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Abstract: Beams of microscopic particles penetrating scattering background matter
play an important role in several applications. The parameter choices made here are
motivated by the problem of electron-beam cancer therapy planning. Mathematically,
a steady particle beam penetrating matter, or a configuration of several such beams,
is modeled by a boundary value problem for a Boltzmann equation. Grid-based dis-
cretization of such a problem leads to a system of algebraic equations. This system
is typically very large because of the large number of independent variables in the
Boltzmann equation — six if no dimension-reducing assumptions other than time in-
dependence are made. If grid-based methods are to be practical for these problems,
it is therefore necessary to develop very fast solvers for the discretized problems. For
beams of mono-energetic particles interacting with a passive background, but not with
each other, in two space dimensions, the first author proposed such a solver, based on
angular domain decomposition, in [3]. Here, we propose and test an angular multi-
grid algorithm for the same model problem. Our numerical experiments show rapid,
grid-independent convergence. For high-resolution calculations, our method is sub-
stantially more efficient than the angular domain decomposition method of [3]. In
addition, unlike angular domain decomposition, the angular multigrid method works
well even when the angular diffusion coefficient is fairly large.

1 Introduction
Charged-particle transport plays an important role in many fields; examples include elec-
tron microscopy [20], cancer therapy using electrons [12, 13], protons, or heavy ions [22],
and various other applications of ion beams [21, 26]. The work presented here aims to con-
tribute to the development of accurate and efficient simulation methods for charged-particle
transport. The parameter choices in this paper are motivated by the electron-beam cancer
therapy dose calculation problem [12, 13]. Procedures for electron-beam cancer treatment
plan optimization require the solution of many electron transport problems; the efficiency
of the algorithms used for these transport problems is therefore important.

Mathematically, a particle beam, or a configuration of several such beams, is modeled
by a Boltzmann equation. This equation may be linear or nonlinear, depending on whether
or not the beam particles interact with each other. Here, we will assume linearity, a common
and accurate approximation in electron-beam cancer therapy planning.

Thus, our investigation belongs to the vast subject of numerical methods for the linear
Boltzmann equation. One important source of difficulty in the computational solution of the
linear Boltzmann equation is the sheer size of the problems: There are, in general, seven
independent variables (position and velocity in three dimensions, and time), and still six
when considering time-independent boundary value problems, as we do here. Of course,
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this is the number of independent variables in any kinetic problem (unless the geometry
is special), not just in charged-particle transport. However, there are additional difficul-
ties associated specifically with charged-particle transport: The mean free path tends to be
small, scattering tends to be very forward-peaked (i.e., particles are typically deflected only
very slightly by a single interaction with the background), and particles typically lose very
little energy in a single interaction. These properties of charged-particle transport cause
difficulties with the accuracy of discretizations and with the efficiency of solution algo-
rithms for the discretized problems [16, Section 3.2], which have lead many in the Medical
Physics community to believe that the most efficient way of modeling electron beams may
be Monte Carlo simulation. However, based on a rough theoretical complexity estimate
presented in [4], we believe that deterministic, grid-based methods could eventually prove
to be a very attractive alternative to Monte Carlo simulation, provided that all available
tools of numerical computing are brought to bear to develop highly accurate discretizations
as well as optimally efficient solution algorithms for the discretized problems. Some algo-
rithm and code development efforts in this direction are in fact underway; see, for instance,
[2] and [9].

In this paper, we focus on the problem of designing highly efficient solvers for a grid-
based discretization of the model equation of [3] (reviewed in Section 2). This equation de-
scribes physics in “Flatland” [1], i.e., in a fictitious two-dimensional world. It is arguably
the simplest possible caricature of charged-particle transport in more than one space di-
mensions. We propose and test an angular multigrid method for this problem. The idea of
angular multigrid methods for particle transport with forward-peaked scattering was first
proposed, for a one-dimensional problem, by J. Morel and T. Manteuffel [17]; extensions
of the idea to higher dimensions have had limited success so far [18]. However, for our
two-dimensional model problem, the convergence of the angular multigrid method turns
out to be rapid, and the speed of convergence appears to be independent of the grid size. It
is not entirely clear at this point why our approach, for the simpler problem discussed here,
does not enounter the obstacles described in [18]; see Section 10 (Discussion) for some
thoughts on this point.

2 The Model Problem
To make this paper as self-contained as possible, we will review the model equation of [3]
and its properties here, closely following but abbreviating the exposition of [3]. We will
mix physical and mathematical terminology, writing, for instance, about “particles” that
move “in a domain Ω⊆ R2”.

2.1 Model equation
We consider mono-energetic particle transport in two space dimensions. It must be em-
phasized that this is not the same as (and, indeed, is simpler than) the projection of three-
dimensional particle transport into a plane. We consider the motion of particles in a domain,
Ω ⊆ R2, assuming that all particles move at the same constant speed, c > 0. Each parti-
cle experiences collisions at random times, causing random direction changes. The inter-
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collision distances, λ > 0, are exponentially distributed and independent of each other; their
expectation, λ > 0, is called the mean free path. The deflection angles, η, (see Figure 1)
are independent of each other and of the inter-collision distances.

These difficulties have lead many in the Medical Physics community to believe that the
most efficient way of calculating electron beams may be Monte Carlo simulation. However,
based on a rough theoretical complexity estimate presented in [4], we believe that determin-
istic, grid-based methods may eventually prove to be a very attractive alternative to Monte
Carlo simulation, provided that all available tools of numerical computing are brought to
bear, making the discretizations highly accurate and the solvers for the discretized prob-
lems highly efficient. Some algorithm and code development efforts in this direction are in
fact underway; see for instance [2] and [6].

In this paper, we will focus on the problem of designing highly efficient solvers for
a grid-based discretization of the model equation of [3] (reviewed in Section 2). This
equation describes physics in “Flatland” [1], i.e., in a ficitious two-dimensional world. It
is arguably the simplest possible caricature of charged particle transport in more than one
space dimensions. We will present an angular multigrid method for this problem. The idea
of angular multigrid methods for particle transport with forward-peaked scattering was first
proposed, for a one-dimensional problem, by J. Morel and T. Manteuffel [11]; extensions
of the idea to higher dimensions have had limited success so far [12]. The convergence of
our method is rapid, and the speed of convergence is independent of the grid size. Unlike
the angular domain decomposition method of [3], the method presented here works well
even for fairly large angular diffusion coefficients. xr
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the model equation of [3] and its properties here, closely following but abbreviating the
exposition in [3]. We will mix physical and mathematical terminology, writing for instance
about “particles” that move “in a domain Ω ⊆ IR2”. It will always be obvious, however,
how the more intuitive physical terminology could be translated into strictly mathematical
language.

We consider mono-energetic particle transport in two space dimensions. It should
be emphasized that this is not the same as (and simpler than) the projection of three-
dimensional particle transport into a plane. We consider the motion of particles in a domain
Ω ⊆ IR2. All particles move at the same constant speed c > 0. Each particle experiences
collisions at random times, causing random direction changes. The inter-collision distances
λ > 0 are exponentially distributed and independent of each other; their expectation λ > 0
is called the mean free path. The deflection angles η (see Fig. 1) are independent as well,
with probability density function p : (−π,π)→ IR+. We assume p to be even, i.e., we as-
sume that particles have no preference for scattering to the right over scattering to the left
or vice versa. The graph of p qualitatively looks like that shown in Fig. 2. The forward-
peakedness of the scattering is reflected in a peak in the graph near η = 0. The peak would
typically be very much more pronounced than that shown in Fig. 2.
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Figure 1: An example of a particle path.

The probability density of η is p : (−π,π)→R+. We assume that p is an even function,
i.e., that particles have no preference for scattering to the right over scattering to the left
or vice versa. The graph of p qualitatively looks like that shown in Figure 2, where the
forward-peakedness of the scattering is reflected by the peak in the graph of p near η = 0.
For realistic models of the scattering of electrons, however, this peak would be much more
pronounced than in Figure 2.
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Figure 2: A qualitative plot of the probability density p.

The phase space density, f = f (x,y,θ, t), is the number of particles per unit (x,y,θ)-
volume, where (x,y)∈Ω denotes the particle position, (cosθ,sinθ) is the particle direction,
and t ≥ 0 is time. The function f is 2π-periodic in θ. The time evolution of f is governed
by the linear Boltzmann equation, the mathematical statement of the law of conservation
of particles,

ft + ccosθ fx + csinθ fy = cQ f . (1)

Here, c denotes the particle speed (assumed constant in this model problem), and the colli-
sion operator Q is defined by

Q f =
p∗ f − f

λ
,

where ∗ denotes convolution with respect to θ:

(p∗ f )(θ) =
Z

π

−π

p(η) f (θ−η)dη .
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As mentioned earlier, in some applications, including electron-beam radiation therapy,
the primary interest is in steady-state problems. We therefore drop the term ft in Eq. (1).
We then also divide both sides by c. The result is

cosθ fx + sinθ fy =
p∗ f − f

λ
. (2)

This is our model equation.
We define the Fourier coefficients,

p̂n =
Z

π

−π

exp(−inη)p(η)dη (3)

and
f̂n =

1
2π

Z
π

−π

exp(−inτ) f (τ)dτ (4)

for all integers n (where, for now, we write f = f (θ) and suppress the dependence on
(x,y)). Note that we include the factor of 1/(2π) in (4) but not in (3); this is intentional and
will simplify the notation a bit. With these definitions, we have

f (θ) =
∞

∑
n=−∞

f̂n exp(inθ) ,

and it is straightforward to verify that

Q f (θ) =
∞

∑
n=−∞

p̂n−1

λ
f̂n exp(inθ). (5)

This equation serves as the basis of our discretization of Q; see Section 3. In analyzing this
discretization, the following observations about p̂n will be useful. Since p is assumed to be
an even function,

p̂n =
Z

π

−π

cos(nη) p(η)dη .

This implies that

p̂0 = 1, −1 < p̂n < 1 for all n 6= 0, and p̂−n = p̂n for all n. (6)

When collisions are strongly forward-peaked (that is, when p(η) is small everywhere
except near η = 0), the following calculation is plausible:

p∗ f − f

λ
(θ) =

1

λ

(Z
π

−π

p(η) f (θ−η)dη− f (θ)
)
≈

1

λ

(Z
π

−π

p(η)
(

f (θ)− fθ(θ)η+ fθθ(θ)
η2

2

)
dη− f (θ)

)
= D fθθ(θ) ,

where the angular diffusion coefficient, D, is defined by

D =
1

2λ

Z
π

−π

η
2 p(η)dη . (7)
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This calculation was made rigorous in [3] as follows. Assume that

λ→ 0 and
Z

π

−π

η
2 p(η)dη→ 0 ,

that is, collisions become increasingly frequent and increasingly forward-peaked. Assume
further that there is a balance between these two limits in the following sense:R

π

−π
η2 p(η)dη

2λ
→ D > 0 .

We then ask whether

Q f ⇀ D
∂2 f
∂2θ

, (8)

where “⇀” denotes weak convergence in L2 (that is, convergence of Fourier coefficients).
Proposition 1 of [3] states that (8) holds if and only ifR

π

−π
η4 p(η)dηR

π

−π
η2 p(η)dη

→ 0 . (9)

We now turn to the question of how to construct a probability density, p, that mimics
realistic three-dimensional scattering kernels as far as possible in Flatland. It is natural to
consider p ∼ 1/|η|q for some q > 0. To obtain a 2π-periodic function that is non-singular
at η = 0, we replace |η| by

√
2(1− cosη)+ ε2 for some small parameter ε > 0; see Figure

3. Thus we define
p(η) =

C
(2(1− cosη)+ ε2)q/2 , (10)

with the constant C > 0 chosen so that
R

π

−π
p(η)dη = 1.

!3 !2 !1 0 1 2 30
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Figure 3: |η| (dashes) vs.
√

2(1− cosη)+ ε2 (solid curve) with ε = 0.1.

Proposition 2 of [3] shows that, for this choice of p(η),

lim
ε→0

Z
π

−π

η
2 p(η)dη = 0 if and only if q≥ 1 ,

and

lim
ε→0

R
π

−π
η4 p(η)dηR

π

−π
η2 p(η)dη

= 0 if and only if q≥ 3 .
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Thus, for q≥ 3, Eq. (2) can be approximated by the Fokker-Planck equation,

cosθ fx + sinθ fy = D fθθ, (11)

when λ and
R

π

−π
η2 p(η)dη are small, with D defined as in (7).

In the borderline case, q = 3, the convergence in (9) is logarithmic [3]. In three space
dimensions, the screened Rutherford scattering cross section [25] has the precisely anal-
ogous properties [5, Appendix]. We therefore say that (10) with q = 3 defines screened
Rutherford scattering in Flatland.

Another interesting case is q = 2. In this case, the approximation of Q by D∂2/∂θ2 is
not valid. In fact, it is not hard to show that in the limit as ε → 0, one obtains a pseudo-
differential operator proportional to −

√
−∂2/∂θ2. In this and some other regards, (10)

with q = 2 resembles the Henyey-Greenstein scattering cross section [11]; see [19] and [3].
We therefore say that (10) with q = 2 defines Henyey-Greenstein scattering in Flatland.

In the examples of this paper, we always specify the parameters q, λ, and D, not the
less intuitive parameter ε. Note that ε can be calculated, using Eqs. (7) and (10), from q, λ

and D.

2.2 Boundary conditions
We supplement Eq. (2) or its Fokker-Planck approximation (11) with inflow boundary con-
ditions. That is, f (x,y,θ) is prescribed if (x,y) lies on the boundary, ∂Ω, of Ω and the
direction vector, (cosθ,sinθ), points from (x,y) into Ω. The details of how this is imple-
mented in a discrete approximation of the continuous boundary value problem turn out to
be crucial for the efficiency of our multigrid algorithm; see Section 4.1.

2.3 Choice of parameters
The choice of the parameters D and λ was discussed in detail in [3, Section 5]. It was
shown there that, approximately, the amount by which a beam broadens as it penetrates a
strip of width L in the (x,y)-plane equals (DL)1/2 L. For the beam to remain recognizable
as a beam, (DL)1/2 L should be much smaller than L, i.e.,

√
DL� 1. It was further argued

in [3, Section 5] that the values of L/λ that are most relevant in electron-beam radiation
therapy are on the order of (a few multiples of) 10,000.

For simplicity, we consider Ω = (0,L)× (0,L) throughout this paper, and assume that
x and y are non-dimensionalized so that L becomes 1:

Ω = (0,1)× (0,1) . (12)

The condition
√

DL� 1 then becomes

D� 1 .

The condition L/λ ∼ 10,000 becomes λ ∼ 1/10,000. Many of our numerical results are
for D = 0.1 and λ = 1/20,000, but in Section 9, we will also test much larger values of D,
and a broad range of values of λ.
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2.4 The spatial diffusion limit
Very large values of D may be of lesser interest in electron-beam radiation therapy. How-
ever, we will examine the behavior of our multigrid algorithm for larger values of D in
Section 9.1.4. To elucidate the nature of the problem for large D, we will briefly consider
the limit D → ∞ here, for simplicity focusing exclusively on the Fokker-Planck equation
(11). In this limit, our model transport process turns into diffusion in the (x,y)-plane. This
is entirely analogous to the standard asymptotic expansion of the neutron transport equa-
tion in the limit of vanishing mean free path [10, 14]; in fact, D→ ∞ implies λ→ 0 by Eq.
(7). We present here the formal derivation of the spatial (steady-state) diffusion equation
from Eq. (11) in the limit D→ ∞.

Suppose that

D =
D0

δ
,

with D0 > 0 fixed, δ > 0, δ→ 0. Assume an asymptotic expansion of the form

f = f (0) +δ f (1) +δ
2 f (2) + ..., (13)

where f (0), f (1), f (2), ... are functions of (x,y,θ), but not of δ, and are periodic in θ with
period 2π. We insert (13) into (11):

cosθ

(
f (0) +δ f (1) +δ

2 f (2) + ...
)

x
+ sinθ

(
f (0) +δ f (1) +δ

2 f (2) + ...
)

y
=

D0

δ

(
f (0) +δ f (1) +δ

2 f (2) + ...
)

θθ

. (14)

Isolating terms containing the factor δ−1, we find

f (0)
θθ

= 0 .

Thus f (0) is a linear function of θ. Since f (0) is also 2π-periodic in θ, we conclude

f (0) = f (0)(x,y) . (15)

Isolating terms containing the factor δ0 in (14), we now find

cosθ f (0)
x + sinθ f (0)

y = D0 f (1)
θθ

. (16)

Integrating twice, we obtain

D0 f (1) =−cosθ f (0)
x − sinθ f (0)

y +a(x,y)+b(x,y)θ .

Since f (1) is periodic in θ, we must have b(x,y)≡ 0:

D0 f (1) =−cosθ f (0)
x − sinθ f (0)

y +a(x,y) . (17)

Isolating terms containing the factor δ1 in Eq. (14), we obtain

cosθ f (1)
x + sinθ f (1)

y = D0 f (2)
θθ

. (18)
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Inserting Eq. (17) into (18) and integrating over θ, we find Laplace’s equation for f (0):

f (0)
xx + f (0)

yy = 0 . (19)

Thus for large D, a solution of (11) will be nearly isotropic (independent of θ) in the
interior of the domain Ω, and satisfy Laplace’s equation. The solution will not be isotropic
on the boundary, however; there will be a boundary layer in which a rapid transition from
anisotropy on the boundary to isotropy in the interior will occur.

3 Discretization in angle
Following [3], we discretize the collision operator, Q, based on Eq. (5):

Q f (θ) =
p∗ f − f

λ
=

∞

∑
n=−∞

p̂n−1

λ
f̂n exp(inθ) =

∞

∑
n=−∞

p̂n−1

λ

1
2π

Z
π

−π

exp(−inτ) f (τ)dτ exp(inθ) . (20)

We choose a positive integer, nθ, divisible by 2 for simplicity, and define

∆θ =
2π

nθ

.

The discretization of Q is an operator, Q∆θ, that maps the space of 2π-periodic functions
defined on the grid

Γnθ
= {θl = l∆θ : l integer}

into itself. A 2π-periodic function, f , on Γnθ
can naturally be identified with the vector

f = ( f (θl))l=−nθ/2+1,−nθ/2+1,...,nθ/2 .

Therefore Q∆θ can also be thought of as an nθ× nθ-matrix. Using this point of view, Q∆θ

is defined by the following discrete analog of Eq. (20):(
Q∆θf

)
l
=

nθ/2

∑
n=−nθ/2+1

p̂n−1

λ

1
nθ

nθ/2

∑
m=−nθ/2+1

exp(−inθm) f (θm)exp(inθl) . (21)

An equivalent formula is obtained by replacing n with −n in the summands on the right-
hand side of Eq. (21):(

Q∆θf
)

l
=

nθ/2

∑
n=−nθ/2+1

p̂−n−1

λ

1
nθ

nθ/2

∑
m=−nθ/2+1

exp(inθm) f (θm)exp(−inθl) . (22)

Averaging Eqs. (21) and (22) and using p̂−n = p̂n (see (6)), we find(
Q∆θf

)
l
=

1
nθ

nθ/2

∑
n=−nθ/2+1

nθ/2

∑
m=−nθ/2+1

p̂n−1

λ
cos(n(θl −θm)) f (θm) . (23)
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This form of the equation shows that Q∆θ is real and symmetric. The eigenvalues of Q∆θ

are (p̂n−1)/λ, −nθ/2+1≤ n≤ nθ/2, with associated eigenvectors

(exp(inθl))−nθ/2+1≤l≤nθ/2

[3, Section 10]. Since p̂0 = 1 and |p̂n|< 1 for all n 6= 0 (see (6)), we conclude that Q∆θ is
negative semi-definite with a one-dimensional kernel spanned by vector [1,1, ...,1]T ∈Rnθ;
this is Proposition 4 of [3].

In the Fokker-Planck limit,
p̂n−1

λ
→−Dn2 ;

this is Eq. (14) of [3]. In this limit, the right-hand side of Eq. (21) therefore becomes

nθ/2

∑
n=−nθ/2+1

(−Dn2)

(
1
nθ

nθ/2

∑
m=−nθ/2+1

exp(−inθm) f (θm)

)
exp(inθl) . (24)

Note that −n2 is the eigenvalue of ∂2/∂θ2 associated with the eigenfunction exp(inθ).
Eq. (24) represents a spectrally accurate discretization of D fθθ. We will also report on
numerical experiments using the standard second-order three-point discretization of the
second derivative with respect to θ on the right-hand side of the Fokker-Planck equation
(11).

4 Discretization in space
In this paper, it is not our aim to address the question how to best discretize our model
equation in space. In what follows, we propose a relaxation technique and an associated
multigrid algorithm that we believe will be efficient for many reasonable discretizations.
The central assumptions of this method are that the discretization of the scattering term
(either in the full scattering operator or its Fokker-Planck approximation) preserves the
elliptic character of this term, and that the spatial terms are, in some sense, discretized
upstream, so that the effects of advection may be effectively computed using a downstream
Gauss-Seidel-like iteration. Our focus in this paper is on the optimally efficient solution
of the resulting discretized equations. We use what are arguably the simplest possible
discretizations for the spatial terms, first- and second-order upstream differencing based on
a uniform spatial grid.

4.1 The discrete inflow and outflow boundaries
Our spatial grid points are

( j∆s,k∆s), 0≤ j,k ≤ ns ,

where ns > 0 is an integer and ∆s = 1/ns. As discussed in Section 3, the discrete values of
θ are

θl = l∆θ, −nθ/2+1≤ l ≤ nθ/2 ,
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where nθ > 0 is an even integer and ∆θ = 2π/nθ.
It is important for the performance of the multigrid algorithm of Section 8 to be careful

about what we mean, in the discrete case, by inflow directions for spatial grid points on the
boundary of Ω. Let ( j∆s,k∆s) be a spatial boundary point, i.e., j = 0, j = ns, k = 0, or
k = ns. Let−nθ/2+1≤ l ≤ nθ/2. At first sight, it would seem natural to call (cosθl,sinθl)
an inflow direction if it points strictly into Ω from the boundary point ( j∆s,k∆s), and an
outflow direction otherwise. This definition, however, is not quite compatible with standard
definitions of grid-transfer operators, in a sense explained in Section 8.1. We have found
that, as a result, multigrid convergence can deteriorate significantly as the angular grid is
refined.

There are two different approaches to overcoming this problem. One is to modify stan-
dard grid-transfer and coarse-grid operators. Proper multigrid convergence can, in fact, be
restored this way. However, we have adopted the simpler and more straightforward alter-
native of modifying the definitions of inflow and outflow directions, as described in the
following paragraph. The modified definitions are compatible with standard grid-transfer
operators, as explained in Section 8.1, and lead to grid-independent convergence of stan-
dard multigrid cycles, as demonstrated in Section 9.

At a point ( j∆s,k∆s) ∈ ∂Ω, a direction vector (cosθl,sinθl) is called an outflow di-
rection if the negative of (cosθl,sinθl) points strictly into the domain. We also say then
that ( j∆s,k∆s, l∆θ) belongs to the discrete outflow boundary, denoted by ∂Ωout . (For sim-
plicity, we do not indicate the dependence of ∂Ωout on ∆s and ∆θ in this notation.) We
call (cosθl,sinθl) an inflow direction at the spatial boundary point ( j∆s,k∆s) if it is not
an outflow direction, and we say then that ( j∆s,k∆s, l∆θ) belongs to the discrete inflow
boundary, denoted by ∂Ωin. Figure 4 illustrates the definitions of ∂Ωout and ∂Ωin. (Note
that in the corner points of ∂Ω, many directions that would intuitively be considered outflow
directions are in fact inflow directions by our definition.) The set

Ω
◦ = {( j∆s,k∆s, l∆θ) | ( j∆s,k∆s) 6∈ ∂Ω}

is called the interior of the grid. Thus, the spatial grid is partitioned into its interior and the
inflow and outflow boundaries:

{( j∆s,k∆s, l∆θ) |0≤ j,k ≤ ns, −nθ/2+1≤ l ≤ nθ/2}= Ω
◦∪∂Ω

out ∪∂Ω
in .

Approximations
f j,k,l ≈ f ( j∆s,k∆s, l∆θ)

are prescribed if ( j∆s,k∆s, l∆θ) ∈ ∂Ωin, and computed from the finite-difference equations
if ( j∆s,k∆s, l∆θ) ∈ ∂Ω◦∪∂Ωout .

As indicated in Figure 4, we deviate from the naive definitions of inflow and outflow
directions only in directions tangential to ∂Ω, and in a range of directions in the corner
points of ∂Ω; thus our modifications affect only a set of measure zero in the continuous
inflow boundary, and should not prevent convergence to the solution of the continuous
problem as ∆s→ 0 and ∆θ→ 0.

10



Figure 4: Discrete “inflow” (bold) and “outflow” (dashes) directions.

4.2 First-order upstream differencing
The first-order upstream differencing method is based on the one-sided difference formula,

ϕ
′(s) =

ϕ(s)−ϕ(s−∆s)
∆s

+O(∆s),

for the derivative, ϕ′(s), of a smooth function, ϕ, of the real variable s. The difference
quotients are taken in the upstream direction in all cases, that is, in the direction opposite
to the direction vector (cosθ,sinθ). As an example, suppose that cosθl > 0 and sinθl < 0;
the first-order upstream discretization of

cosθ fx + sinθ fy (25)

at (x,y,θ) = ( j∆s,k∆s, l∆θ) is then

cosθl
f j,k,l − f j−1,k,l

∆s
+ sinθl

f j,k+1,l − f j,k,l

∆s
.

Note that this is well-defined, i.e., j− 1 ≥ 0 and k + 1 ≤ ns, if ( j∆s,k∆s, l∆θ) 6∈ ∂Ωin.
The first-order upstream differencing approximation for (25) is, in general, well-defined
for ( j∆s,k∆s, l∆θ) 6∈ ∂Ωin. At points ( j∆s,k∆s, l∆θ) ∈ ∂Ωin, the transport equation is not
discretized, but instead f j,k,l is prescribed.

4.3 Second-order upstream differencing.
The second-order upstream differencing method is based on the one-sided difference for-
mula

ϕ
′(s) =

1.5ϕ(s)−2ϕ(s−∆s)+0.5ϕ(s−2∆s)
∆s

+O(∆s2) .
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Again the difference quotients are taken in the upstream directions. As in the example
above, suppose again that cosθl > 0 and sinθl < 0. The second-order upstream discretiza-
tion of (25) is then

cosθl
1.5 f j,k−2 f j−1,k +0.5 f j−2,k

∆s
+ sinθl

−0.5 f j,k+2 +2 f j,k+1−1.5 f j,k

∆s
. (26)

Note that this is not well-defined in points with j = 1 or k = ns−1. When the second-order
discretization of fx or fy is not well-defined, we use the first-order discretization instead.
For instance, when j = 1 but k < ns−1, then (26) is replaced by

cosθl
f j,k− f j−1,k

∆s
+ sinθl

−0.5 f j,k+2 +2 f j,k+1−1.5 f j,k

∆s
.

Since first-order discretizations are used only in grid points immediately adjacent to the
boundary, we expect the overall order of convergence of our discretization scheme to be
two; the numerical experiments of Table 1 in Section 6 support this.

5 Test problems
In what follows, we will consider three test problems. The first two are chosen to model
somewhat realistic broad beams of electrons in two distinct configurations. The third test
problem is chosen specifically to test the numerical performance of the proposed algo-
rithms.

5.1 Test problem 1: A broad beam aligned with the grid
We first consider a broad beam in which the mean direction of incoming particles is aligned
with the grid. The inflow boundary condition is of the form

f (x,y,θ) =
{

g(x)h(θ mod 2π) if 0≤ x≤ 1, y = 0, 0≤ θ mod 2π≤ π ,
0 otherwise ,

(27)

where

θ mod 2π = θ+2πu, u = integer chosen so that −π < θ mod 2π≤ π .

The function g = g(x) is a smoothed step function; its graph is depicted in Figure 5. The
formulas defining g are

g(x) =


0 if 0≤ x≤ 0.2 ,

(1+ tanh(2tan(5(x−0.3)π)))/2 if 0.2≤ x≤ 0.4 ,
1 if 0.4≤ x≤ 0.6 ,

(1− tanh(2tan(5(x−0.7)π)))/2 if 0.6≤ x≤ 0.8 ,
0 if 0.8≤ x≤ 1 .

(28)

(This is an infinitely often differentiable function.) We further define

h(θ) =
e−(θ−π/2)2/0.1

√
0.1π

. (29)
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Figure 5: Spatial profile of the beams in test problems 1 and 2 at the inflow boundary.
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Figure 6: Angular profile of the beams in test problems 1 and 2 (solid and dashed) at the
inflow boundary.

Thus the mean angle at which particles enter is π/2. The solid curve in Figure 6 is the
graph of (29). Figure 7A shows the macroscopic density,

ρ j,k =
nθ/2

∑
l=−nθ/2+1

f j,k,l ∆θ,

for this example, using screened Rutherford scattering with D = 0.1 and λ = 1/20,000,
displayed on a 32 × 32-grid, but computed using second-order upstream differencing on a
512×512×512-grid.
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Figure 7: Macroscopic density for two broad beams, one (A) aligned with the grid, and the
other (B) not.
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5.2 Test problem 2: A broad beam not aligned with the grid
Our second test problem differs from the first only in the definition of the function h. In
comparison with the first test problem, we shift the mean incoming particle direction by
0.35 radians, or approximately 20◦, so that

h(θ) =
e−(θ−π/2−0.35)2/0.1

√
0.1π

. (30)

The dashed line in Figure 6 is the graph of h. The resulting macroscopic density is shown
in Figure 7B. We expect (and will demonstrate numerically) that our spatial discretizations
are somewhat less accurate for test problem 2 than for test problem 1.

5.3 Test problem 3: Zero inflow boundary values
To measure asymptotic convergence factors of the proposed iterative methods, it is useful
to be able to carry out many multigrid iterations without encountering round-off effects.
We, therefore, will also use a test problem in which — as in test problems 1 and 2 — there
are no interior sources, but in which there is also no inflow through the boundary, so that
the solution is zero:

f j,k,l = 0 for all j, k, and l .

We then start our iterations (see Sections 7–9) with a nonzero initial guess (see Eq. (37)),
in order to more accurately measure asymptotic performance of the resulting iterations.

6 Accuracy of the discretizations
The accuracy of the finite-difference discretizations is not the principal topic of this pa-
per; we are mainly concerned with the efficient solution of the discretized problems here.
Nevertheless, in this subsection, we report on some numerical experiments concerning the
accuracy of our discretizations. The main purpose of these experiments is to verify that
first- and second-order convergence are in fact seen with the first- and second-order up-
stream differencing schemes.

The experiments of this subsection are for test problems 1 and 2 with screened Ruther-
ford scattering, using D = 0.1 and λ = 1/20,000, and using first and second order upstream
differencing. Let

f (n)
j,k,l , 0≤ j,k ≤ n, −n/2+1≤ l ≤ n/2,

denote the approximations computed on the grid with ns = nθ = n. For n = 2r×32, r ≥ 0
integer, we define E(n) to be the mean square discrepancy between f (n) and f (2n), both
restricted to the 32×32×32-grid:

E(n) =
1

332 ·32

32

∑
j=0

32

∑
k=0

16

∑
l=−15

(
f (n)
2r j,2rk,2rl − f (2n)

2r+1 j,2r+1k,2r+1l

)2
. (31)
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We compute f (n) for n = 32,64,128,256, and 512, E(n) for n = 32,64,128, and 256, and
R(n) = E(n)/E(2n) for n = 32,64, and 128. Table 1 shows the results. As expected, dis-
cretization accuracy is better for test problem 1 than for test problem 2, but the difference
is not dramatic. As n increases, the ratio R(n) appears to approach 2.0 for the first-order
method, and 4.0 for the second-order method for both test problems, as it should.

first order second order
test problem 1 test problem 2 test problem 1 test problem 2

E(n) R(n) E(n) R(n) E(n) R(n) E(n) R(n)

n = 32 0.0062 1.7 0.010 1.6 0.0039 2.7 0.0056 2.6
n = 64 0.0037 1.7 0.0065 1.7 0.0014 3.4 0.0021 3.4
n = 128 0.0021 1.8 0.0040 1.8 0.00042 3.8 0.00062 3.9
n = 256 0.0011 — 0.0023 — 0.00011 — 0.00016 —

Table 1: E(n) = approximate mean square error (see (31)), and R(n) = E(n)/E(2n)

7 An angular relaxation scheme
The discretization of (2) that we wish to solve can briefly be represented as follows:(

cosθl ∂
∆s
x + sinθl ∂

∆s
y

)
f = Q∆θ f , (32)

where f = ( f j,k,l)0≤ j,k≤ns,−nθ/2+1≤l≤nθ/2, the symbols ∂∆s
x and ∂∆s

y denote upstream dis-
cretizations of the partial derivatives with respect to x and y (see Sections 4.2 and 4.3),
and Q∆θ denotes the spectral discretization of the collision operator Q (see Section 3) or
the three-point discretization of the Fokker-Planck operator D∂2/∂θ2. Eq. (32) is supple-
mented with inflow boundary conditions (see Section 4.1).

In Section 8, we propose a multigrid correction cycle [6] to solve this problem, using
coarsening in θ only, not in x and y. The auxiliary equations solved on coarser grids are of
the form (

cosΘl∂
∆s
x + sinΘl∂

∆s
y

)
f = Q2k∆θ f +R , (33)

where k ≥ 1 is an integer, and R denotes residuals transferred from the next finer grid. Eq.
(33) is supplemented with zero inflow boundary conditions. We write

∆Θ = 2k
∆θ

to denote the mesh width of the angular grid, and

nΘ =
nθ

2k

to denote the number of angles that belong to the grid. We will always assume that nΘ is
even. The grid points are

Θl = l∆Θ, −nΘ/2+1≤ l ≤ nΘ/2 .
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We now describe a relaxation scheme for (33), supplemented with discrete inflow
boundary conditions. In the multigrid cycle, this relaxation scheme is used on the finest
grid (where R is zero, and the inflow boundary values are typically nonzero) as well as
on the coarser grids (where R is typically nonzero, and the inflow boundary values are
zero). We use the following “red-black” ordering of the angular grid points in the relax-
ation scheme:

l = −nΘ/2+1,−nΘ/2+3, ...,nΘ/2−1, −nΘ/2+2,−nΘ/2+4, ...,nΘ/2 . (34)

In several contexts, red-black (or black-red) ordering has been found to lead to significantly
more rapid multigrid convergence than lexicographic ordering [23].

For each fixed l, we sweep over the spatial grid points in the downstream direction. At
the end of such a sweep, for the fixed value of l, all residuals at grid points ( j∆s,k∆s, l∆Θ)
are zero. Of course, they typically become nonzero again later, as a result of sweeping over
grid points with different values of l. The relaxation scheme is analogous to the waveform
relaxation method for the heat equation discussed by Vandewalle and Horton [24]. Here,
instead of a single “time-like” variable, we consider planes of (x,y) values for each Θl
and perform a red-black relaxation sweep over these planes, combined with coarse-grid
correction over the Θ-direction in our computational mesh.

7.1 Measuring convergence speed
In the following sections, we report on tests of the speed with which the proposed iterative
methods converge. In each iteration, we determine the factor by which the sum of the
squares of residuals is reduced. We denote this factor by ρν for the ν-th iteration. We also
use the notation

ρM,N =

(
N

∏
ν=M

ρν

)1/(N−M+1)

(35)

for the average convergence factor in cycles M through N; here N ≥M ≥ 1.
The value of ρM,N depends, of course, on the initial guess. For test problems 1 and 2,

we always use the initial guess

f j,k,l =
{

given boundary values if ( j∆s,k∆s, l∆θ) is an inflow boundary point,
0 otherwise. (36)

For test problem 3, we use the initial guess

f j,k,l =
{

1 if 1≤ j,k ≤ n−1 ,
0 otherwise .

(37)

7.2 Performance of relaxation
Tables 2 and 3 show the averaged per-cycle convergence factors, ρ1,24, for the Flatland ana-
log of screened Rutherford scattering (q = 3 in Eq. (10)) with D = 0.1 and λ = 1/20,000,
using first- and second-order upstream differencing, respectively. For fixed ns, the value

16



nθ = 32 nθ = 64 nθ = 128 nθ = 256 nθ = 512
ns = 32 0.315 0.667 0.938 0.965 0.982
ns = 64 0.307 0.657 0.932 0.959 0.974
ns = 128 0.302 0.647 0.925 0.952 0.967
ns = 256 0.297 0.638 0.915 0.944 0.959
ns = 512 0.292 0.629 0.905 0.935 0.951

Table 2: Average convergence factor per iteration in first 24 relaxation iterations for test
problem 2, discretized using first-order upstream differencing.

nθ = 32 nθ = 64 nθ = 128 nθ = 256 nθ = 512
ns = 32 0.304 0.662 0.953 0.977 0.988
ns = 64 0.299 0.652 0.943 0.971 0.984
ns = 128 0.294 0.642 0.930 0.963 0.977
ns = 256 0.290 0.633 0.917 0.951 0.969
ns = 512 0.286 0.624 0.903 0.938 0.958

Table 3: Average convergence factor per iteration in first 24 relaxation iterations for test
problem 2, discretized using second-order upstream differencing.

of ρ1,24 increases significantly with nθ. For fixed nθ, it appears that ρ1,24 can be bounded
independently of ns.

The results of Tables 2 and 3 are not surprising. The relaxation algorithm chosen here is
based on successive sweeps across the xy-planes of the grid. Since such a sweep (temporar-
ily) removes residuals in the plane regardless of ns, it is to be expected that the convergence
factors show little dependence on ns. The slight decrease in ρ1,24 as ns increases probably
merely indicates that the spectral radius is less accurately approximated by ρ1,24 for larger
values of ns than for smaller values.1

Table 4 presents the averaged per-cycle convergence factors, ρ1,12, for relaxation alone
for Henyey-Greenstein scattering (q = 2 in Eq. (10)). Here, in contrast to the results in
Table 3, we see that for small- and moderate-sized grids, relaxation performs very well. In
fact, for the smallest grids, where nθ = 32, relaxation performs even better than indicated, as
the iterations reduce the error to the level of machine precision in fewer than 12 iterations.
Although ρ1,12 increases with nθ, the convergence factors are so small that we expect it
to be difficult to make improvements using a multigrid method for realistic problem sizes.
(Since our discretization is spectrally accurate in nθ, very large values of nθ are probably
irrelevant.) Experiments and further discussion regarding this point are given in Section
9.3.

1This is a common effect in linear iteration methods. To understand how it arises, note that in effect, we
are applying the power method to determine the spectral radius of the iteration matrix. How fast the power
method converges depends on how many eigenvalues there are with modulus close, but not equal, to the
spectral radius. When the mesh is larger, there are more such eigenvalues.
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nθ = 32 nθ = 64 nθ = 128 nθ = 256 nθ = 512
ns = 32 0.057 0.057 0.115 0.254 0.467
ns = 64 0.059 0.059 0.111 0.245 0.448
ns = 128 0.061 0.061 0.107 0.238 0.433
ns = 256 0.062 0.062 0.104 0.231 0.420
ns = 512 0.064 0.065 0.101 0.224 0.407

Table 4: Average convergence factor per iteration in first 12 relaxation iterations for test
problem 2, with the Henyey-Greenstein scattering operator. Discretization uses second-
order upstream differencing in space.

8 The angular multigrid method
Since the convergence of the relaxation method proposed in Section 7 deteriorates as nθ

increases, it is natural to attempt to accelerate the method using a coarse-grid correction.
As Eq. (1) is elliptic in the θ-direction, but advective in the x- and y-directions, we use
relaxation sweeps in the (x,y)-plane, as described in Section 7, as the error smoothing
procedure, and coarsen only in the θ-direction [6]. In Section 9, we will report results for
standard V- and W-cycles [6]. For simplicity, we assume here that nθ is a power of 2, and
that the coarsest grid has the 4 direction vectors (±1,0) and (0,±1). We now describe the
various components of the coarse-grid correction process in detail.

8.1 Transfer of residuals from fine to coarse grids
In this subsection, we consider two angular grids. The points of the finer angular grid are
denoted, as in Section 7, by

Θl = l∆Θ, −nΘ/2+1≤ l ≤ nΘ/2 ,

and those on the coarser angular grid are

2l∆Θ, −nΘ/4+1≤ l ≤ nΘ/4 .

(Note that our assumptions, stated earlier, that nθ is a power of 2 and that the coarsest grid
has 4 direction vectors imply that nΘ/4 is an integer.)

We denote by Ω◦
F , ∂Ωout

F , and ∂Ωin
F the interior and the outflow and inflow boundaries

of the finer grid; similarly, Ω◦
C, ∂Ωout

C , and ∂Ωin
C are the interior and the outflow and inflow

boundaries of the coarser grid. Residuals are calculated in all interior and outflow boundary
points of the fine grid. To describe how the residuals are transferred to interior and outflow
boundary points of the coarse grid, the following notation is useful. For integers p and n
with n≥ 2, n even,

p mod n = p+ zn , z = integer chosen so that −n/2+1≤ p mod n≤ n/2 . (38)

With this notation, the transfer of residuals to the coarse grid is described by

RC
j,k,l =

rF
j,k,(2l−1) mod nΘ

+2rF
j,k,2l + rF

j,k,(2l+1) mod nΘ

4
, (39)
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where rF
... denotes the residual on the fine grid, and RC

... denotes the right-hand side of the
correction equation on the coarse grid, as in Eq. (33).

To ensure that the residuals that appear in the expression on the right-hand side of Eq.
(39) are well-defined, we must convince ourselves that the points ( j∆s,k∆s,2l∆Θ) and
( j∆s,k∆s,((2l±1)mod nΘ)∆Θ) do not belong to the inflow boundary ∂Ωin

F . Indeed, our
definition of the discrete outflow boundary in Section 4.1 implies immediately that for
( j∆s,k∆s) ∈ ∂Ω and −nΘ/4+1≤ l ≤ nΘ/4,

( j∆s,k∆s, l ·2∆Θ) ∈ ∂Ω
out
C ⇒

( j∆s,k∆s,2l∆Θ) ∈ ∂Ω
out
F and ( j∆s,k∆s,((2l±1)mod nΘ)∆Θ) ∈ ∂Ω

out
F . (40)

Our definition of the discrete inflow and outflow boundaries is designed to make (40) valid
and, thereby, allow transfer of residuals from fine grids to coarse grids using the standard
formula (39). We note that (40) would not be valid with the first, seemingly more natural
definition of inflow and outflow directions in Section 4.1. This is why we modified the
definition in Section 4.1.

For later reference, we note that (40) can also be written as follows:(
j∆s,k∆s,

l
2
·2∆Θ

)
∈ ∂Ω

out
C ⇒ ( j∆s,k∆s, l∆Θ) ∈ ∂Ω

out
F

for −nΘ/2+1≤ l ≤ nΘ/2, l even, (41)

and (
j∆s,k∆s,

(
l±1

2
mod nΘ/2

)
·2∆Θ

)
∈ ∂Ω

out
C ⇒ ( j∆s,k∆s, l∆Θ) ∈ ∂Ω

out
F

for −nΘ/2+1≤ l ≤ nΘ/2, l odd. (42)

8.2 Transfer of corrections from coarse to fine grids
Corrections are interpolated from coarse to fine grids by piecewise linear interpolation. To
write down what this means explicitly, we again consider the two angular grids of Section
8.1, and assume that an approximation

f F
j,k,l, 0≤ j,k ≤ ns, −nΘ/2+1≤ l ≤ nΘ/2

to the solution on the fine grid is given, and a correction

fC
j,k,l, 0≤ j,k ≤ ns, −nΘ/4+1≤ l ≤ nΘ/4

has been computed on the coarse grid. The new approximation on the fine grid is then

f F
j,k,l +


fC

j,k,l/2 if l is even
fC

j,k,(l+1)/2 mod nΘ/2 + fC
j,k,(l−1)/2 mod nΘ/2

2
if l is odd

 . (43)
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If ( j∆s,k∆s, l∆Θ) is an inflow boundary point on the fine grid, then the expression in curly
brackets in Eq. (43) ought to be zero: Inflow boundary values should not be altered by the
coarse-grid correction. Indeed this is so, since

( j∆s,k∆s, l∆Θ) ∈ ∂Ω
in
F ⇒

(
j∆s,k∆s,

l
2
·2∆Θ

)
∈ ∂Ω

in
C

for −nΘ/2+1≤ l ≤ nΘ/2, l even, (44)

and

( j∆s,k∆s, l∆Θ) ∈ ∂Ω
in
F ⇒

(
j∆s,k∆s,

(
l±1

2
mod nΘ/2

)
·2∆Θ

)
∈ ∂Ω

in
C

for −nΘ/2+1≤ l ≤ nΘ/2, l odd, (45)

In fact, (44) is the contrapositive of (41), and (45) is the contrapositive of (42); thus (44)
and (45), taken together, are equivalent to (40).

8.3 Solution of the problem on the coarsest grid
On the coarsest grid (nΘ = 4), we have found that downstream Gauss-Seidel iteration is
always a very fast solver. To reduce the residual by a factor of 10−10, we never need more
than 4 iterations.

9 Numerical Results

9.1 Multigrid convergence for screened Rutherford scattering
In this subsection, we present numerical results for the equation with the Flatland analog
of screened Rutherford scattering: q = 3 in Eq. (10). We find convergence to be fast for all
grids if D is not too large (Section 9.1.3); convergence does deteriorate eventually as D gets
large (see Section 9.1.4), but not nearly as quickly as in the angular domain decomposition
method [3]. For a given value of D, the mean free path λ appears to have little effect on the
convergence speed (Section 9.1.5).

9.1.1 Choosing optimal multigrid parameters

Our first experiments are aimed at choosing the parameters of the multigrid method (V-
or W-cycles, the number and ordering of pre- and post-relaxation sweeps) in order to
achieve the most efficient performance possible. In these experiments, we fix D = 0.1,
λ = 1/20,000, and consider only the second-order upstream discretization of Test Problem
2.

To compare the effectiveness of different multigrid schemes, one must take into account
the amount of work required for a multigrid cycle. For instance, a V -cycle with µ pre-
relaxation sweeps (relaxation sweeps before coarse-grid correction) and ν post-relaxation
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sweeps (relaxation sweeps following coarse-grid correction) on each level requires approx-
imately the equivalent of (µ+ν)(1+1/2+1/4+ ...) = 2(µ+ν) relaxation sweeps on the
finest level. We approximate the cost of the fine-to-coarse and coarse-to-fine transfers as
the equivalent of another 2 relaxation sweeps on the finest level, so that the approximate
total cost of a V-cycle is the equivalent of

w = 2(µ+ν+1)

relaxation sweeps on the finest grid. A similar calculation for W -cycles yields

w = log2(nθ)(ν+µ+1).

We call
(
ρM,N

)1/w (see Eq. 35 for the definition of ρM,N) the effective convergence factor
during iterations M through N. Because a multigrid cycle costs the equivalent of approxi-
mately w relaxation sweeps on the finest grid, effective multigrid convergence factors can
be compared directly with the convergence factors in Table 3, for instance.

We called the ordering defined by Eq. (34) the “red-black” ordering of the grid points.
The “black” points of a given grid belong to the next coarser grid, whereas the “red” ones
don’t. We could equally well use the “black-red” ordering:

l = −nΘ/2+2,−nΘ/2+4, ...,nΘ/2, −nΘ/2+1,−nΘ/2+3, ...,nΘ/2−1.

Since the “black” points belong to the coarser grid, it is plausible that it should be most
efficient to end the pre-relaxation in the “red” points, and to begin the post-relaxation in
those points. Numerical experiments confirm this heuristic reasoning. We therefore always
use the black-red ordering for pre-relaxation, and the red-black ordering for post-relaxation.

Table 5 shows effective convergence factors for V-cycles, using (µ,ν) = (1,0), (0,1),
(1,1), and (2,1), respectively. The (0,1)-cycles are the most efficient, although they are
only slightly more efficient than the other choices. Most notably, all choices of (µ,ν) lead
to scalable performance, i.e., effective convergence factors that don’t degrade as ns and
nθ increase. Table 6 shows the effective convergence factors for W-cycles, using (µ,ν) =
(0,1). Here, we see some degradation as nθ increases. This is because, although the values
of ρ1,24 are comparable for V- and W-cycles, the dependence of w on log2(nθ) in the W-
cycle case leads to degradation in the effective convergence factors.

9.1.2 Asymptotic convergence

To illustrate asymptotic convergence speed, we reproduce a portion of Table 5 presenting(
ρ11,60

)1/w. Thus we perform here a large number (60) of multigrid cycles, and do not in-
clude the first 10 cycles in the average to avoid initialization-dependent transient effects. If
we did this with test problems 1 or 2, we would reach machine precision long before com-
pleting the 60 cycles and, thus, the results would be polluted by round-off errors. Therefore,
we consider test problem 3 here, starting with the initial guess specified in Eq. (37). The
results are given in Table 7. They do not differ much from the corresponding results of Ta-
ble 5. One does see a bit of a deterioration of convergence factors as ns increases in Table
7; we have not been able to explain that. Notice that such an effect is also seen, although
quite slight, in Table 5.
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nθ = 32 nθ = 64 nθ = 128 nθ = 256 nθ = 512
ns = 32 0.699 0.729 0.714 0.707 0.715

(µ,ν) = (1,0) ns = 64 0.701 0.736 0.741 0.706 0.713
w = 4 ns = 128 0.704 0.737 0.752 0.727 0.711(

ρ1,24
)1/w is shown ns = 256 0.706 0.735 0.754 0.749 0.711

ns = 512 0.709 0.732 0.757 0.756 0.734
ns = 32 0.698 0.702 0.701 0.706 0.714

(µ,ν) = (0,1) ns = 64 0.701 0.707 0.705 0.706 0.712
w = 4 ns = 128 0.703 0.708 0.714 0.706 0.710(

ρ1,24
)1/w is shown ns = 256 0.706 0.708 0.715 0.708 0.711

ns = 512 0.708 0.709 0.726 0.712 0.711
ns = 32 0.716 0.760 0.748 0.745 0.747

(µ,ν) = (1,1) ns = 64 0.712 0.763 0.768 0.754 0.755
w = 6 ns = 128 0.709 0.761 0.777 0.759 0.757(

ρ1,12
)1/w is shown ns = 256 0.705 0.757 0.776 0.774 0.758

ns = 512 0.702 0.754 0.773 0.779 0.761
ns = 32 0.663 0.764 0.792 0.782 0.781

(µ,ν) = (2,1) ns = 64 0.659 0.765 0.809 0.792 0.790
w = 8 ns = 128 0.655 0.762 0.810 0.805 0.799(

ρ1,8
)1/w is shown ns = 256 0.652 0.759 0.807 0.815 0.804

ns = 512 0.648 0.755 0.803 0.815 0.809

Table 5: Effective convergence factors for V-cycles. Test problem 2, discretized with
second-order upstream differencing.

nθ = 32 nθ = 64 nθ = 128 nθ = 256 nθ = 512
ns = 32 0.866 0.888 0.904 0.917 0.928

(µ,ν) = (0,1) ns = 64 0.868 0.890 0.905 0.917 0.927
w = 2log2(nθ) ns = 128 0.869 0.891 0.908 0.917 0.927(

ρ1,24
)1/w is shown ns = 256 0.870 0.891 0.908 0.917 0.927

ns = 512 0.871 0.892 0.908 0.918 0.927

Table 6: Effective convergence factors for W-cycles. Test problem 2, discretized with
second-order upstream differencing.

9.1.3 Dependence of multigrid convergence on the discretization

Here, we again fix the values D = 0.1 and λ = 1/20,000. Effects of varying D and λ will
be explored in Sections 9.1.4 and 9.1.5. Table 8 shows ρ1,24 for test problem 2, discretized
with first-order upstream differencing, for various different values of ns and nθ.

Multigrid convergence is slightly slower for second-order differencing than for first-
order differencing, but in both cases convergence is rapid for all mesh widths.
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nθ = 32 nθ = 64 nθ = 128 nθ = 256 nθ = 512
ns = 32 0.694 0.717 0.702 0.640 0.636

(µ,ν) = (0,1) ns = 64 0.694 0.719 0.725 0.683 0.632
w = 4 ns = 128 0.693 0.729 0.735 0.711 0.647(

ρ11,60
)1/w is shown ns = 256 0.692 0.750 0.767 0.728 0.683

ns = 512 0.691 0.763 0.811 0.771 0.726

Table 7: A portion of Table 5 reproduced using
(
ρ11,60

)1/w as the convergence measure,
for test problem 3.

nθ = 32 nθ = 64 nθ = 128 nθ = 256 nθ = 512
ns = 32 0.695 0.696 0.700 0.707 0.714

(µ,ν) = (0,1) ns = 64 0.696 0.698 0.701 0.706 0.712
w = 4 ns = 128 0.700 0.700 0.702 0.704 0.710(

ρ1,24
)1/w is shown ns = 256 0.701 0.705 0.703 0.705 0.709

ns = 512 0.706 0.706 0.706 0.705 0.708

Table 8: A portion of Table 5 reproduced with first-order instead of second-order discretiza-
tion.

9.1.4 Dependence of multigrid convergence on the angular diffusion coefficient

As D becomes large, the convergence of the angular multigrid method deteriorates even-
tually. However, convergence is still excellent for moderately large values of D for which
the domain decomposition method described in [3] does not work well. Table 9 illustrates
this. The table shows

(
ρ1,24

)1/4 for (0,1)-V -cycles for the second-order discretization of
test problem 2 on a 128×128×128-grid, with λ = 1/20,000 and various values of D.

D 0.05 0.1 0.2 0.5 1 2 10 100(
ρ1,24

)1/4 0.716 0.714 0.706 0.705 0.713 0.728 0.837 0.947

Table 9: Average effective convergence factor per (0,1)-V -cycle in first 24 iterations for
test problem 2, discretized using second-order upstream differencing, on a 128×128×128-
grid, as a function of D.

The increase in the convergence factors seen for this discretization as D increases may
not be surprising. As D→∞, the discrete system becomes, to leading order, a set of uncou-
pled diffusion equations in θ with periodic boundary conditions. Multigrid convergence is
well-known to suffer for one-dimensional diffusion with periodic boundary conditions, un-
less an additional projection step is added to handle the null-space. The coupling provided
by the spatial advection terms does, of course, remain crucial in the limit of the continuum
equations as D→∞; they cause the equation to change its nature to spatial diffusion in this
limit (see Section 2.4).
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9.1.5 Dependence of multigrid convergence on the mean free path

Table 10 illustrates the behavior of the multigrid convergence factors in the Fokker-Planck
limit as λ → 0, with D = 0.1 fixed. As λ decreases (with the parameter ε in Eq. (10)
adjusted so that D = 0.1 remains fixed), the convergence deteriorates slightly, but multigrid
convergence in the limit is only slightly worse than for λ = 1/10,000 (or even λ = 1/10).

λ 10−1 10−2 10−3 10−4 10−5 10−6 10−7 10−8 10−9(
ρ1,24

)1/4 0.704 0.704 0.706 0.713 0.716 0.717 0.717 0.717 0.717

Table 10: Average effective convergence factor per (0,1)-V -cycle in first 24 iterations for
test problem 2, discretized using second-order upstream differencing, on a 128×128×128-
grid, as a function of λ.

We note that the discretization of the Fokker-Planck operator ∂2/∂θ2 obtained in the
limit as λ→ 0 is spectral. If, instead, the standard second-order finite-difference quotient is
used, multigrid convergence factors are almost precisely the same as those shown in Table
10; see Table 11.

9.2 Multigrid convergence for the Fokker-Planck equation
Table 11 reproduces a portion of Table 5, but with the right-hand side of the equation
replaced by the Fokker-Planck operator, discretized using the three-point stencil. Conver-
gence is nearly identical to Table 5.

nθ = 32 nθ = 64 nθ = 128 nθ = 256 nθ = 512
ns = 32 0.699 0.699 0.702 0.709 0.718

(µ,ν) = (0,1) ns = 64 0.702 0.702 0.703 0.708 0.716
w = 4 ns = 128 0.704 0.704 0.705 0.708 0.714(

ρ1,24
)1/w is shown ns = 256 0.705 0.707 0.707 0.708 0.713

ns = 512 0.708 0.709 0.724 0.709 0.713

Table 11: A portion of Table 5 reproduced with the three-point discretization of the Fokker-
Planck operator in place of the discretized scattering operator.

9.3 Multigrid convergence for Henyey-Greenstein scattering
Table 12 presents results similar to some of the results of Table 5, but now the right-hand
side of the equation is the Henyey-Greenstein scattering operator. Because of the extraor-
dinarily fast convergence of the multigrid cycles for this scattering kernel, we only show
the convergence factor averaged over the first twelve iterations, as this is often sufficient to
achieve accuracy near the level of machine precision.

These results should be compared with those of Table 4. For Henyey-Greenstein scat-
tering, it is quite difficult for the coarse-grid correction to improve efficiency compared to
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nθ = 32 nθ = 64 nθ = 128 nθ = 256 nθ = 512
ns = 32 0.489 0.497 0.547 0.570 0.588

(µ,ν) = (0,1) ns = 64 0.493 0.496 0.543 0.567 0.586
w = 4 ns = 128 0.496 0.497 0.539 0.563 0.582(

ρ1,12
)1/w is shown ns = 256 0.500 0.500 0.535 0.559 0.578

ns = 512 0.503 0.505 0.531 0.555 0.574

Table 12: Results similar to those of Table 5 with Henyey-Greenstein instead of screened
Rutherford scattering.

the very fast convergence of relaxation sweeps alone. For nθ = 1024 and ns = 32, contin-
ued degradation in the convergence factors of relaxation alone is seen (with ρ1,12 = 0.793),
while stabilization is seen in the effective convergence factor for the multigrid V(0,1) cycle
(with

(
ρ1,12

)1/w = 0.582); however, it must be noted that such grid sizes are unlikely to be
relevant given the spectral accuracy of the discretization in nθ. Also note that for Henyey-
Greenstein scattering, the multigrid convergence has not yet reached an asymptotic conver-
gence range with convergence factors independent of grid size even for nθ = 512, although
numerical experiments show a stabilization for larger grid sizes.

10 Discussion
We have presented a successful two-dimensional extension of the idea of angular multigrid
iteration for transport problems [17]. It remains to be investigated whether a method along
similar lines can be effective for real, three-dimensional transport problem; if there is a
fundamental obstacle, it is not apparent to us.

The algorithm that we use is different from that of [18] in several ways, and which of
the differences is responsible for the difference in performance is not, at this point, entirely
clear. We intend to investigate this question in the near future, but offer some thoughts
about the differences between our algorithm and that of [18] here.

First, we consider a simpler problem than that of [18]. For reasons yet to be understood,
we do not encounter, in our problem, the ray effects that were identified as the principal
obstacle to efficient performance in [18]. We view our discretization as the analogue of
an SN-discretization in three dimensions, since it uses collocation in angle, so we would
expect ray effects to play a role; however, it seems that they do not.

When we generalize our approach to three dimensions in future work, the resulting
algorithm will be quite different from that of [18]. Our guiding principle is to first design
an efficient algorithm for the Fokker-Planck equation, then create a modification of it that
applies to the Boltzmann transport equation. This point of view suggests, in particular,
smoothing procedures different from that used in [18].

The definition of the discrete inflow and outflow boundaries is centrally important to
the success of our method, as the key implication (40) follows from it. When we began the
work on this project, we were less careful about defining the discrete inflow and outflow
boundaries; an efficient multigrid scheme could still be constructed, but we had to treat
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the transfers between grids at the boundaries with great care to avoid a deterioration in
convergence factors with increasing ns. The approach presented here is simpler, and also
seems more likely to generalize to non-rectangular geometries.

Local mesh refinement in x and y could probably be introduced quite easily into our
scheme. Local refinement in the θ-direction, especially in an (x,y)-dependent manner, will
be more difficult.

For the Henyey-Greenstein scattering kernel, multigrid acceleration does not appear
useful, due to the very effective performance of the proposed relaxation scheme itself in
this case. Intuitively, we believe that the reason why relaxation works so well for Henyey-
Greenstein scattering is that there is less angular diffusion than for screened Rutherford
scattering with the same value of D; compare for instance Figures 14 and 15 of [3].

We have assumed in this paper that all scattering is forward-peaked. A more realistic
model, known as the Boltzmann-Fokker-Planck equation [7, 15], allows rare “catastrophic”
collisions resulting in large-angle deflections. In our Flatland model problem, a reasonable
first approximation would be to replace the probability density p by

pBFP =
γ

2π
+(1− γ)p, (46)

where γ is small but positive. Eq. (46) reflects the assumption that large-angle scatter-
ing is isotropic. Preliminary numerical results show that for values of γ corresponding to
two or three large-angle collisions per 10,000 small-angle collisions, the performance of
our multigrid algorithm deteriorates only very slightly. In future work, we will investigate
Boltzmann-Fokker-Planck models more extensively, in particular abandoning the simplify-
ing assumption that large-angle scattering is isotropic.

While the assumption of mono-energetic transport is a reasonable first approximation
for electron beams, it is of course not physical. As we expand our work to three dimensions,
we will also include energy-dependence in future work. Typical discretizations in energy
are based on dividing the particles into discrete mono-energetic groups and considering the
scattering between groups [8, 16]. As long as particles only lose energy in collisions, the
discretized equations accounting for these losses can be viewed as block lower-triangular
when organized by energy and can be solved by a forward sweep ordered from the highest
energy to the lowest. In the presence of both up- and down-scattering in energy, sweeps
downward in energy may still be used as a block Gauss- Seidel iteration.

It is interesting to compare the performance of our algorithm with that of the domain
decomposition algorithm of [3]. At first sight, the convergence factors shown in Tables
II and III of [3] seem much better than those in the present paper. However, one must of
course take into account the cost per iteration for a correct comparison. For the Fokker-
Planck equation, this cost is O(n2

s nθ) for both methods, and therefore the angular domain
decomposition method of [3] is in fact much faster than our angular multigrid method.
However, for the transport equation, the computational cost per iteration is proportional to
the number of nonzero entries in the matrix representing the discretized problem, O(n2

s n2
θ
),

for our method, whereas it is O(n2
s n3

θ
) for the method of [3]. The reason is that the sweeps

in the “time-like” directions in [3] require the solution of systems of dense linear equations
of size ∼ nθ× nθ. For large nθ, our method is therefore much more efficient than that of
[3]. Neither our multigrid approach nor the domain decomposition approach of [3] have
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yet been generalized to three dimensions. However, the advantage of the angular multigrid
method over the angular domain decomposition method for high-resolution calculations is
expected to become more pronounced in three dimensions.

Acknowledgments
Many of the computations were carried out on a computer provided by NSF grant DMS-
0418832 (to CB). SM was supported in part by the European Community’s Sixth Frame-
work Program, through a Marie Curie International Incoming Fellowship, MIF1-CT- 2006-
021927, and in part by NSF grant DMS-0811022.

References
[1] E. A. Abbott.

Flatland: a romance of many dimensions.
Seely & Co, 1884.

[2] E. Boman, J. Tervo, and M. Vauhkonen.
Modelling the transport of ionizing radiation using the finite element method.
Phys. Med. Biol., 50:265–280, 2005.

[3] C. Börgers.
A fast iterative method for computing particle beams penetrating matter.
J. Comput. Phys., 133:323–339, 1997.

[4] C. Börgers.
Complexity of Monte Carlo and deterministic dose-calculation methods.
Phys. Med. Biol., 43:517–528, 1998.

[5] C. Börgers and E. W. Larsen.
On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle

transport.
Medical Physics, 23:1749–1759, 1996.

[6] W. L. Briggs, V. E. Henson, and S. F. McCormick.
A Multigrid Tutorial.
SIAM Books, Philadelphia, 2000.
Second edition.

[7] M. Caro and J. Ligou.
Treatment of scattering anisotropy of neutrons through the Boltzmann-Fokker-Planck equa-

tion.
Nucl. Sci. Eng, 83:242–252, 1983.

[8] J. Duderstadt and W. Martin.
Transport Theory.
Wiley, New York, 1979.

[9] K. A. Gifford, J. L. Horton Jr., T. A. Wareing, G. Failla, and F. Mourtada.
Comparison of a finite-element multigroup discrete-ordinates code with Monte Carlo for ra-

diotherapy calculations.

27



Phys. Med. Biol., 51:2253–2265, 2006.

[10] G. J. Habetler and B. J. Matkowsky.
Uniform asymptotic expansions in transport theory with small mean free paths, and the diffu-

sion approximation.
J. Math. Phys., 16:846–854, 1975.

[11] L. G. Henyey and J. L. Greenstein.
Diffuse radiation in the galaxy.
Astrophys. J., 93:70–83, 1941.

[12] K. R. Hogstrom and P. R. Almond.
Review of electron beam therapy physics.
Phys. Med. Biol., 51:R455–R489, 2006.

[13] S. C. Klevenhagen.
Physics and Dosimetry of Therapy Electron Beams.
Medical Physics Publishing, Madison, WI, 1993.

[14] E. W. Larsen and J. B. Keller.
Asymptotic solution of neutron transport problems for small mean free paths.
J. Math. Phys., 15:75–81, 1974.

[15] E. W. Larsen and L. Liang.
The atomic mix approximation for charged particle transport.
SIAM J. Appl. Math, 68(1):43–58, 2007.

[16] E. W. Larsen and J. E. Morel.
Advances in discrete-ordinates methodology.
In Yoursy Y. Azmy and Enrico Sartori, editors, Nuclear Computational Science: A Century in

Review. Kluwer Academic Publishing, in press.

[17] J. E. Morel and T. A. Manteuffel.
An angular multigrid acceleration technique for Sn equations with highly forward peaked scat-

tering.
Nuclear Science and Engineering, 107:330–342, 1991.

[18] S. D. Pautz, J. E. Morel, and M. L. Adams.
An angular multigrid acceleration method for Sn equations with highly forward-peaked scat-

tering.
In Proceedings of the International Conference on Mathematics and Computation, Reactor

Physics and Environmental Analyses in Nuclear Applications, volume I, pages 647–656.
Senda Editorial, 1999.

[19] G. C. Pomraning.
The Fokker-Planck operator as an asymptotic limit.
Math. Mod. Meth. Appl. Sci., 2(1):21–36, 1992.

[20] L. Reimer.
Scanning Electron Microscopy.
Springer-Verlag, Berlin, 1985.

[21] S. Reyntjens and R. Puers.
A review of focused ion beam applications in microsystem technology.
J. Micromech. Microeng., 11:287–300, 2001.

28



[22] D. Schulz-Ertner and H. Tsujii.
Particle radiation therapy using proton and heavier ion beams.
J. Clin. Oncol., 25(8):953–964, 2007.
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Figures

These difficulties have lead many in the Medical Physics community to believe that the
most efficient way of calculating electron beams may be Monte Carlo simulation. However,
based on a rough theoretical complexity estimate presented in [4], we believe that determin-
istic, grid-based methods may eventually prove to be a very attractive alternative to Monte
Carlo simulation, provided that all available tools of numerical computing are brought to
bear, making the discretizations highly accurate and the solvers for the discretized prob-
lems highly efficient. Some algorithm and code development efforts in this direction are in
fact underway; see for instance [2] and [6].

In this paper, we will focus on the problem of designing highly efficient solvers for
a grid-based discretization of the model equation of [3] (reviewed in Section 2). This
equation describes physics in “Flatland” [1], i.e., in a ficitious two-dimensional world. It
is arguably the simplest possible caricature of charged particle transport in more than one
space dimensions. We will present an angular multigrid method for this problem. The idea
of angular multigrid methods for particle transport with forward-peaked scattering was first
proposed, for a one-dimensional problem, by J. Morel and T. Manteuffel [11]; extensions
of the idea to higher dimensions have had limited success so far [12]. The convergence of
our method is rapid, and the speed of convergence is independent of the grid size. Unlike
the angular domain decomposition method of [3], the method presented here works well
even for fairly large angular diffusion coefficients. xr

2 The model problem. To make this paper as self-contained as possible, we will review
the model equation of [3] and its properties here, closely following but abbreviating the
exposition in [3]. We will mix physical and mathematical terminology, writing for instance
about “particles” that move “in a domain Ω ⊆ IR2”. It will always be obvious, however,
how the more intuitive physical terminology could be translated into strictly mathematical
language.

We consider mono-energetic particle transport in two space dimensions. It should
be emphasized that this is not the same as (and simpler than) the projection of three-
dimensional particle transport into a plane. We consider the motion of particles in a domain
Ω ⊆ IR2. All particles move at the same constant speed c > 0. Each particle experiences
collisions at random times, causing random direction changes. The inter-collision distances
λ > 0 are exponentially distributed and independent of each other; their expectation λ > 0
is called the mean free path. The deflection angles η (see Fig. 1) are independent as well,
with probability density function p : (−π,π)→ IR+. We assume p to be even, i.e., we as-
sume that particles have no preference for scattering to the right over scattering to the left
or vice versa. The graph of p qualitatively looks like that shown in Fig. 2. The forward-
peakedness of the scattering is reflected in a peak in the graph near η = 0. The peak would
typically be very much more pronounced than that shown in Fig. 2.
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Figure 2: A qualitative plot of the probability density p.
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Figure 4: “Outflow”, ∂Ωout , (dashes) vs. “inflow”, ∂Ωin, (bold) directions on the boundary of Ω.
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Figure 5: Spatial profile of the beams in test problems 1 and 2 at the inflow boundary.
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Figure 6: Angular profile of the beams in test problems 1 and 2 (solid and dashed) at the inflow
boundary.

31



0
0.5

1 0
0.5

1

0.2
0.4
0.6
0.8

1

B

yx

0
0.5

1 0
0.5

1

0.2
0.4
0.6
0.8

1

A

yx

m
ac

ro
sc

op
ic 

de
ns

ity

Figure 7: Macroscopic density for two broad beams, one (A) aligned with the grid, and the other
(B) not.
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