03(0.34) 4.665e-04(0.33) 1.477e-04(0.32) 4.560e-05(0.31)

10−3 4.185e-03 1.433e-03(0.34) 4.690e-04(0.33) 1.485e-04(0.32) 4.584e-05(0.31)

10−4 4.187e-03 1.434e-03(0.34) 4.692e-04(0.33) 1.486e-04(0.32) 4.587e-05(0.31)

10−5 4.187e-03 1.434e-03(0.34) 4.693e-04(0.33) 1.486e-04(0.32) 4.587e-05(0.31)

10−6 4.187e-03 1.434e-03(0.34) 4.693e-04(0.33) 1.486e-04(0.32) 4.587e-05(0.31)

Table 3: Errors in gradient approximation from classical Galerkin, method of Lin & Stynes (2012), and a1

formulation on Shishkin meshes.

Comparing with the method of Lin & Stynes (2012), we again see improvements in the approximation of

the gradient terms.1 While the method of Lin & Stynes (2012) offers full first-order convergence, O(N−1)

in ε1/2‖~w∗ − ~wN‖0 for this example (in contrast to the rates of O(N−2 ln2N) observed for the simpler

example in Lin & Stynes (2012)), the a1 formulation proposed here retains the rate of O(N−2 ln2N), as

discussed in Remark 1. Furthermore, the method of Lin & Stynes (2012) offers poorer approximation of

u itself, when measured in the discrete maximum norm, as shown in Table 4. For small ε and large N ,

convergence of ||u∗ − uN ||`∞ degrades to O(N−1), in comparison to O(N−2 ln2N) as observed for both

the classical Galerkin formulation and the formulation using a1. Similar degradation was also seen in

the approximation of ~w when measured in the discrete maximum norm (data not included here), with

O(N−1 lnN) convergence for the method of Lin & Stynes (2012) (matching that of the computed ~∇uN
for the Galerkin formulation) compared to O(N−2 ln2N) for the a1 formulation proposed here.

4.3 Uniform and Bakhvalov mesh results

As discussed in Section 1, it is shown in Schopf (2014, Chap. 2) that the classical Galerkin method applied

on a uniform mesh appears to converge, uniformly in ε, with a rate of N−1/2 in the classical energy norm.

This is surprising since, if layers are not resolved, one expects the pointwise error to be O(1). Table 5

displays the error in the numerical approximations generated using the a1 bilinear form discretised on a

truly uniform N ×N mesh.

In Table 5, we see a distinct lack of convergence in both the induced energy and discrete maximum

norms for small ε, contrasted with typical finite-element convergence (first-order in induced energy and

1As the method of Lin & Stynes (2012) could not be easily implemented in the software framework described above, results
for this approach were computed using deal.II (Bangerth et al., 2007, 2013), again using a direct solver. For consistency,
results for the a1 formulation in Table 3 also come from an implementation using deal.II.
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||u∗ − uN ||`∞ (Reduction Rate w.r.t. N)

ε/N 64 128 256 512 1024

10−0 1.600e-05 4.014e-06(0.25) 1.005e-06(0.25) 2.515e-07(0.25) 6.290e-08(0.25)

10−1 2.338e-03 6.133e-04(0.26) 1.571e-04(0.26) 3.977e-05(0.25) 1.000e-05(0.25)

10−2 1.352e-02 5.063e-03(0.37) 1.754e-03(0.35) 5.748e-04(0.33) 1.810e-04(0.31)

10−3 1.451e-02 5.321e-03(0.37) 1.811e-03(0.34) 5.847e-04(0.32) 1.823e-04(0.31)

10−4 1.488e-02 5.489e-03(0.37) 1.879e-03(0.34) 7.032e-04(0.37) 2.827e-04(0.40)

10−5 1.492e-02 5.513e-03(0.37) 1.890e-03(0.34) 9.313e-04(0.49) 4.493e-04(0.48)

10−6 1.493e-02 5.515e-03(0.37) 1.920e-03(0.35) 9.732e-04(0.51) 4.903e-04(0.50)

Table 4: Discrete maximum norms for solutions on Shishkin meshes using the formulation from Lin &

Stynes (2012), defined in (8)

|||U∗ − UN |||1 (Reduction Rate w.r.t. N)

ε/N 64 128 256 512 1024

10−0 5.521e-03 2.761e-03(0.50) 1.380e-03(0.50) 6.901e-04(0.50) 3.451e-04(0.50)

10−1 3.106e-02 1.554e-02(0.50) 7.771e-03(0.50) 3.886e-03(0.50) 1.943e-03(0.50)

10−2 3.223e-01 1.717e-01(0.53) 8.738e-02(0.51) 4.389e-02(0.50) 2.197e-02(0.50)

10−3 8.384e-01 7.609e-01(0.91) 6.032e-01(0.79) 3.900e-01(0.65) 2.145e-01(0.55)

10−4 1.367e-01 3.908e-01(2.86) 7.309e-01(1.87) 8.433e-01(1.15) 7.937e-01(0.94)

10−5 7.148e-02 6.805e-02(0.95) 8.034e-02(1.18) 1.040e-01(1.29) 2.728e-01(2.62)

10−6 6.225e-02 4.637e-02(0.74) 3.862e-02(0.83) 3.971e-02(1.03) 4.950e-02(1.25)

‖u∗ − uN‖E (Reduction Rate w.r.t. N)

ε/N 64 128 256 512 1024

10−0 1.593e-03 7.964e-04(0.50) 3.982e-04(0.50) 1.991e-04(0.50) 9.955e-05(0.50)

10−1 7.674e-03 3.838e-03(0.50) 1.919e-03(0.50) 9.594e-04(0.50) 4.797e-04(0.50)

10−2 2.795e-02 1.421e-02(0.51) 7.138e-03(0.50) 3.573e-03(0.50) 1.787e-03(0.50)

10−3 5.467e-02 3.489e-02(0.64) 2.052e-02(0.59) 1.109e-02(0.54) 5.689e-03(0.51)

10−4 6.090e-02 4.217e-02(0.69) 2.896e-02(0.69) 1.978e-02(0.68) 1.288e-02(0.65)

10−5 6.114e-02 4.329e-02(0.71) 3.063e-02(0.71) 2.164e-02(0.71) 1.507e-02(0.70)

10−6 6.114e-02 4.329e-02(0.71) 3.063e-02(0.71) 2.167e-02(0.71) 1.532e-02(0.71)

‖u∗ − uN‖`∞ (Reduction Rate w.r.t. N)

ε/N 64 128 256 512 1024

10−0 1.600e-05 4.014e-06(0.25) 1.005e-06(0.25) 2.515e-07(0.25) 6.290e-08(0.25)

10−1 2.331e-03 6.124e-04(0.26) 1.570e-04(0.26) 3.975e-05(0.25) 1.000e-05(0.25)

10−2 1.253e-01 4.712e-02(0.38) 1.478e-02(0.31) 4.172e-03(0.28) 1.110e-03(0.27)

10−3 8.386e-01 6.795e-01(0.81) 4.176e-01(0.61) 1.770e-01(0.42) 6.660e-02(0.38)

10−4 9.756e-01 9.722e-01(1.00) 9.600e-01(0.99) 8.559e-01(0.89) 7.572e-01(0.88)

10−5 9.986e-01 9.988e-01(1.00) 9.988e-01(1.00) 9.877e-01(0.99) 9.730e-01(0.99)

10−6 9.986e-01 9.988e-01(1.00) 9.989e-01(1.00) 9.989e-01(1.00) 9.989e-01(1.00)

Table 5: Induced energy, classical energy, and discrete maximum norms for solutions on uniform meshes

using the bilinear form, a1, defined in (11)

second-order in discrete maximum norm) for problems that are not singularly perturbed relative to the

mesh. On the whole, this is quite expected: when ε = 1, the discretisation is the same as the standard

FOSLS discretisation (Cai et al., 1997), and for cases where εN is not small, the Shishkin mesh coincides

with a uniform mesh. For these cases, the classical energy-norm error also behaves as expected, with first-

order convergence. Interestingly, while we have no corresponding theory, for small ε, the convergence of

the energy-norm error matches the ε-uniform N−1/2 rate given by Schopf (2014, Chap. 2) for the solution

generated by the standard Galerkin scheme. Similar results are seen for the formulation using the a0 weak

form.

In a seminal paper, Bakhvalov (1969) proposed a graded layer-adapted mesh for singularly perturbed

problems. This mesh is more complicated to construct and analyse than the piecewise-uniform Shishkin

mesh, but is superior: as proved in Kellogg et al. (2008a), a standard finite-difference method applied
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on the Bakhvalov mesh to (1) has full second-order convergence without the spoiling logarithmic factor

associated with the Shishkin mesh. We refer the reader to, e.g., Linß (2010, §2.1.1) for details on the

construction of this mesh. We offer no analysis for our methods applied on a Bakhvalov mesh. Numerical

investigation, however, shows that the k = 1 formulation yields first-order convergence in the induced

energy norm, convergence in the classical energy norm that is first-order in N but scales like
√
ε, and fully

second-order convergence, independent of ε, in the discrete maximum norm.

4.4 Solving the discretised systems

Having established both the theoretical convergence rates with respect to the induced energy norm and

numerical convergence in both the classical energy and discrete maximum norms, we now turn to the

question of whether or not the solution for the k = 1 formulation can be efficiently computed using

standard preconditioned iterative methods. We choose to focus on this formulation using the Shishkin

mesh for the obvious reason that it offers the best accuracy across the three error measures considered

above. Timings presented below are for runs using a single core of a 8-Core 3GHz Intel Xeon “Sandy

Bridge” machine with 256GB of RAM; our driver code is written in C++, and all libraries and drivers

are compiled using the GNU Compiler Collection with full optimizations, using optimized LAPACK and

BLAS libraries.

We first consider timings of both the factorization and solution phases using the UMFPACK LU

factorization routines (Davis, 2004a,b; Davis & Duff, 1997, 1999). Table 6 details the time required for the

factorization and solve phases of the LU factorization for varying N and ε. For small N , we see essentially

constant factorization times across all ε; however, for N = 512 and 1024, we see some growth in the

time required for setting up the factorization as ε → 0. In MacLachlan & Madden (2013), such growth

was associated with appearance of subnormal floating-point numbers in the LU factors, although we have

not analysed causes here. More notable is that, for each ε, the growth in time required for computing

the factors with N is more than the N3 we would expect if using a nested dissection-like ordering taking

advantage of the 9-point grid connectivity of the system when considered in terms of nodal 3 × 3 blocks.

For ε = 1, the ratios of CPU times for increasing successive values of N are 8.92, 11.11, 14.89, and 11.85,

showing clear growth beyond the factor of 8 that should be achievable. Solve times are more moderate,

and scale well in ε for all N , with increase by a factor of roughly 5-7 as N increases for fixed ε, suggesting

that the ordering chosen for the LU factorization is generally a good one.

Factorization Time in Seconds

ε/N 64 128 256 512 1024

10−0 1.821e-01 1.625e+00 1.805e+01 2.688e+02 3.184e+03

10−1 1.563e-01 1.729e+00 1.859e+01 3.189e+02 3.163e+03

10−2 1.592e-01 1.714e+00 2.062e+01 3.038e+02 3.238e+03

10−3 1.592e-01 1.736e+00 2.044e+01 2.786e+02 3.104e+03

10−4 1.667e-01 1.639e+00 1.958e+01 2.963e+02 3.155e+03

10−5 1.679e-01 1.564e+00 2.290e+01 2.891e+02 3.656e+03

10−6 1.684e-01 1.667e+00 2.194e+01 3.386e+02 1.001e+04

Solve Time in Seconds

ε/N 64 128 256 512 1024

10−0 4.130e-03 2.160e-02 1.095e-01 7.384e-01 3.802e+00

10−1 3.543e-03 2.027e-02 1.368e-01 7.555e-01 3.751e+00

10−2 3.608e-03 2.156e-02 1.127e-01 7.470e-01 3.719e+00

10−3 3.615e-03 2.111e-02 1.381e-01 7.464e-01 3.730e+00

10−4 3.671e-03 2.159e-02 1.092e-01 7.409e-01 3.727e+00

10−5 3.673e-03 2.102e-02 1.277e-01 7.384e-01 3.781e+00

10−6 3.674e-03 2.149e-02 1.380e-01 7.561e-01 3.961e+00

Table 6: Factorization and solve phase timings for k = 1 formulation discretised on Shishkin meshes, using

UMFPACK LU decomposition.

We compare with the setup and solve times of using algebraic multigrid (AMG) as a preconditioner

for GMRES, still for the k = 1 formulation, noting that the discretisation matrices that arise for both
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formulations are non-symmetric, due to the Petrov-Galerkin formulation considered. We use the hypre

package developed by Lawrence Livermore National Laboratory to provide both the GMRES routine and

the AMG preconditioner, through the BoomerAMG code (Henson & Yang, 2002). While both hypre and

BoomerAMG support large-scale parallelism, we consider only a single thread in these runs. Therefore,

we use classical serial AMG parameters, making use of the nodal structure of the degrees of freedom, a

strength of connection threshold of 0.5, classical (Ruge-Stüben) coarsening and interpolation, and a scaled

symmetric Gauss-Seidel smoother. See Ruge & Stüben (1987) and Stüben (2001) for general discussions

of choice of parameters within AMG, and hypre (2012); Henson & Yang (2002) for details of the specifics

of the hypre and BoomerAMG packages. A single V(1,1) cycle of AMG is used as the preconditioner at

each step of the GMRES iterations.

Table 7 presents timings for the AMG setup and solve phases for varying N and ε. In contrast to

the slight increase in setup times with decreasing ε noted for LU factorization above, we now see some

decrease in setup times for AMG with decreasing ε. This is expected, since more entries in the system

matrices are deemed to be weak connections as ε (and, consequently, the entries scaled by ε) decreases.

For each fixed ε, we further see near-optimal scaling in the timings for the setup phase, with growth by

factors of roughly 4 each time N doubles. Furthermore, we note that the setup times are dramatically

better for AMG across all problems; for N = 1024, the AMG setup time is less than 1/500 of that of LU

decomposition for ε = 1, and less than 1/2000 of the time required for LU decomposition for ε = 10−6.

Setup Time in Seconds

ε/N 64 128 256 512 1024

10−0 2.392e-02 8.940e-02 3.684e-01 1.547e+00 6.191e+00

10−1 2.444e-02 8.691e-02 3.621e-01 1.516e+00 6.157e+00

10−2 1.820e-02 9.315e-02 3.986e-01 1.630e+00 5.840e+00

10−3 1.734e-02 6.759e-02 2.832e-01 1.223e+00 5.804e+00

10−4 1.555e-02 6.638e-02 2.832e-01 1.197e+00 5.089e+00

10−5 1.564e-02 6.177e-02 2.602e-01 1.229e+00 5.049e+00

10−6 1.502e-02 6.280e-02 2.651e-01 1.094e+00 4.950e+00

Solve Time in Seconds (GMRES Iterations)

ε/N 64 128 256 512 1024

10−0 2.231e-02 (5) 1.097e-01 (5) 6.359e-01 (6) 3.188e+00 (7) 1.319e+01 (7)

10−1 1.802e-02 (4) 1.086e-01 (5) 5.527e-01 (5) 2.811e+00 (6) 1.314e+01 (7)

10−2 1.987e-02 (4) 1.295e-01 (5) 7.080e-01 (6) 4.085e+00 (8) 1.547e+01 (8)

10−3 1.853e-02 (4) 1.152e-01 (5) 5.934e-01 (5) 3.490e+00 (7) 1.891e+01 (9)

10−4 1.930e-02 (4) 1.204e-01 (5) 5.902e-01 (5) 3.493e+00 (7) 1.445e+01 (7)

10−5 1.818e-02 (4) 1.114e-01 (5) 5.706e-01 (5) 3.035e+00 (6) 1.271e+01 (6)

10−6 1.814e-02 (4) 1.123e-01 (5) 5.753e-01 (5) 2.943e+00 (6) 1.288e+01 (6)

Table 7: Setup and solve phase timings (with GMRES iteration counts in parentheses) for k = 1 formulation

discretised on Shishkin meshes using AMG-preconditioned GMRES.

For the solve phase, we must first choose a stopping criterion for GMRES. Here, we use an experimen-

tally determined criterion, requiring the `2 norm of the residual of the linear system to be less than 0.25/N3

for the Shishkin mesh, which reliably achieves essentially the same accuracy in the discrete maximum norm

as the direct solver across all values of N and ε, varying only in the last digit reported in only a few cases.

For most values of ε, we see growth in solve phase timing of roughly N2 lnN , corresponding to the tighter

stopping tolerance for increasing N . While solve phase timings and iteration counts are roughly equal for

both large and small values of ε, we see some growth, in both iteration counts and solve times for ε = 10−2

and 10−3. For N = 1024, these represent cases in the middle ground, where the problem is not strongly

singularly perturbed relative to the mesh, but the Shishkin mesh is also not a uniform mesh. In these

cases, the stopping criterion used is not sharp, resulting in “oversolving” of the linear system, beyond the

point where the error in the approximate solution is changing in any of the error measures considered

above. By using a less-strict stopping tolerance, improved performance could be found for these cases, but

at the cost of having to tune the algorithm for such special cases. Similar performance of both direct and

iterative solvers is seen for the case of Bakhvalov meshes.

While the setup phase times for AMG are notably faster than those for LU factorization, even for large
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meshes, the solve phase timings for the direct solver are faster than those for AMG, by factors of 3-5 times.

While it could be argued that this ratio works in favor of the direct solver, by allowing a single expensive

setup phase to be amortized over the solution of the linear system for many right-hand sides, this is not

practically the case. For N = 1024 and ε = 1, the two approaches would break even only after solving the

linear system for 339 right-hand sides. For N = 1024 and ε = 10−6, they would break even after solving

the linear system for 1122 right-hand sides.

5 Conclusions

We have proposed two new “balanced” finite-element methods for solving singularly perturbed reaction-

diffusion problems, which simplify the approach of Lin & Stynes (2012). Theoretical analysis is provided

that shows coercivity and continuity in induced “balanced” norms, and establishes uniform convergence on

Shishkin meshes. A numerical investigation reveals that the formulation that gives the same weighting to

the divergence and curl terms is superior in practise, offering good convergence of errors measured in the

discrete maximum norm. Further theoretical and empirical investigations are needed in order to determine

the precise reason for this.

Experimental results on the graded layer-adapted mesh of Bakhvalov on the unit square show that

the method also works very well in this case: a more thorough study is needed to ground this in theory,

and to optimise the mesh parameters for this method. While the formulation retains ellipticity in the

induced balanced norm for any suitably smooth domain Ω, additional work would be needed to extend

the approximation properties proven here to other domains. First, a suitable solution decomposition is

needed, along with pointwise bounds; these can be found for several cases in Shishkin & Shishkina (2009).

Secondly, an analogue of the tensor-product Shishkin mesh used here (or any suitably graded mesh to

resolve boundary and corner layers) is needed, for which analogues of the theorems presented in Section

3.5 or Lin & Stynes (2012) can be proven. Analogous results to Lemma 3.1 are known on triangular meshes,

subject to a maximum angle condition, and could be used in more general settings in two dimensions (Roos

et al., 2008, Chapter 3). Likewise, similar results are known on tensor-product meshes in three dimensions

(Apel, 1999).

Two main advantages arise from working in a weighted H1 product space. First, as seen in Section 4.4,

fast convergence of AMG-preconditioned GMRES is obtained for the resulting discretised systems. As a

result, cost of solution to an ε-independent discretization error depends only very weakly on ε. Secondly,

robust a posteriori error estimates are available for finite-element discretizations, such as the one proposed

here, on H1 spaces (Kunert, 2001; Formaggia & Perotto, 2001, 2003; Picasso, 2003), which can be used to

drive adaptive mesh refinement algorithms, such as in Huang et al. (2010). Such adaptivity is considered

a necessity for extending the approach developed here to semilinear reaction-diffusion problems, and will

be the subject of future research.
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