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We study the problem of a cholesteric liquid crystal confined to an elliptical channel. The system is
geometrically frustrated because the cholesteric prefers to adopt a uniform rate of twist deformation,
but the elliptical domain precludes this. The frustration is resolved by deformation of the layers or
introduction of defects, leading to a particularly rich family of equilibrium configurations. To identify
the solution set, we adapt and apply a new family of algorithms, known as deflation methods, that
iteratively modify the free energy extremisation problem by removing previously known solutions.
A second algorithm, deflated continuation, is used to track solution branches as a function of the
aspect ratio of the ellipse and preferred pitch of the cholesteric.

I. INTRODUCTION

Cholesteric liquid crystals are complex fluids that
exhibit long-range orientational order, elasticity, local
alignment at surfaces, optical activity and response to ex-
ternal stimuli [1]. They are composed of chiral molecules
that, in the absence of boundaries, adopt a helical struc-
ture with a preferred pitch, q0, set by the molecular struc-
ture and the ambient temperature. There has recently
been a great deal of interest in cholesterics in confined ge-
ometries because of parallels with other condensed mat-
ter systems such as chiral ferromagnets, Bose-Einstein
condensates and the Quantum Hall effect. All of these
systems exhibit topological defects under confinement,
including skyrmions and torons, where the boundary con-
ditions preclude adoption of the energetically preferred
uniformly twisted state. Hence, they are geometrically
frustrated. It was recognised some time ago that nematic
liquid crystals also may potentially form skyrmions, but
these are only metastable due to the lack of preferred
twist [2].

Liquid crystals are particularly attractive to study
these defect structures, because they can be conveniently
produced and imaged in three dimensions with tech-
niques such as confocal microscopy [3]. Cholesterics may
form skyrmion lattices in two dimensions [4]. In three
dimensions, torons resemble particulate inclusions [5, 6]
and form chains or lattices [7]. Other more complicated
defect structures called “twistions” occur in films thin-
ner than the cholesteric pitch [8]. They also provide an
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elegant experimental actualisation of the Hopf fibration,
a map from the 3-sphere onto the 2-sphere such that
each distinct point of the 2-sphere comes from a distinct
circle of the 3-sphere [9]. Strongly confined geometries
such as micropatterned surfaces [10], channels [11, 12]
and droplets [13] can all be used to control and order the
location of skyrmions.

A key challenge in simulating these systems is that, due
to the geometric frustration, they possess a particularly
rich family of stationary solutions of the free energy. The
ground state strongly depends on the shape of the do-
main and material parameters, including the cholesteric
pitch. Typically, extremisation is performed from an ini-
tial guess using a relaxation algorithm or by solving a set
of nonlinear Euler-Lagrange equations. In either case,
having found a solution, the question remains: are there
others? It is also highly desirable to track the solution
set as a function of geometric and material parameters
to assemble a bifurcation diagram.

A common approach to identify distinct solutions, re-
ferred to in the mathematics literature under the um-
brella term of multistart methods [14], is to begin from
a significant number of initial guesses. This requires ex-
tensive knowledge of the problem to devise a suitable
set of initial guesses and can be inefficient as multiple
guesses often converge to the same configuration. Other
well-established techniques include numerical continua-
tion [15, 16], which is particularly effective in fully re-
solving connected bifurcation branches but can neglect
solutions if they are not homotopic with respect to the
continuation parameters [17], and approaches, such as
Branin’s method, that rely on numerical integration of
the Davidenko differential equation corresponding to the
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original nonlinear problem [18, 19]. Branin’s method is
capable of systematic computation of multiple solutions
but requires determinant calculations that become pro-
hibitively expensive for large-scale problems without spe-
cial structure.

In this paper, we adapt a new technique known as the
deflation method [20, 21] to a model problem in this
class, the configuration of a cholesteric in an elliptical
channel. The method is generalisable, robust and com-
putationally efficient for large-scale applications. It has
been successfully applied to a diverse set of nonlinear
problems including nonlinear partial differential equa-
tions (PDEs), singularly perturbed problems, the analy-
sis of Bose–Einstein condensates, and the computation of
disconnected bifurcation diagrams [17, 20, 22, 23]. This
paper is structured as follows: in Section II, we briefly
describe the problem; in Section III, we introduce the
deflation technique with an illustrative toy example. In
Section IV, we present results for the cholesteric prob-
lem. Conclusions are drawn, with prospects for further
applications of the algorithm, in Section V.

II. MODEL

We consider a cholesteric liquid crystal in a channel
with elliptical cross section. Equilibrium structures are
found by identifying critical points of the Frank energy,

F =
1

2

∫
Ω

dV K1 (∇ · n)
2

+K2 (n · ∇ × n + q0)
2

+ (1)

+K3 |n×∇× n|2

where K1, K2 and K3 are the splay, twist and bend
elastic constants; n is a headless unit vector, the direc-
tor, that corresponds to the local symmetry axis of the
molecular orientational distribution and q0 is the pre-
ferred pitch for the cholesteric. Rigid anchoring (Dirich-
let) boundary conditions are imposed on the boundary
∂Ω, where the director is required to point perpendicular
to the plane of the cross section. The energy is read-
ily non-dimensionalised by introducing a typical length
λ and dividing through by a characteristic magnitude of
the elastic constants K̃; henceforth, we use dimensionless
parameters.

As discussed in the introduction, this problem pro-
motes the existence of multiple local equilibria by con-
struction. To see why, first consider the cholesteric in the
absence of boundaries. As is well-known, the minimiser
of (1) is a unique uniformly twisted state. Level sets of
n form families of equally spaced planes often referred
to as cholesteric “layers.” We note a valuable discussion
of the limitations of this view is found in [24]. Variation
away from this preferred structure, which is equivalent
to compressing or bending the layers, implies an elastic
cost. Considering a cholesteric in a disk, the minimis-
ers of (1) are solutions where n rotates about the radial
axis and lies everywhere perpendicular to it. The num-
ber of rotations is determined by the cholesteric pitch, q0,
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Figure 1. Toy 1D example of deflation. Critical values of
the function f(x) (black), found by solving f ′(x) = 0 (gray).
Having located a minimum at x0 =

√
5/2, a deflated function

f ′d(x) (gray; dashed) is constructed; this now contains a pole
at x0 but retains zeros in common with f ′(x).

which promotes a constant rotation rate, and level sets of
constant orientation therefore form equally spaced con-
centric circles.

For an elliptical domain, however, it is not possible
to fill the ellipse with equally spaced layers, and so de-
fects or a variable layer spacing must be introduced. The
cholesteric order, which prefers a uniformly twisted state,
and the shape of the domain are in competition, so the
system is said to be geometrically frustrated. The frustra-
tion is resolved by adopting a compromise state, incor-
porating some combination of layer deformation or de-
fects; in common with other frustrated systems there is
typically more than one way to do this, leading to the
possibility of more than one minimiser.

Further, we explore solutions where K2 > K1,K3,
which might occur in exotic liquid crystal systems [25].
This choice of parameters leads to a material that is
doubly frustrated because it is required to twist by the
cholesteric term but the twist is relatively expensive com-
pared to other deformation modes. As a result, the cost
of modulating the cholesteric layers is reduced. The inter-
action of geometric and internal frustration is expected
to lead to a particularly rich solution set, because they
permit multiple ways of relieving the frustration: one so-
lution might accommodate an incommensurate number
of cholesteric periods by folding the layers; another might
introduce a defect. These parameters therefore yield an
extremisation problem that we anticipate a priori to be
very challenging to explore by naive multistart methods.
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III. DEFLATION

In solving problems that possess multiple equilibrium
solutions, such as that posed in Section II, a key challenge
is to ensure that the true ground state has been found
from the set of energetically low-lying solutions. The
idea of the deflation algorithm is to successively modify
the nonlinear problem under consideration to eliminate
known solutions, enabling the discovery of additional dis-
tinct solutions. Consider A(u) = 0, a set of nonlinear
equations, that may admit multiple solutions. This sys-
tem, for instance, could represent a set of continuous or
discretised nonlinear PDEs; here we minimise the Frank
energy in (1), subject to the unit-length constraint on the
director, and consider the resulting system of nonlinear
first-order optimality conditions. Using a known solu-
tion, v, to the system A(v) = 0, we define the deflation
operator,

Mp,α(u;v) =

(
1

‖u− v‖pU
+ α

)
I, (2)

where α ≥ 0 is a shift scalar, p ∈ [1,∞) is the deflation
exponent, and I is the identity operator. An appropri-
ate norm ‖·‖U must be chosen for the vector space to
which the solutions belong. The deflated system is then
formed by applying the deflation operator to the original
nonlinear system as,

B(u) = Mp,α(u;v)A(u) = 0. (3)

Iterative techniques, such as Newton’s method, may then
be applied to solve the deflated system. While these it-
erations are guaranteed to not converge to the known
solution v under mild regularity conditions, the remain-
der of the solution space for the original system is pre-
served by the deflation operator. Numerical experiments
have found the effectiveness of the deflation operator to
be relatively insensitive to the choice of deflation param-
eters. However, for certain problems, performance im-
provements may be obtained by varying p and α [20, 21].
Typical values, used everywhere in this paper, are α = 1
and p = 2.

Having found two solutions v1,v2, an expanded de-
flation operator can be constructed by composition of
single-solution deflation operators,

Mp,α(u;v1,v2) = Mp,α(u;v1)Mp,α(u;v2), (4)

and applied to the original nonlinear system. As the
set of known solutions {v1,v2, ...,vm} is expanded, the
deflation operator is grown as the product of the single
deflation operators for each distinct solution in the set,

Mp,α(u;v1,v2, ...,vm) =

m∏
i=1

Mp,α(u;vi), (5)

and its action remains multiplicative on the original sys-
tem.

To provide a simple and tractable illustration of the
deflation process, we apply it to the problem of locating
critical values of a one dimensional objective function,

f(x) =
1

54
x4 − 1

52
x2 + 1, (6)

displayed in Fig. 1 by solving the equation,

f ′(x) =
4

54
x3 − 2

52
x = 0. (7)

Starting from the initial guess x = 2.2, Newton’s method
locates the first solution x0 =

√
5/2. The deflation oper-

ator is constructed following the definition in (2), as

Mp,α(x;x0) =
1

|x− x0|p
+ α, (8)

where |·| denotes the standard absolute value. Applying
this to (7) yields the deflated optimality condition,

0 = f ′d(x) = Mp,α(x;x0)f ′(x)

=

(
1

|x− x0|p
+ α

)(
4

54
x3 − 2

52
x

)
, (9)

to be solved for x. The function f ′d(x) is also plotted in
Fig. 1 for deflation parameters α = 1 and p = 2. Notice
that x0 is not a solution to f ′d(x) = 0, while the remaining
solutions to f ′(x) = 0 persist as solutions to f ′d(x) = 0.
Use of the deflation operator precludes convergence of
certain iterative techniques, such as Newton’s method,
to x0 while facilitating convergence to additional distinct
solutions from the same initial guess. With the deflation
parameters chosen previously and the same initial point,
x = 2.2, Newton’s method converges to the critical point
x1 = 0.0. Thus, two solutions are obtained from the
same initial guess. The process may then be repeated
by constructing a multi-deflation operator, incorporating
both known roots, to enable the discovery of the third
distinct solution at x2 = −

√
5/2 to (7) and hence identify

all extremal values of f(x).
While deflation is a useful device for finding distinct

solutions, the number of solutions discovered may still
depend on the analyst supplying a suitable set of initial
guesses. A systematic way to generate the set of ini-
tial guesses to use is provided by continuation. Suppose
that the problem incorporates some set of parameters k,
which for the liquid crystal problem includes the elastic
constants and preferred pitch q0. Given a set of solutions
for some initial value of these parameters k0 = k̄0, we
use each of these solutions as an initial guess for New-
ton’s method at a nearby parameter k0 = k̄0 +δk, deflat-
ing each solution as we find it. Subsequently, we use the
full power of the deflation approach to search for new
solution branches that, if discovered, can be extended
to other values of k0 using standard continuation tech-
niques. The solutions at k0 = k̄0 +δk can in turn be used
as initial guesses to find the solutions at k0 = k̄0 + 2δk,
and so on. This combination of deflation and continua-
tion is referred to as deflated continuation and is an even
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Figure 2. Example solution set found with deflation.
Solution set for cholesteric pitch q0 = 8 and aspect ratio µ =
1.5. Rows A—C depict different initial guesses (left) and
the solution set (right) recovered for each through successive
applications of the deflation operator (5). The computed free
energy of each solution is also given.

more powerful algorithm than standard deflation applied
to a single nonlinear problem [17]. It can be interpreted
physically as computing a bifurcation diagram, a portrait
of the solutions of an equation as a parameter varies. We
shall use both the deflation and the deflated continua-
tion approach to resolve ground state solutions of the
cholesteric problem in the next section.

IV. RESULTS

We apply the deflation algorithm described above to
the cholesteric problem in an ellipse, varying the aspect
ratio of the domain, µ, and preferred cholesteric pitch,
q0. In each simulation, the director is held fixed on the
boundary such that the director points out of the plane,
i.e. n = (0, 0, 1). Elastic constants are chosen to be
K1 = 1, K2 = 3.2 and K3 = 1.1, corresponding to the
exotic splay-bend cholesteric described above. The com-
putational domain is centered on the origin with major
axis parallel to the x-axis. The area of each bounding
ellipse is held fixed at 3π

2 .
Our multilevel finite-element code used to compute sta-

tionary points of the free energy (1) is thoroughly de-
scribed elsewhere [21, 26–28]. Briefly, the code uses the
Cartesian representation of the director n = (nx, ny, nz)
and directly finds equilibrium points of the Frank en-
ergy (1) by applying Newton linearisation to the first-
order optimality conditions in variational form, resulting
from the constrained minimisation. The code is based
on deal.II [29] and features mesh refinement and nested
iteration [30], such that the problem is discretised and
solved first on coarse meshes where computation is cheap,
resolving major solution features, and then interpolated
to more refined meshes to determine finer attributes of
the computed approximation. Nested iteration has been
shown to significantly improve computational efficiency

in a wide variety of problems including liquid crystal sim-
ulations [28, 31, 32]. Here, we use a nested iteration
mesh hierarchy of four mesh levels of refinement with
4, 884 degrees of freedom on the coarsest grid and end-
ing with 297,988 degrees of freedom at the finest level.
Finally, a damping factor, ω, is applied to each Newton
step for both the undeflated and deflated systems. This
damped Newton stepping is combined with an increased
step size, ω̄, when the nonlinear residual drops below 0.1.
The accelerated Newton stepping is applied to increase
the rate of convergence when a candidate solution begins
to closely satisfy the optimality conditions.

As a first example, in Figure 2 we display the results
of a typical run for aspect ratio µ = 1.5 and q0 = 8. The
algorithm is initialised from three initial guesses (shown
in the left column of Fig. 2). As anticipated, deflation
enables the discovery of several solutions for each value by
successively removing them with the deflation operator.
Several of these solutions possess energetically degenerate
partners that are obtained by simple reflection about an
axis of the ellipse. These are also found by deflation, even
though knowledge of the symmetry of the problem is not
explicitly built into the algorithm.

It is important to note that the solutions to which the
code converges are stationary points of the Lagrangian
(Frank energy plus unit-length constraint), not necessar-
ily minimisers of the energy. It is therefore highly de-
sirable to characterise the nature of each solution as it
is found, i.e. determine if it is a local minimum, a lo-
cal maximum, or a saddle point. To do this, we must
verify the second-order sufficiency conditions: a station-
ary point is a local minimum if the reduced Hessian of
the energy (the Hessian projected onto the nullspace of
the linearised constraints, i.e. restricted to feasible per-
turbations) is positive-definite. One approach would be
to assemble the linearised constraint Jacobian, compute a
(dense) basis for its nullspace using the singular value de-
composition, construct the (dense) reduced Hessian, and
compute its eigenvalues; however, this would be unafford-
ably expensive. A better way is to exploit the fact that
the eigenvalues of the reduced Hessian of the energy are
related to the eigenvalues of the (sparse) Hessian of the
Lagrangian: by counting the number of negative eigen-
values of the Hessian of the Lagrangian, and comparing
it to the dimension of the constraint space, we can de-
termine the inertia (the number of positive, zero, and
negative eigenvalues) of the associated reduced Hessian
of the energy [33, Thm. 16.3]. This allows for the char-
acterisation of the nature of each solution found using a
single sparse LDLT decomposition, computed using the
FEniCS, PETSc and MUMPS software packages [34–36].

In Figure 3, we show the computed ground state
(lowest-energy solution) as a function of µ and q0. For
each solution, we display the value of the energy func-
tional and also compute the skyrmion number [2],

Q =
1

4π

∫
n ·
(
∂n

∂x
× ∂n

∂y

)
dA, (10)
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Figure 3. Cholesteric liquid crystal in an elliptical domain. Ground state solutions shown as a function of pitch q0 and
aspect ratio µ. For each solution, the value of the energy functional is displayed on the top right, with the skyrmion number
shown bottom right. Solutions indicated by an asterisk on the top left were found using the deflated continuation technique.

a topological index that represents the number of times n
covers the unit sphere. Such indices help identify topolog-
ically distinct solutions: as the parameters µ and q0 are
slowly varied in Fig. 3, the ground state mostly changes
smoothly. However, between certain values, e.g. q0 = 4
and 5 with µ = 1, a transition to a new solution as the
ground state occurs; this is accompanied by a change
in the skyrmion number. Some solutions that are quite
different in appearance e.g. µ = 1.85 between q0 = 4
and 5 or q0 = 8 and 9 have identical Q because they
are linked by a continuous deformation of the director
field. While deflated continuation enables us to find in-
termediate solutions between chosen values, and resolve
transitions that take place, the skyrmion number pro-
vides a partial classification of the distinct branches that
arise.

For certain values of µ and q0, the solution set discov-
ered by deflation alone failed to include a minimal energy
solution that was stable. These values are indicated in
Figure 3 with an asterisk. For these values, we applied
the deflated continuation technique described above to
identify the stable ground state shown in Figure 3. For
instance, consider the case µ = 1.15 and q0 = 7. The low-
est energy solution found using deflation is displayed as
an inset indicated by an asterisk in Fig. 4, but possesses
unstable directions according to the Hessian analysis de-
scribed above. We therefore use the µ = 1.15 and q0 = 6

Cholesteric pitch q0
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Figure 4. Bifurcation diagram as a function of q0 gener-
ated by deflated continuation for aspect ratio µ = 1.15. The
solution set is visualised at q0 = 6 and q0 = 7. Black points
represent stable solutions and gray points indicate one un-
stable direction. The lowest energy, yet non-stable, solution
identified by deflation without continuation for q0 = 7 is in-
dicated by an asterisk.
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solution set and continue in q0 from 6 to 7. The ener-
gies of intermediate solutions obtained in the process are
plotted in Fig. 4 as a bifurcation diagram; the initial
and final solution set recovered in this process are dis-
played in Fig. 4 as insets. A new pair of solutions, not in
the q0 = 6 solution set, emerges through a fold bifurca-
tion at approximately q0 ≈ 6.67 and represents the stable
ground state at higher values of q0; the prior ground state
becomes higher in energy and is now unstable.

The same procedure was applied to all the problematic
cases in Fig. 3, where the solutions shown are the low-
est energy solutions found and are all verified as stable.
This example illustrates the power of deflated continu-
ation to track distinct branches in the solution set and
identify solutions very different from the initial guesses
provided. While it remains possible that the true ground
state remains elusive for some values in (µ, q0) space, it
is clear that deflation and deflated continuation are pow-
erful tools to assist in the assembly of phase diagrams.

The solutions found in Fig. 3 catalogue the interesting
interplay of the elastic constants, cholesteric parameter,
and confining geometry. For µ = 1, a circular domain,
increasing q0 initially leads only to the incorporation of
additional rotations as expected. Around a critical value
of q0 = 7, the contours of constant orientation are greatly
deformed as the number of radial rotations in the chan-
nel increases from π at q0 = 6 to 3π/2 for q0 = 8. A
similarly deformed structure is visible at q0 = 10, which
is apparently close to a jump from 3π/2 rotations to 2π.

For higher aspect ratios, the contours of constant ori-
entation can be deformed by the geometry of the chan-
nel. For example, for aspect ratio µ = 1.5 and q0 ≤ 7, the
ground state consists of the director rotating by 2π about
the radial direction from the center; above this value an
extra π rotation is incorporated. Comparing the shape of
contours of constant tilt, notice that the interior “layer”
is approximately circular for q0 = 5, but becomes more
elongated with increasing q0. For q0 = 8, the ground
state is strikingly different: a highly deformed interior
layer is accommodated within one contiguous outer layer.
The ground state for q0 = 9 reverts to the expected pat-
tern, simply incorporating an additional twist. Further-
more, as µ increases, the transition points between states
with different amounts of twist occur at higher values of
q0, and are typically proceeded by substantial layer de-
formation. Therefore, the confining geometry plays a role
in deterring or encouraging the addition of layers.

We note that deflation uncovers a particularly large
number of solutions for q0 = 8 and that many of the solu-
tions have relatively low energy compared to the ground
state. For other values of q0, only a few of the solutions
are close to the ground state in energy. We speculate that
this phenomenon is due to commensurability, with some
values of q0 being more compatible with the shape of the
domain than others. For a circular domain, commensu-
rate solutions exist where q0 happens to allow an inte-
ger multiple of π rotations from the center. Maximally
strained solutions occur between these special values, po-

tentially inducing deformation of the layers to relieve the
frustration. This is clearly visible at µ = 1.5 and q0 = 8,
or at µ = 1.85 and q0 ≥ 9, where the inner layer in both
cases is highly tortuous to fill the interior of the domain.

To resolve the sequence of transitions that occurs
around one of the maximally strained solutions, we vi-
sualise a bifurcation diagram in Figure 5 for an elliptical
domain with aspect ratio µ = 1.5 and with the preferred
pitch ranging from q0 = 5 to q0 = 9. We initialise the
computation with the solutions found by our previous
analysis. The diagram shown in 5A displays a relatively
small solution set for q0 < 7, but above q0 ≈ 7.4, a
dense thicket of additional solutions appears. As is visi-
ble in the expanded region depicted in 5B, this consists
of a rapid succession of fold and pitchfork bifurcations.
Moreover, the region between q0 = 7.4 and 9.0 contains
a notable number of stable solutions with free energies in
relatively close proximity to the ground state. The cor-
responding solutions at several values of q0 are displayed
in 5C, illustrating the striking complexity of solution sets
that can be uncovered using deflated continuation.

Because deflation suppresses solutions close to the ini-
tial guess, even very distant solutions can be recovered.
A particularly important result is that, while our initial
guesses are smooth functions, the algorithm was able to
spontaneously identify solutions with disclinations. Con-
fined cholesterics in rectangular domains or channels have
been experimentally and numerically shown to exhibit
structures with disclinations [37–39], as discussed in the
introduction. The existence, type, and number of the
disclinations were shown to be modulated by changes
to the depth and width of the channel, as well as the
cholesteric pitch. Figure 6 displays three examples for
µ = 1.5 and varying q0 with computed director fields
and associated elastic energy densities from which discli-
nations are readily identified. For q0 = 5, the solution
shown in Fig. 6A has four defect points, arranged in
a diamond pattern near the center of the domain. The
solutions in Fig. 6B and C were found for q0 = 7 and
possess two and one disclinations, respectively. Compar-
ing the solutions’ free energies, it is clear that the single
defect structure is energetically preferred. We note that
the energy of the solution in 6C corresponds to the third
lowest energy (and first unstable state) shown for q0 = 7
in the bifurcation diagram in Figure 5A. Thus, our re-
sults suggest that the propensity of the cholesteric to
forming metastable structures with disclinations in ellip-
tical channels, perhaps upon quenching from the isotropic
phase, strongly depends on the aspect ratio of the chan-
nel boundary. Moreover, our numerical experiments in-
dicate that multiple equilibrium configurations with dis-
tinct disclination patterns may exist for the same geom-
etry and material parameters.

The deflation technique plays a central role in the dis-
covery of these disclination arrangements. For instance,
numerical simulations in [39] relied on a priori knowl-
edge, gained from experimental observations, that discli-
nation structures should be present in order to initialise
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Figure 5. Deflated continuation. A Bifurcation diagram computed for fixed µ = 1.5 and continuing in q0. Points are
colored by the number of unstable directions, with black indicating a stable solution, and lighter grey indicating more unstable
directions. A particularly dense portion of the diagram, outlined in red, is shown in greater detail in B where vertical dashed
lines indicate values of q0 for which the solution set is displayed in C.

the Newton iterations within a basin of attraction. We
emphasise that here the simulations are initialised with
smooth director fields. Multiple solutions and the emer-
gence of disclinations occurred as spontaneous discover-
ies enabled by the deflation computations. In situations
where experimental and analytical information is limited,
such numerical capabilities facilitate a more robust and
thorough exploration of the admissible solution space of
a given problem.

V. CONCLUSION

In this paper, we present a new technique, deflation,
for recovering equilibrium solutions of the free energy of
a liquid crystal. The utility of the method is shown on
a toy example and then used to determine the structure
of a cholesteric in an elliptical domain. The ground state
is identified for a range of aspect ratios µ and preferred
pitches q0, showing gradual deformation of the solutions
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Figure 6. Channel Induced Disclinations: (Above) Plots
of the director field and (below) the free energy density, dis-
playing the formation of defects for different cholesteric pitch
q0. Regions of high energy density in red indicate the lo-
cation of each defect. Each ellipse has an aspect ratio of
µ = 1.5. Cholesteric configurations with A q0 = 5.0 form-
ing four symmetrically arranged defects with free energy of
67.684; B q0 = 7.0 with two disclinations and free energy of
32.434; C q0 = 7.0, free energy 14.959, and a single central
defect.

as a function of these parameters and transitions to dif-
ferent solutions at critical values. For selected values of µ
and q0, we compute the bifurcation diagram, finding re-
markably dense solution sets near the transition points.
In future work, we will apply the method to characterise
the solution set of more complex geometries involving
cholesterics, such as the rich 3D structures observed in
[3].

The deflation methodology significantly enhances the
utility of Newton iterations applied to nonlinear systems
by enabling Newton’s method to converge to multiple so-
lutions from the same initial guess. Applying the defla-
tion operator ensures that subsequent Newton iterations
do not converge to previously discovered solutions and
effectively modifies the basin of attraction to include un-

known solutions. While convergence to multiple solutions
is not guaranteed through use of the deflation operator,
sufficient conditions for convergence of deflated iterations
are constructed in [17] based on a generalisation of the
Rall-Rheinboldt theorem. Our results illuminate the ef-
fect of deflation, but also highlight the case that the use of
multiple initial guesses to discover all solutions is not en-
tirely eliminated with deflation. However, deflated con-
tinuation systematically provides a sequence of good ini-
tial guesses and increases overall efficiency and reliability
of multiple solution discovery through more systematic
exploration of the solution space.

More generally, deflation and deflated continuation
therefore allow theorists to recover energetically low-lying
solutions in which a liquid crystal may become kinetically
trapped. It can also be used to track different solution
branches when a system exhibits a bifurcation with re-
spect to some external parameter, e.g. the applied field
in a Freedericksz transition. The method is very general
and can be readily adapted to different representations,
e.g. the Q-tensor, and parametrisations; it is likely to be
most useful in systems where little analytical guidance or
experimental imaging are available.
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