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Abstract. Many physical systems support multiple equilibrium states that enable their use
in modern science and engineering applications. Having the ability to reliably compute such states
facilitates more accurate physical analysis and understanding of experimental behavior. This paper
adapts and extends a deflation technique for the computation of multiple distinct solutions in the
context of nonlinear systems and applies the method to the modeling of equilibrium configurations
of nematic and cholesteric liquid crystals. In particular, the deflation approach is interwoven with
nested iteration, creating an efficient and effective method that further enables the discovery of
distinct solutions. The combined methodology is applied as part of an overall free-energy variational
approach within the framework of optimization of a functional with constraints imposed via Lagrange
multipliers. A key feature in the combined algorithm is the reuse of effective preconditioners designed
for the undeflated systems within the Newton iteration for the deflated systems. Four numerical
experiments are performed, demonstrating the efficacy and accuracy of the algorithm in detecting
important physical phenomena, including bifurcation and disclination behaviors.
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1. Introduction. It is well known that many systems of nonlinear partial dif-
ferential equations (PDEs) permit multiple solutions. The numerical solution of such
systems is of key interest in many settings, particularly for bistable and multistable
physical systems, where understanding the solution set is crucial to the design and
optimization of physical devices. In [23], a deflation methodology was proposed to
enable the sequential discovery of distinct solutions to nonlinear differential equations,
based on modifying the typical Newton iteration applied to their discretizations. The
resulting iteration is demonstrated therein to be efficient, with roughly the same
amount of computational effort required to find each additional solution, and to suc-
cessfully discover numerous solutions to classical problems, such as an Allen–Cahn
equation and the Navier-Stokes equations. In this paper, we adapt and expand the
deflation methodology by combining it with nested iteration (NI) [4, 6, 12, 39, 46], a
powerful approach to reducing computational cost in the solution of nonlinear PDEs.
To demonstrate the performance of the resulting algorithm, we apply it to models in
liquid crystal theory, as an example of the coupled systems that arise in multiphysics
simulation.

In general, the deflation methodology sequentially modifies the nonlinear problem
to be solved by eliminating previously known solutions from consideration. This al-
lows for successive discovery of distinct solutions to the nonlinear system. In practice,
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the deflation approach is highly effective in locating several distinct solutions. Here,
we examine the method’s performance in the context of constrained variational formu-
lations arising in free-energy optimization. Such a framework is central to simulating
various multiphysics applications such as liquid crystals (addressed here) and oth-
ers, including ferromagnetics [34] and magnetohydrodynamics [30]. In the context of
these types of problems, multiple local extrema and saddle-point solutions satisfying
the given constraints may be present. Locating distinct solutions thus both reveals
configurations with physical relevance, such as defect arrangements in the case of liq-
uid crystals considered here, and facilitates computing global extrema with a higher
level of confidence than otherwise possible.

The success of the deflation methodology relies on the efficiency of the underlying
nonlinear and linear solvers. For the linear solvers, the deflation methodology is
naturally attractive, as it allows for the preservation of the sparsity patterns seen
in typical finite-element simulations as well as the use of existing fast solvers for
the linearized systems. To address efficiency of the underlying nonlinear solvers, in
this paper, we extend the deflation technique by integrating it with an NI approach,
as is commonly used to improve that efficiency. NI is an important tool for the
efficient numerical solution of nonlinear PDEs [46]. The system is first solved on a
coarse level, where computation is cheap. A series of refinement steps are then taken,
interpolating the coarse-grid solution to a finer mesh and using this as an initial guess
for the fine-grid problem. A key advantage is that these interpolated approximations
are typically very good initial guesses for Newton’s method on the finer grids, so very
few iterations are needed on fine levels, where computation is expensive. NI strategies
have been applied successfully to a variety of applications that involve coupled physics
(e.g. [4, 6, 12,39]).

To demonstrate the utility of deflation combined with NI and multigrid, we con-
sider a variety of static liquid crystal problems. The presence of multiple solutions
to liquid crystal systems is well-known and central to their use in many industries,
including modern display technology. Numerical simulations of liquid crystal con-
figurations are used to examine theory, explore new physical phenomena [1, 7], and
optimize device performance. For static liquid crystal structures, the associated sys-
tem of PDEs, known as the equilibrium equations [21,48], permit multiple solutions,
even under relatively mild complexity [19]. Further, multiple locally optimal config-
urations and saddle-point structures may exist for the energy formulation. Thus, in
this paper, we incorporate deflation into the constrained optimization approach pre-
viously developed in [1,2]. This yields an adaptable and efficient method that enables
the discovery of distinct solutions for such problems.

This paper is organized as follows. The deflation technique is discussed and de-
rived in the context of variational optimization formulations in Section 2. The combi-
nation of deflation with NI and the integration of existing (multigrid) preconditioners
is also examined in this section. The liquid crystal energy model and existing mini-
mization approach without deflation are summarized in Section 3. In Sections 4 and
5, the implementation of the algorithm is outlined and four numerical experiments
are performed. Finally, Section 6 provides some concluding remarks and a discussion
of future work.

2. Deflation methodology. A standard but unsystematic approach to com-
puting distinct solutions for nonlinear problems with several solutions is the use of
numerous initial guesses as part of an overarching Newton-type scheme, known as
multistart methods [40]. In this section, we adapt the deflation technique first pro-
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posed in [23] as a more effective and systematic alternative. The essential idea is to
cast the constrained minimization problem as the solution of the associated optimality
conditions and then to repeatedly modify the nonlinear problem to eliminate known
solutions as they are found.

First, consider a general variational problem, posed as min
u∈U

L(u), where u ∈ U
gathers the continuum variables to be solved for, and L : U → R is a nonlinear func-
tional. Then, the Euler-Lagrange equations are naturally given by the first variation,
such that

A(u; v) := Lu[v] = 0 ∀v ∈ U, (2.1)

where the Gâteaux derivative, Lu[v], is evaluated at u in the direction v (when
imposing Dirichlet boundary conditions on u, we may also take v in U0, corresponding
to the test space appropriately adjusted to functions that take value 0 on the Dirichlet
boundary). Note that A : U × U → R is linear in its second argument and can be
written as A(u; v) = 〈f(u),v〉, where f : U → U∗, and U∗ is the dual space of U .

We think of the nonlinear equation to be solved as either the variational form in
(2.1) or the “residual” equation f(u) = 0 (noting that this equality is taken to be in
U∗), and note that it may have multiple solutions, even when there is a unique global
minimum to the original variational problem. The question of whether computed so-
lutions to the Euler-Lagrange equations represent global minima or only local minima
(or maxima or saddle points) is often difficult to answer with certainty. The deflation
technique presented in this section systematically promotes the discovery of numerous
solutions, revealing stable and unstable local minima and increasing the probability
of the identification of a global minimizer.

Suppose one solution, r, to (2.1) has been found. We construct a deflated residual

g(u) = Mp,α(u; r)f(u), (2.2)

where Mp,α is the shifted deflation operator,

Mp,α(u; r) =

(
1

‖u− r‖pU
+ α

)
I.

Here α ≥ 0 is a scalar shift, p ∈ [1,∞) is the deflation exponent, and I is the identity
operator on U∗. Thus, for fixed u, r ∈ U , the deflation operator Mp,α(u; r) is simply
a scaled identity operator in U∗. Applying the deflation operator to the residual f
ensures that Newton’s method applied to the resulting variational system will not
converge to r under mild regularity conditions on the solution [23]. In the context of
(2.1), the resulting deflated variational operator is given by

G(u; v) = 〈Mp,α(u; r)f(u),v〉 =

〈(
1

‖u− r‖pU
+ α

)
f(u),v

〉
.

This produces the deflated variational problem

G(u; v) = 0 ∀v ∈ U. (2.3)

A nonzero shift, α, is applied so that the deflated residual does not tend to zero as
‖u − r‖U becomes arbitrarily large, see [23]. While the method is generally robust
with respect to parameter choice, there are situations where additional performance
improvements are attainable for certain selections of p and α.
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For brevity, we suppress the semicolon notation in the variational operators ex-

cept when necessary for clarity and denote η(u) =
(

1
‖u−r‖pU

+ α
)

. Note that the

deflated residual g(u) = η(u)f(u), is also nonlinear. Thus, we consider its solution
via Newton’s method, linearizing g(u) = 0 around an approximate solution, uk, and
solving for an update δu that satisfies

〈g(uk) + g′(uk)δu,v〉 = 0 ∀v ∈ U,

where g′(uk) is the Fréchet derivative of g(u) evaluated at uk. Applying the product
rule to g(u), we have that

g′(uk) = η(uk)f ′(uk) + f(uk)η′(uk),

where f ′(uk) and η′(uk) are the Fréchet derivatives of f and η, respectively, evaluated
at uk. We note that g′(uk) and f ′(uk) become the standard Jacobians of g and f when
discretized, as discussed below. With this, we now discretize and solve the linearized
variational problem: find δu such that

〈g′(uk)δu,v〉 = −〈g(uk),v〉 ∀v ∈ U. (2.4)

This is used to compute the updated approximation uk+1 = uk + ωδu with a step
length ω ∈ R.

2.1. Deflated linear systems. A strategy for constructing effective precondi-
tioners for the deflated system based on existing preconditioners for the undeflated
matrices and computing their actions in a matrix-free fashion is presented in [23].
This section provides a general framework for efficient reuse of good preconditioners
designed for the original Newton linearizations, particularly necessary in the context
of mixed finite-element discretizations of multiphysics problems. In Sections 4 and 5,
we utilize this approach to apply monolithic multigrid preconditioners, as developed
in [1, 3], to solve for the updates in (2.4).

Let F (uk) and G(uk) denote the vectors corresponding to discretizations of f(uk)
and g(uk), respectively, and let d(uk) be the discretization vector corresponding to
the Fréchet derivative of η. Let JG(uk) and JF (uk) indicate the discretized Jacobians
of the deflated and undeflated systems, respectively. Then,

JG(uk) = η(uk)JF (uk) + F (uk)d(uk)T . (2.5)

As defined, JG(uk) is composed of a rank-one update to JF (uk). Thus, JG(uk) is
generally dense, even if JF (uk) is not, and explicit construction and computation with
the matrix is prohibitively expensive. Throughout the remainder of the paper, except
when necessary for clarity, we neglect the dependence on uk in the notation.

Considering JG = (ηJF +FdT ) and applying the Sherman-Morrison formula [31]
gives

J−1
G = (ηJF + FdT )−1 =

J−1
F

η
−

1
η2 J

−1
F FdTJ−1

F

1 + 1
ηd

TJ−1
F F

. (2.6)

Using (2.6) to compute the discretized update vector corresponding to (2.4) produces

−J−1
G G = −

J−1
F G

η
+

1
η2 J

−1
F FdTJ−1

F G

1 + 1
ηd

TJ−1
F F

= −J−1
F F +

1
ηJ
−1
F FdTJ−1

F F

1 + 1
η · dTJ

−1
F F

= −

(
1−

1
η · d

TJ−1
F F

1 + 1
η · dTJ

−1
F F

)
J−1
F F.
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Note that J−1
F F corresponds to assembling and solving the original undeflated prob-

lem and dTJ−1
F F is a dot product resulting in a scalar. Thus, solving the discrete form

of the deflation system in (2.4) is reduced to a single solve with the original sparse
system, one dot product, one vector scaling, and a few scalar operations. Therefore,
any preconditioner developed to effectively solve the undeflated Newton systems can
be directly applied to the deflated systems that arise in (2.4), yielding an efficient
algorithm for computing the deflated updates.

2.2. Multiple deflation. Thus far, the class of deflation operators considered
focuses on deflation with one known solution, r. In this section, we briefly discuss
extending the deflation procedure to treat a family of known solutions r1, r2, . . . , rm.
With several known solutions, the multiple deflation operator is the product of the
single deflation operators for each individual solution such that

Mp,α(u; r1, r2, . . . , rm) =

m∏
i=1

Mp,α(u; ri).

This modifies the action of Mp,α(u; r1, r2, . . . , rm) on f(u) such that

G(u; v) =

〈
m∏
i=1

Mp;α(u, ri)f(u),v

〉
=

〈(
m∏
i=1

(
1

‖u− ri‖pU
+ α

))
f(u),v

〉
,

which we recognize, as in the case of single deflation, to be a scaling of the residual with
the form g(u) = η(u)f(u). This deflated system remains nonlinear and corresponding
linearizations are derived to compute distinct solutions satisfying the first-order opti-
mality conditions. As with the single deflation linearization, the discretized multiple
deflation Jacobian, JG, is composed of a rank-one update to JF as in (2.5), though
d(uk) is now more complicated than the single deflation case. A process similar to
that applied in the single deflation case reveals an analogous result for computation of
solutions to the discretized, deflated linearizations and yields similar results enabling
the application of preexisting preconditioners to linear systems subject to deflation
over several known solutions. Each of the simulations to follow employs multi-solution
deflation operators as distinct solutions are discovered.

2.3. Interaction with nested iteration. To improve the efficiency of the over-
all algorithm, we propose here to directly integrate the deflation methodology with
NI. The process begins on a coarse grid, with a small number of degrees of freedom,
followed by a series of refinements until the final desired mesh resolution is obtained.
On each refinement level, a combination of continued iteration on known solutions
followed by applying deflation to uncover additional solutions is performed. The gen-
eral numerical flow is detailed below in Algorithm 1. The algorithm has four main
stages. The outermost phase is an NI hierarchy that has proven highly effective in re-
ducing computational work for systems of nonlinear PDEs discretized by appropriate
finite-element methods [2,4–6,12,39,46]. On each mesh, the algorithm first performs
(undeflated) Newton iterations on interpolated versions of solutions found on the pre-
vious, coarser mesh, termed the continuation list in Algorithm 1, to further resolve
the solution features on the finer mesh. On the coarsest mesh, one or more simple
initial guesses are taken in place of the interpolated information. This procedure is
followed by a solution discovery stage where all known solutions are deflated and new
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solutions are sought. Each deflation solve begins with an initial guess taken from a
list of (possibly several) initialization vectors. Newton iterations are performed until a
convergence tolerance is reached for a new solution (added to the solution list in Algo-
rithm 1) or a maximum number of Newton iterations have been performed. For both
the deflated and undeflated Newton iterations, the convergence stopping criterion on
a given level is based on a set tolerance for an approximation’s conformance to the
first-order optimality conditions in the standard Euclidean l2-norm. Throughout the
numerical results section below, this tolerance is held at 10−4. Since this is imposed in
the discrete l2-norm, this translates to an increasingly tighter constraint on the error
in the continuum L2-norm as the mesh is refined. For each deflated Newton iteration,
the matrix-free approach outlined in Section 2.1 can be used, so that the efficiency of
the linear iterations depends only on that of the underlying preconditioner (or other
solver) for the undeflated system. Finally, the known solution approximations are
interpolated to a finer grid to form the continuation list there. In the current im-
plementation, these finer grids represent successive uniform refinements of the initial
coarse grid.

Algorithm 1: Newton’s method for minimization with NI and deflation

0. Initialize the continuation list with initial guess(es) on the coarsest grid.
while refinement limit not reached do

1. Initialize the known solution list to the empty list.
// Grid continuation: take known solutions to the finer grid

for each guess in continuation list do
while first-order optimality threshold not met do

2. Set up discrete undeflated Newton system on current grid H.
3. Solve for Newton step and update.

end
4. Add converged solution to known solution list on H.

end
// Discovery stage: use deflation to discover new solutions

5. Construct a list of initial guesses on grid H.
for each guess in the list of initial guesses do

while first-order optimality threshold or failure criterion not met do
6. Set up discrete deflated Newton system using known solutions
on H.

7. Solve for Newton step and update.
end
if convergence threshold met then

8. Add solution to known solution list on H.
end

end
9. Uniformly refine grid H to form grid h.
10. Interpolate known solutions on H to fine grid h to form the
continuation list on h.

end

The blending of NI and deflation outlined above has a number of advantages above
and beyond efficiency. Certain solutions are more readily detectable through deflation
processes on both coarser and finer meshes, as observed in the numerical results to
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follow. Moreover, the algorithm allows for varying and adaptive initial guesses. That
is, in addition to a static set of initial guesses for the deflation solves on each grid,
sets of initial guesses may be constructed from transformations of known or newly
discovered solutions throughout the NI and deflation process. Constructing strategies
for adaptive generation of initial guesses will be the subject of future work.

2.4. Newton stepping. A form of damped Newton stepping is applied for both
the undeflated and deflated updates such that the next iterates are given by

uk+1 = uk + ωδu,

where 0 < ω ≤ 1 is a damping parameter. For the undeflated solves, we take ω = ω1

on the coarsest grid and increase its value by ∆1 at each level of refinement to a
maximum value of 1. With the deflated systems, we take ω = ω2 on the coarsest
grid and decrease its value by ∆2 at each level of refinement to a minimum value
of 0.2. This strategy aims at improving convergence for both types of iterations.
For the undeflated solves, the damping parameter is increased on each grid as confi-
dence in the Newton convergence increases for more finely resolved solutions. On the
other hand, in numerical experiments, some convergence issues have been observed
for deflation iterations beginning from poor initial guess on fine meshes. Hence, the
decreasing damping parameter increases the likelihood of convergence on finer grids
within the deflation iterations. While more advanced step selection methods, such as
trust regions [5,10], are well-established, we experimentally observed that using trust
regions during the deflation phase of the algorithm hindered the method’s ability to
discover new basins of attraction, thereby limiting the number of unique solutions
found. Specifically, with the application of the deflation operator, additional non-
linearity is introduced to the variational system under consideration. This generally
results in small trust regions, and thereby significant Newton damping, especially in
regions near previously known solutions. In this way, progress towards undiscovered
solutions can be exceedingly slow or even stall. Improving this performance and inves-
tigating alternate approaches to automatic step parameter selection will be considered
in future work.

3. Variational modeling of nematic liquid crystals. To demonstrate the
effectiveness of Algorithm 1, we consider variational models of nematic liquid crys-
tals, as previously discussed in [1, 2, 5]. In those papers, the focus was on efficiently
identifying a single solution to the Euler-Lagrange equations derived from the nonlin-
ear variational problem, aiming (but not guaranteeing) to find the global minimizer.
Here, the goal is to directly identify multiple solutions using the combined deflation-NI
algorithm. In this section, we review the variational model of nematic liquid crystals
previously studied in [1, 2, 5], for which numerical results are presented in Section 4.

Liquid crystals are materials with mesophases exhibiting characteristics of both
liquids and structured solids. These mesophases are found at varying temperatures
and solvent concentrations and exist for many types of materials, including both syn-
thetic [28] and naturally occurring molecular compositions [14]. They permit a strik-
ing variety of arrangements and behaviors. In this paper we focus on two: nematic
phases, which consist of rod-like molecules, and cholesteric liquid crystals, which share
many similarities with nematics but intrinsically prefer helical structures that admit
less symmetry due to chiral preference. These types of liquid crystals self-assemble
into ordered structures characterized by a preferred average direction at each point
known as the director. The director is described by a unit vector field at each point
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and is denoted n(x, y, z) = (n1(x, y, z), n2(x, y, z), n3(x, y, z))T . Along with their crys-
talline self-structuring, liquid crystals demonstrate a number of important physical
phenomena including birefringence, electric coupling, and flexoelectric effects. Com-
prehensive reviews of liquid crystal physics are found in [18,48,49]. These properties
and others have led to many important discoveries and a diversity of applications
(e.g. [35, 45,50]).

3.1. Frank-Oseen free-energy model. While a number of models exist [17,
42, 48], we consider the Frank-Oseen free-energy model for the computation of liquid
crystal equilibrium configurations [48, 49]. The complexity of the model and the
necessary nonlinear pointwise unit-length constraint have limited the availability of
analytical solutions in the absence of significant simplifying assumptions. Recently, a
number of numerical methods [7, 27, 43, 44] have been proposed for the Frank-Oseen
model. In [1, 2], an energy-minimization finite-element technique was developed that
allows accurate and efficient computational simulation of liquid crystal behavior. This
approach is presented here and combined with the deflation-NI methodology below.

The Frank-Oseen free-energy model characterizes the equilibrium free energy for a
domain Ω by deformations of the nondimensional, unit-length director field, n. Liquid
crystals tend towards configurations exhibiting minimal free energy. LetKi, i = 1, 2, 3,
be the Frank constants [24] with Ki ≥ 0 [22]. Here, we consider the case that each
Ki 6= 0. These constants are often anisotropic (i.e., K1 6= K2 6= K3), vary with
liquid crystal type, and play important roles in physical phenomena [8, 36]. In order
to properly formulate the Lagrangian below, a nondimensionalization, introduced
in [5], using a characteristic length scale, σ, a characteristic Frank constant, K, and a
characteristic voltage, φ0 > 0, is applied so that the entire expression is dimensionless.

We denote the classical L2(Ω) inner product and norm as 〈·, ·〉0 and ‖ · ‖0, respec-
tively, for both scalar and vector quantities. Throughout this paper, we assume the
presence of Dirichlet boundary conditions or mixed Dirichlet and periodic boundary
conditions on a rectangular domain and, therefore, utilize the null Lagrangian simpli-
fication discussed in [1, 48]. Hence, including the possibility of external electric fields
(but not flexoelectric effects), the Frank-Oseen free energy for nematics is written as

F(n, φ) = K1‖∇ · n‖20 +K3〈Z∇× n,∇× n〉0 − ε0ε⊥〈∇φ,∇φ〉0
− ε0εa〈n · ∇φ,n · ∇φ〉0, (3.1)

where φ is an electric potential, ε0 denotes the permittivity of free space, and the
dimensionless constants ε⊥ and εa are the perpendicular dielectric permittivity and
dielectric anisotropy of the liquid crystal, respectively. Finally, Z = κn ⊗ n + (I −
n ⊗ n) = I − (1 − κ)n ⊗ n, is a dimensionless tensor, where κ = K2/K3. Note that
if κ = 1, Z reduces to the identity. In the existing literature (including [1, 2]), the
functional in (3.1) is typically scaled by a factor of 1

2 ; while we derive the expressions
below without this scaling, we include it in the free energies reported in Sections 4
and 5 for consistency with other papers.

The director field is subject to a local unit-length constraint such that n ·n = 1 at
each point throughout the domain. In [5], numerical evidence indicates that imposing
this constraint with Lagrange multipliers is an accurate and highly efficient approach,
particularly in comparison to penalty or renormalization formulations. Note that in
the case that K1 = K2 = K3 with no electric field, a linear free-energy functional is
obtained. Coupled with the unit-length constraint, the minimization corresponds to
a weak harmonic mapping problem. Existence and uniqueness theory for this type of
problem has been analyzed in [32].
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Throughout this paper, we will make use of the spaces H(div,Ω) = {w ∈(
L2(Ω)

)3
: ∇ · w ∈ L2(Ω)} and H(curl,Ω) = {w ∈

(
L2(Ω)

)3
: ∇ × w ∈

(
L2(Ω)

)3}.
As in [1], define

HDC(Ω) = {w ∈ H(div,Ω) ∩H(curl,Ω) : B(w) = ḡ},

with norm ‖w‖2DC = ‖w‖20+‖∇·w‖20+‖∇×w‖20 and appropriate boundary conditions
B(w) = ḡ. Here, we assume that ḡ satisfies appropriate compatibility conditions for
the operator B. For example, if B represents full Dirichlet boundary conditions and Ω
has a Lipschitz continuous boundary, it is assumed that ḡ ∈ H 1

2 (∂Ω)3 [29]. Further,
let HDC0 (Ω) = {w ∈ H(div,Ω)∩H(curl,Ω) : B(w) = 0}. Note that if Ω is a Lipschitz
domain and B imposes full Dirichlet boundary conditions on all components of w,

then HDC0 (Ω) =
(
H1

0 (Ω)
)3

[29, Lemma 2.5]. Denote

H1,g(Ω) = {f ∈ H1(Ω) : B1(f) = g},

where H1(Ω) represents the classical Sobolev space with norm ‖ · ‖1 and B1(f) = g
is an appropriate boundary condition expression for the electric potential, φ.

We define the Lagrangian as

L(n, φ, λ) = F(n, φ) +

∫
Ω

λ(x)(n · n− 1) dV,

where L(n, φ, λ) has been nondimensionalized in the same fashion as the free-energy
functional. To minimize the functional, first-order optimality conditions are derived
as

Ln[w] =
∂

∂n
L(n, φ, λ)[w] = 0 ∀w ∈ HDC0 (Ω), (3.2)

Lφ[ψ] =
∂

∂φ
L(n, φ, λ)[ψ] = 0 ∀ψ ∈ H1,0(Ω), (3.3)

Lλ[γ] =
∂

∂λ
L(n, φ, λ)[γ] = 0 ∀γ ∈ L2(Ω), (3.4)

with A(n, φ, λ; w, ψ, γ) = Ln[w]+Lφ[ψ]+Lλ[γ] being the combined variational form.
For the Frank-Oseen model in (3.1), these Gâteaux derivatives are given by

Ln[w] = 2K1〈∇ · n,∇ ·w〉0 + 2K3〈Z∇× n,∇×w〉0
+ 2(K2 −K3)〈n · ∇ × n,w · ∇ × n〉0

− 2ε0εa〈n · ∇φ,w · ∇φ〉0 + 2

∫
Ω

λ(n,w) dV = 0, ∀w ∈ HDC0 (Ω),

Lφ[ψ] = −2ε0ε⊥〈∇φ,∇ψ〉0 − 2ε0εa〈n · ∇φ,n · ∇ψ〉0 = 0, ∀ψ ∈ H1,0(Ω),

Lλ[γ] =

∫
Ω

γ((n,n)− 1) dV = 0, ∀γ ∈ L2(Ω).

To express this problem in the general framework of Section 2, we identify the
product space U = HDC(Ω)×H1,g(Ω)× L2(Ω) with associated norm ‖ · ‖U , and its
subspace U0 = HDC0 (Ω)×H1,0(Ω)×L2(Ω). For any u ∈ U , we naturally identify u =
(n, φ, λ)T . The Euler-Lagrange equations above in (3.2)–(3.4) define the variational
form A : U × U0 → R termwise, giving the first variation as finding u ∈ U such that
A(u; v) = 0 for all v ∈ U0. Note that this variational system is nonlinear and, in
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many cases, admits several distinct solutions. For example, the classical Freedericksz
transition problem [25, 51], which is discussed in detail below, admits at least three
solutions to the first-order optimality conditions.

In [1, 2], Newton linearizations and a finite-element discretization are used to
compute solutions to this variational system. This linearization yields the Newton
update equations

JF (uk)[δu] =

 Lnn Lnφ Lnλ

Lφn Lφφ 0
Lλn 0 0

 δn
δφ
δλ

 = −

 Ln

Lφ
Lλ

 , (3.5)

where each of the system components is evaluated at nk, φk, and λk, the current
approximations for n, φ, and λ, and δn = nk+1 − nk, δφ = φk+1 − φk, and δλ =
λk+1 − λk are the updates we seek to compute. Here, following the mixed finite-
element formulation in [1, 2], we write JF as a matrix acting on the components of

δu = (δn, δφ, δλ)
T

, rather than in the more compact notation of Section 2. For the
full Hessian computations, see Appendix A. In addition to enabling the construction
of the linearized system, deriving the components of the Hessian permits numerical
study of the energetic stability of computed solutions. Techniques for such analysis
are not developed here but are possible as a post-processing step once equilibrium
states have been computed.

3.2. Discretization and multigrid preconditioning of the Jacobian sys-
tem. For the test problems below, we consider a classical domain with two parallel
substrates placed at unit distance apart. These substrates run parallel to the xz-plane
and perpendicular to the y-axis. Further, we assume a slab-type domain such that n
may have a non-zero z-component, but ∂n

∂z = 0. Thus, for the numerical experiments
to follow, Ω = {(x, y) : 0 ≤ x, y ≤ 1}. In the first two experiments of Section 4, pe-
riodic boundary conditions are applied at the left and right boundaries and Dirichlet
conditions are enforced at the top and bottom of the domain. In the third experiment
of the section, Dirichlet boundary conditions are applied for the entire boundary. In
all experiments, we use biquadratic finite elements to discretize components associ-
ated with n and φ in the variational systems, while piecewise constants are used for
those related to λ. In each simulation, the algorithm begins on a uniform 8×8 coarse
mesh, ascending in uniform refinements to a 256×256 fine grid. This results in a total
of 1, 118, 212 degrees of freedom on the finest mesh. The algorithm’s discretizations
and grid management are performed with the deal.II scientific computing library [9].

For preconditioning of the GMRES linear solver applied in the numerical simu-
lations, we employ a monolithic multigrid approach previously developed in [1, 3, 5].
This approach uses geometric multigrid, taking advantage of the structured grids used
in the discretization described above; grid-transfer operators are defined based on the
standard finite-element interpolation operators, while coarse-grid operators are de-
fined via Galerkin coarsening. The relaxation scheme used is a modified scheme from
the Braess-Sarazin family, defined by an approximate block factorization of the sys-
tem matrix. In the results below, we use a standard multigrid V-cycle with a single
pre- and post-relaxation sweep.

4. Numerical results for nematic liquid crystals. In this section and the
next, four numerical experiments using the combined deflation and NI approach, de-
tailed in Section 2, are carried out to demonstrate the performance of the method.
The first two simulations consider problems with known analytical solutions. The
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remaining experiments illustrate the full capabilities of the algorithm. For each sim-
ulation, the characteristic length scale discussed above is taken to be one micron,
such that σ = 10−6 m. Furthermore, the characteristic Frank constant is taken to be
K = 6.2×10−12 N, the dimensional value of K1 for 5CB, a common liquid crystal. The
applied nondimensionalization, for instance, yields parameters K1 = 1, K2 = 0.62903,
and K3 = 1.32258 for 5CB. In addition, the characteristic voltage is φ0 = 1 V, which
implies that the nondimensional dielectric permittivity constant is ε0 = 1.42809.

Unless otherwise stated, the deflation parameters are fixed such that α = 1 and
p = 3, and the failure criterion in Algorithm 1 occurs when the number of Newton
iterations reaches 100 (without convergence) or the average length of the current
director field is above 3, substantially violating the unit-length constraint. (Similar
failure criteria could be integrated with the first Newton loop in Algorithm 1, for
continuing known solutions, but this appears to be unnecessary in practice.) The
linear solver tolerance, which is based on a ratio of the norm of the current (discrete)
solution’s residual to that of the initial guess, is held at 10−6.

Computational work for a full NI solve is given in terms of work units (WUs),
calculated as a weighted sum of the total number of V-cycles across each NI level.
With uniform mesh refinements and a geometric multigrid strategy, the total number
of V-cycles on each grid is weighted by (1/4)l, where l is the level of coarsening away
from the finest mesh. For example, the total number of V-cycles on the second finest
mesh is simply scaled by 1/4. Thus, the total WUs for a given NI solve provides a
work measurement equivalent to counting fine-grid V-cycles in a single-grid approach.

4.1. Tilt-twist configuration. The first problem considered in this section is
an elastic configuration with no electric field and Frank constants given by K1 = 1.0,
K2 = 3.0, and K3 = 1.2. For the Newton damping, ω1 = 1.0, ∆1 = 0.0, ω2 = 1.0,
and ∆2 = 0.5. At the Dirichlet boundaries, we set

n(x, 0) =
(

cos
(
−π

4

)
, 0, sin

(
−π

4

))
, n(x, 1) =

(
cos
(π

4

)
, 0, sin

(π
4

))
.

This is known as a tilt-twist problem and is an interesting example for a few reasons.
The opposing boundary conditions induce a twisting configuration in the nematics
through the interior of the domain. Under these conditions, a planar twisting pattern,
where the y-component of the director remains zero, satisfies the first-order optimality
conditions. However, for these Frank constants it is well known that a twist configu-
ration incorporating a nonplanar tilt is energetically optimal [37,48]. Thus, there are
multiple solutions satisfying (3.2)-(3.4). Furthermore, these nonplanar twist solutions
only become energetically optimal for certain Frank constant ratios. For instance, such
configurations are not detectable when using the one-constant approximation [13,48].

For the deflation solves, two initial guesses are constructed at each refinement
level to serve as starting points for the discovery of additional solutions. Through the
interior of the domain, both initial guesses are isolated to the xy-plane and incorpo-
rate a slight uniform tilt; see Appendix B. As discussed in [5], convergence to the
energetically optimal solution can be attained even when choosing a relatively näıve
initial guess. However, without deflation, the poor initial guesses used here result in
convergence on all grids to a single planar twist solution, which represents only a local
minimum. The first guess is also used for the initial coarse-grid, undeflated iterations.

The undeflated iterations converge to the planar twist solution displayed in Figure
4.1(a) with a final free energy of 3.701 and consume a total of 11.9 WUs as the solu-
tion is continued through the NI hierarchy. The remainder of the solutions are located
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using deflation. The configurations in Figure 4.1(b) and (c) represent the energeti-
cally optimal structures for this problem, with both exhibiting final free energies of
3.593. Newton solves for these solutions require 17.8 and 18.0 WUs, respectively. The
symmetry of the device and boundary conditions allow for the reflective symmetry
seen in these two solutions.

(a) (b) (c)

(d)

Fig. 4.1: (a) Resolved non-minimizing solution on 256 × 256 mesh (restricted for
visualization) with final free energy of 3.701. (b) Energy-minimizing solution identified
through deflation with final free energy of 3.593. (c) Symmetric energy-minimizing solution
found with deflation. All solutions are located on the coarsest mesh. (d) Intricate
non-minimizing solution satisfying the optimality conditions located with deflation
parameters α = 0.1 and p = 2.0 and starting with a 4 × 4 coarse mesh.

For comparison, simulations without NI are performed using deflation damping
parameters of ω2 = 1.0 and 0.2. In either case, standard Newton iterations use a
total of 77 V-cycles (WUs) to find the configuration in Figure 4.1(a). For ω2 = 1.0,
subsequent deflation iterations fail to locate any additional distinct solutions. On
the other hand, with ω2 = 0.2, both arrangements shown in Figure 4.1(b) and (c)
are found but each incurs a cost of 687 V-cycles (WUs), representing a significant
increase in overall work necessary to compute these solutions. For this problem, NI
clearly improves both the efficacy and efficiency of the deflation approach.

Finally, we consider the computational effects associated with adjusting the defla-
tion parameters, α and p, summarized in Table 4.1. The value in each cell represents
the total number of WUs required in computing all discovered solutions. Each combi-
nation of parameters yields the three solutions shown in Figure 4.1(a)-(c), providing
experimental evidence for the robustness of the deflation approach with respect to
parameter choice. However, the applied parameters do have a noticeable effect on
the work unit efficiency. These fluctuations correspond to changes in the mesh level
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of the NI hierarchy at which deflation successfully locates additional solutions. For
example, the accrued WUs for α = 0.1 and p = 1.0 are considerably higher than those
of α = 1.0 and p = 3.0 because the third liquid crystal configuration is discovered on
the fourth mesh rather than the coarsest one.

α \ p 1.0 2.0 3.0 4.0
0.1 82.6 50.8 47.7 47.9
0.5 65.5 49.3 66.0 66.0
1.0 64.9 65.8 47.8 57.0
2.0 65.5 56.9 66.0 57.4

Table 4.1: Total WUs accumulated within the NI hierarchy during the computation of the
three configurations shown in Figure 4.1(a)-(c) for varying deflation parameters. Note that
these WUs do not include overhead associated with deflation iterations that did not
converge on each grid.

In other experiments, certain setups and selections of deflation parameters may
yield additional distinct solutions. For example, the configuration displayed in Figure
4.1(d) is discovered when applying deflation parameters of α = 0.1 and p = 2.0 with
an NI hierarchy starting on a 4×4 coarse mesh. The structure’s free energy is 32.336.
While the configuration is clearly not energetically optimal, it satisfies the first-order
optimality conditions. Further, in Section 5.2, the discovery of an additional, distinct
solution with the application of alternative deflation parameters without changing
the NI hierarchy, is briefly discussed. At present, deflation parameter choice gener-
ally relies on numerical experience and experimentation, but current work is focused
on constructing a better theoretical understanding of these parameters’ effects on
convergence and constructing techniques for automatic selection of these values.

4.2. Freedericksz transition. The second numerical experiment considers a
classical Freedericksz transition problem with simple director boundary conditions
such that n lies uniformly parallel to the x-axis at the edges y = 0 and y = 1. For the
electric potential, φ, the boundary conditions set φ(x, 0) = 0 and φ(x, 1) = V = 1.1.
The relevant Frank and electric constants are K1 = 1, K2 = 0.62903, and K3 =
1.32258 (those of 5CB), ε0 = 1.42809, ε⊥ = 7, and εa = 11.5. Note that for εa > 0 the
liquid crystals are attracted to alignment parallel to the electric field. The relevant
damping parameters are ω1 = 1.0, ∆1 = 0.0, ω2 = 1.0, and ∆2 = 0.5. The same
two initial guesses for n used in the previous experiment are applied in the deflation
solves here; c.f. Appendix B. These configurations serve as the starting point for all
deflation searches in the NI hierarchy.

The initial undeflated iterations converge to the elastic rest configuration uni-
formly parallel to the x-axis shown in Figure 4.2(a) and use 16.0 WUs. The final
free energy for this structure is −6.048. Thereafter, using deflation, the energetically
optimal arrangements displayed in Figures 4.2(b) and (c) are found and both have
final free energies of −6.778. The computation of each solution requires 33.4 WUs.
These solutions represent a true Freedericksz transition in which the applied electric
field successfully deforms the nematic configuration away from elastic rest. Without
deflation, the two guesses used here converge to the same solution, Figure 4.2(a), on
all grids. Alternatively, applying the deflation technique without NI for ω2 = 1.0 and
0.2, standard Newton iterations converge to the configuration in Figure 4.2(a) using
48 V-cycles (WUs) and subsequent deflation iterations miss the energetically optimal
structures for either damping parameter.
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(a) (b) (c)

Fig. 4.2: (a) Resolved non-minimizing solution on 256 × 256 mesh (restricted for
visualization) with final free energy of −6.048. (b) Energy-minimizing solution found
through deflation with final free energy of −6.778. (c) Symmetric energy-minimizing
solution computed with deflation. All solutions were located on the coarsest mesh.

(a) (b)

Fig. 4.3: (a) Pitchfork bifurcation diagram characterizing the Freedericksz transition at
approximately Vc = 0.775. Lines depict analytical values for θm while markers indicate
maximum angular tilt for solutions obtained through deflation. (b) A plot of free energy as
a function of applied voltage. Lines are analytical free energies and markers denote free
energies for solutions obtained through deflation.

The Freedericksz transition problem exhibits a well-known and important pitch-
fork bifurcation. The strength of the applied voltage at the top substrate, V , relative
to the elastic characteristics of the liquid crystal, determines this bifurcation struc-
ture. Retaining the liquid crystal constants outlined above and varying the applied
voltage, we observe the bifurcation process. As the applied voltage becomes stronger,
the electric field begins to overpower the elastic effects in the sample. At a critical

threshold, given analytically by Vc = π
√

K1

ε0εa
, it becomes energetically advantageous

to tilt in the direction of the field [48, 51]. The critical voltage for the problem pa-
rameters considered here is Vc = 0.775.

In Figure 4.3(a), when V reaches the critical value, solutions tilting in the direction
of the electric field begin to satisfy the first-order optimality conditions and yield
optimal free energy. The value θm denotes the maximum angular tilt of the director
field in the direction of the electric field resulting from the applied voltage. Figure
4.3(b) characterizes the shift in free-energy optimizing solutions resulting from the
Freedericksz transition as V passes the critical voltage, Vc. In both figures, the lines
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represent analytical computations as V varies [48], and the individual markers are
values for solutions computed independently for each value of V through deflation.

4.3. Escape and disclination solutions. This third numerical experiment in-
vestigates the phenomenon of defects, also known as disclinations. Defects in liquid
crystal structures are locations in a sample where the director field is undefined or
contains discontinuities. There are a multitude of disclination types including point,
wedge, sheet, and loop defects, among others. In this example, we consider wedge
disclinations. These disclinations involve rotation around an axis parallel to the de-
fect and are, therefore, sometimes referred to as axial disclinations [26]. Wedge-type
disclinations have been studied in [20,24].

For this simulation, the damping parameters are ω1 = 0.4, ∆1 = 0.2, ω2 =
1.0, and ∆2 = 0.5. Dirichlet boundary conditions are applied to the entire domain
boundary and no electric field is present. The boundary conditions are fixed such
that the director faces the center of the domain and Frank constants of K1 = 1.0,
K2 = 3.0, and K3 = 1.2 are used. As in the previous experiments, two initial guesses,
detailed in Appendix B, are used for the deflation solves on each grid.

(a) (b) (c)

Fig. 4.4: (a) Resolved escape solution on 256 × 256 mesh (restricted for visualization) with
final free energy of 9.971. (b) Disclination solution with central wedge defect and final free
energy of 24.042 (free energy is expected to diverge with refinement). (c) Symmetric escape
solution with final free energy of 9.971.

The first solution, located using undeflated solves, is displayed in Figure 4.4(a).
This director field is continuous and shares some similarities with the solutions found
in [11,41] for long cylindrical capillaries. The progression of the solves consumes 38.4
WUs. The solution displayed in Figure 4.4(c) is a second, symmetric configuration
computed in the deflation solves using 39.5 WUs. The calculated free energy on each
mesh for both solutions is shown in Table 4.2. Due to the symmetric composition of
the device, zenithal tilt in either direction results in an optimal arrangement.

Grid 8× 8 16× 16 32× 32 64× 64 128× 128 256× 256

Pos. Escape 9.972 9.971 9.971 9.971 9.971 9.971
Disclination 13.154 15.331 17.509 19.686 21.864 24.042
Neg. Escape 9.971 9.971 9.971 9.971 9.971 9.971

Table 4.2: Computed free energies on each mesh for the set of computed solutions.

In Figure 4.4(b), the remaining solution generated through deflation using 121.0
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WUs is displayed. Without deflation, only two of these three solutions would be
found across all NI grids. This configuration reveals a disclination where the director
field becomes undefined at the center of the domain. The existence of this type
of solution lends credence to the escape solution moniker given to configurations
like those in Figures 4.4(a) and 4.4(c), as the director “escapes” in the z-direction
to avoid the defect. The disclination structure does not have finite free energy, as
the functional values diverge as they approach the central defect [48]. Since the
solution is approximated with finite elements, this divergent behavior is manifest in a
monotonically increasing free energy after each successive refinement; see Table 4.2.
The free energy of 24.042 computed on the finest grid is expected to continue to rise as
the domain is more finely discretized. These types of disclinations can be synthesized
and observed under certain conditions [47].

The distribution of nonlinear iterations across the NI levels for the escape and
disclination configurations is shown in Table 4.3. The iteration totals associated
with a particular solution are those Newton steps that converged to that solution on
the given mesh. The counts marked in bold are iterations performed as part of the
discovery stage of the algorithm using deflation. The total “anonymous” iteration
counts in the last column are those deflation steps that resulted in divergence from
the unit-length constraint or reached the Newton iteration limit without converging.
The size of this iteration overhead depends on the number of initial guesses used and
the complexity of the configurations. While the configurations in this simulation are
found on the first grid, using different deflation parameters can change this outcome.
For instance, using α = 0.1 and p = 1.0, the solutions in Figures 4.4(b) and (c) are
not discovered until the 64× 64 grid.

Figure 4.4

Grid (a) (b) (c) Total Anon.

8× 8 23 7 100 −
16× 16 9 12 9 102
32× 32 5 8 5 200
64× 64 2 5 2 200

128× 128 2 5 2 200
256× 256 2 5 2 200

Table 4.3: Newton iteration counts across grids directly attributable to a solution along
with those resulting in divergence or tolerance stoppage in the deflation process for the
disclination problem. Bold numbers are associated with the discovery stage using deflation.

In considering the influence of NI on the efficacy of the deflation technique for this
problem, two simulations without NI are undertaken that employ deflation damping
values of ω2 = 1.0 and 0.2, respectively. In both experiments the arrangement shown
in Figure 4.4(a) is found with standard Newton iterations using a total of 359 V-
cycles (WUs). Using the first deflation damping value, both sets of deflated Newton
iterations diverge, failing to locate additional solutions. This result is improved by
applying the second, smaller damping parameter, for which the solution in Figure
4.4(c) is discovered consuming 775 V-cycles (WUs). However, in either case, the
disclination solution remains undiscovered. A possible cause for missing this solution
is the fact that the coarse-grid representations of the escape and disclination solutions
are energetically closer to one another compared with those of finer-scale meshes,
as seen in Table 4.2. As the disclination configuration’s free energy diverges, the
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likelihood of deflated iterations reaching its basin of attraction may shrink.

Fig. 4.1: Tilt-Twist Fig. 4.2: Freeder. Fig. 4.4: Disclination

Grid (a) (b) (c) (a) (b) (c) (a) (b) (c)

8× 8 10.8 11.4 12.1 10.7 10.1 10.1 12.9 13.3 13.9
16× 16 8.0 10.5 10.5 10.7 11.0 11.0 13.0 14.9 13.0
32× 32 8.0 11.5 11.5 11.0 12.0 12.0 13.0 14.2 13.0
64× 64 8.5 12.0 12.0 12.0 12.5 12.5 13.5 16.6 13.5

128× 128 9.0 11.5 11.5 12.0 12.5 12.5 14.0 17.8 14.0
256× 256 6.0 10.0 10.0 12.0 12.5 12.5 14.0 18.2 14.0

Table 4.4: Average multigrid iteration counts on each mesh during progression of the NI
hierarchy for solutions from the experiments in Section 4. Counts in bold represent average
iterations for linear solves on deflated systems.

Finally, the performance of the linear solver for the three experiments above is
illustrated in Table 4.4. The table displays multigrid iteration counts averaged over
Newton steps on each mesh for the solutions found in each experiment. Bold values
delineate average iterations for deflated linear systems. These iteration counts are
relatively small and remain steady across mesh refinements. Note that the iteration
counts associated with the deflated linear solves are consistent with the performance
of the solver on the undeflated systems. These results are especially promising as
no special modifications to the solver are necessary for integration with the deflation
technique.

5. Cholesteric liquid crystals. In our final experiment, we consider cholesteric
liquid crystals, which share many properties with nematics but have slightly less sym-
metry due to chirality. In particular, their inherent helical structure leads to a prop-
erty known as enantiomorphy where cholesteric molecules are distinguishable from
their reflected images. Right-handed helical cholesteric structures are transformed to
left-handed helixes upon reflection. This asymmetry leads to a modest modification
of the elastic free-energy functional for these types of liquid crystals and a fourth
(nondimensionalized) physical constant, t0, which characterizes the chiral properties
of the cholesteric liquid crystal and may be positive or negative depending on the
handedness of the cholesteric [15]. The full free-energy functional, ignoring electric
effects, is written

C0(n) = K1〈∇ · n,∇ · n〉0 +K2〈n · ∇ × n + t0,n · ∇ × n + t0〉0
+K3〈n×∇× n,n×∇× n〉0

= F(n, 0) + 2K2〈t0,n · ∇ × n〉0 +K2〈t0, t0〉0,

where F(n, 0) is the nematic functional in (3.1). Note that the last term does not
depend on n. Thus, in the minimization process, we need not include that term.
Hence, we define the cholesteric free-energy functional to be minimized as

C(n) = F(n, 0) + 2K2〈t0,n · ∇ × n〉0.

5.1. Minimization. Since cholesterics are subject to the same pointwise unit-
length constraint as nematics, the Lagrangian is formed as

LC(n, λ) = C(n) +

∫
Ω

λ(n · n− 1) dV.
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Computing the derivative of LC with respect to n yields

LCn (n, λ)[w] = Ln[w] + 2K2 (〈t0,w · ∇ × n〉0 + 〈t0,n · ∇ ×w〉0) .

Because the additional terms of the free energy specific to cholesterics do not depend
on λ, derivatives of this Lagrangian involving λ are identical to the nematic case.
Thus, in computing the Hessian, the only derivative with additional terms is the
second-order derivative with respect to n, giving

LCnn = Lnn + 2K2 (〈t0,w · ∇ × δn〉0 + 〈t0, δn · ∇ ×w〉0) .

Modifying the energy-minimization and deflation algorithm discussed above for ne-
matics by adding in the appropriate terms corresponding to the cholesteric free en-
ergy yields an effective algorithm for computing multiple equilibrium configurations
of cholesteric liquid crystals.

5.2. Chiral configuration. In this simulation, we consider a simple cholesteric
configuration, using the same mixed periodic and Dirichlet boundary conditions and
slab domain assumption as in previous numerical examples. At the Dirichlet bound-
ary, uniform conditions such that n = (1, 0, 0) are enforced. In the case of nematic
liquid crystals, subject to elastic forces, the minimizing configuration is full align-
ment parallel to the director on the boundary. However, the energetically optimal
arrangement for cholesterics is a chiral configuration along the y-axis with twist prop-
erties determined by the value of t0. Using an ansatz for a chiral solution of the form
n = (cos(τy), 0,− sin(τy)), the computations in [48] can be modified to our coordinate
system, giving the elastic free energy associated with this ansatz as 1

2K2(t0 − τ)2|Ω|,
where |Ω| is the domain measure, so long as the chiral ansatz also conforms to the im-
posed boundary conditions. Since the elastic free energy is positive and semi-definite,
clearly the free energy of the ansatz is minimized when τ = t0; when t0 is an integer
multiple of 2π, the uniform Dirichlet boundary conditions above will also be satisfied.

For this numerical simulation, the Frank constants are set to K1 = 1.0, K2 = 3.0,
and K3 = 1.2, while t0 = −2π. This implies that the energy-minimizing solution
corresponds to a left-handed helix running parallel to the y-axis with a 2π-rotation
across the device. However, additional configurations, while not globally minimizing,
satisfy the first-order optimality conditions and are experimentally observable.

The deflation algorithm is applied with damping values of ω1 = 0.2, ∆1 = 0.2,
ω2 = 0.2, and ∆2 = 0.0. Using the set of three initial guesses outlined in Appendix
B, the algorithm reveals a rich set of solutions satisfying the optimality conditions.
A total of six distinct solutions, shown in Figure 5.1, are found, whereas, without
deflation, only three solutions would be identified across all grids. The corresponding,
computed free energies for these solutions is shown in Table 5.1 along with average
iteration counts for the multigrid-preconditioned GMRES linear solver. In general, the
linear solver iteration counts are higher for these cholesteric systems compared with
those of the previous section. Correspondingly, the WUs, shown in the same table,
are larger when compared with previous experiments. This increase in iterations is
most likely due to a combination of the additional term in the cholesteric functional
and higher overall free energies in the solutions. However, the iterations counts are
relatively consistent across grid refinements, and the average solver iterations for the
deflated systems, shown in bold, correspond well with the iteration counts for the
undeflated solves.

The solution set includes degenerate planar solutions displayed in Figures 5.1(a)
and (d). By virtue of the chirality of cholesterics, these configurations are not globally
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(a) (b) (c)

(d) (e) (f)

Fig. 5.1: Family of distinct solutions for the cholesteric equilibrium problem found through
deflation. Each solution is computed computed on a 256 × 256 mesh and restricted for
visualization. The energy minimizing solution is displayed in (c).

Figure 5.1

Grid (a) (b) (c) (d) (e) (f)

8× 8 46.2 52.9 11.3 − − −
16× 16 66.0 54.3 9.0 67.7 66.8 −
32× 32 65.0 33.2 8.0 53.9 34.1 −
64× 64 61.0 28.4 8.0 35.8 26.9 −

128× 128 62.0 33.0 9.0 52.5 32.5 29.0
256× 256 78.0 30.5 9.5 46.0 30.0 18.5

Work Units 100.7 103.7 28.5 156.9 108.7 493.0
Free Energy 59.218 56.553 2.984e-08 59.378 56.553 31.821

Table 5.1: Average multigrid iteration counts on each mesh during progression of the NI
hierarchy for the cholesteric experiment above. Counts in bold represent average iterations
for linear solves on deflated systems. The final rows display the WUs and free energy
associated with each computed equilibrium configuration.

minimizing. Also included in the computed arrangements are structures with left-hand
twists following the x-axis. These behaviors decrease each system’s free energy below
that of the planar solutions. For instance, the free energy of the configuration in
Figure 5.1(f) is 31.821, well below the free energy of 59.218 for the solution in Figure
5.1(a). Similar transverse wave-like structures are observable in certain cholesteric
samples. Note that this solution is not found until the fifth mesh in the NI framework.
Furthermore, if the deflation parameters are adjusted, a seventh configuration of this
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type, not shown here, is also located during the deflation process.
The arrangement displayed in Figure 5.1(c), is energetically optimal. As suggested

in the analysis above, the director profile contains a left-handed helical structure
rotating 2π radians about an axis parallel to the y-axis and has a computed free
energy of 2.984e-08. It should be noted that in order to obtain this solution, an initial
guess incorporating a twisting profile is used. Moving in the configuration space from
a profile with little or no twist to one that incorporates a full 2π-rotation is far from
monotonic in terms of energy optimization. For example, introducing a moderate
twist into the planar solutions of Figures 5.1(a) or (d) increases their free energy until
the twist approaches a 2π-rotation. The minima valleys are well-separated and the
strength of the poles introduced through deflation are often not enough to overcome
the barrier dividing the valleys. Investigation into the application of generalized
tunneling methods, which have been used to address some aspects of this challenge
in the context of function minimization [38], will be the subject of future work.

As in Table 4.3, the nonlinear iterations accrued on each mesh during the NI
process are presented in Table 5.2. Iteration counts in bold delineate those performed
using deflation. The deflation iteration counts are generally higher with the increased
Newton damping in the deflation stage. Further, distinct solutions are discovered
through deflation on multiple grids. This is especially apparent in the discovery of
the structure in Figure 5.1(f), which is only found on the second finest mesh. Thus,
eliminating or reducing deflation iterations on finer grids is difficult without risking
the loss of additional solutions.

Figure 5.1

Grid (a) (b) (c) (d) (e) (f) Total Anon.

8× 8 46 56 50 − − − 100
16× 16 1 22 19 87 55 − 100
32× 32 1 12 10 8 12 − 228
64× 64 1 7 5 4 7 − 233

128× 128 1 2 2 2 2 63 200
256× 256 1 2 2 2 2 2 253

Table 5.2: Newton iteration counts across grids directly attributable to a solution along
with those resulting in divergence or tolerance stoppage in the deflation process for the
cholesteric problem. Bold numbers are associated with the discovery stage using deflation.

Finally, without NI, only the arrangements of Figures 5.1(a), (c), and (f) are
found with 2344, 674, and 1847 V-cycles (WUs), respectively. In addition to the loss
of at least three solutions, these WU totals indicate that the combination of NI and
deflation reveals six solutions with comparable work to computing any single solution
for deflation without NI.

6. Conclusions and future work. In this paper, a combined deflation-nested
iteration strategy for efficiently computing multiple solutions to nonlinear variational
systems was presented. It is demonstrated to have significant advantages over apply-
ing the existing deflation methodology on a single grid. In particular, the combined
approach retains the efficiency expected of NI algorithms for nonlinear PDEs while
enhancing the deflation approach’s ability to expose multiple solutions. As with the
original deflation methodology, we are able to reuse existing linear solvers for lin-
earizations of the undeflated system, further enhancing the computational efficiency
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of the combined approach.

Four numerical simulations were conducted with the combined algorithm, demon-
strating the effectiveness of this approach for problems in the numerical simulation
of nematic and cholesteric liquid crystals. In all cases, multiple solutions are found,
including global minima, and correct bifurcation structures are computed for the free-
energy model in two cases where these are known analytically. The effectiveness of
the algorithm considered here is expected to inform the application of the deflation
method for a more general class of constrained optimization and multiphysics prob-
lems, including closely related models in ferromagnetics. Future work will consider
construction of a generalized tunneling approach, based on the work in [38], applied
to the Newton iterations to further increase the power of the deflation method. In
addition, we aim to investigate the method’s performance in analyzing new physical
phenomena and behaviors in shaped domains. Finally, strategies for adaptive con-
struction of initial guesses for the deflation method at each level of the NI process will
be studied.
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Appendix A. Hessian of the nematic model.

In this appendix, we detail the full expressions for each component of the Hessian
in Equation (3.5). The multiplicative notation indicates the direction associated with
each derivative. For instance, Lλn[γ] · δn = ∂

∂n (Lλ(nk, φk, λk)[γ]) [δn], where the
partials indicate Gâteaux derivatives in the respective variables. Thus, each term of
the Hessian is written as

Lnn[w] · δn = 2K1〈∇ · δn,∇ ·w〉0 + 2K3〈Z(nk)∇× δn,∇×w〉0

+ 2(K2 −K3)
(
〈δn · ∇ ×w,nk · ∇ × nk〉0

+ 〈nk · ∇ ×w, δn · ∇ × nk〉0 + 〈nk · ∇ × nk,w · ∇ × δn〉0

+ 〈nk · ∇ × δn,w · ∇ × nk〉0 + 〈δn · ∇ × nk,w · ∇ × nk〉0
)

− 2ε0εa〈δn · ∇φk,w · ∇φk〉0 + 2

∫
Ω

λk(δn,w) dV,

Lnφ[w] · δφ = −2ε0εa〈nk · ∇φk,w · ∇δφ〉0 − 2ε0εa〈nk · ∇δφ,w · ∇φk〉0,

Lnλ[w] · δλ = 2

∫
Ω

δλ(nk,w) dV,

Lφn[ψ] · δn = −2ε0εa〈nk · ∇φk, δn · ∇ψ〉0 − 2ε0εa〈δn · ∇φk,nk · ∇ψ〉0,
Lφφ[ψ] · δφ = −2ε0ε⊥〈∇δφ,∇ψ〉0 − 2ε0εa〈nk · ∇δφ,nk · ∇ψ〉0,

Lλn[γ] · δn = 2

∫
Ω

γ(nk, δn) dV.

Additional details are found in [1].

Appendix B. Initial guesses.

In this appendix, we report the initial guesses used for each example to aid in
reproducing the results. Each guess listed here gives the values used on the interior
of the domain for all NI levels; the Dirichlet boundary conditions are enforced along
the relevant boundaries. In all of the simulations performed, λ is initially set to 0.

In Sections 4.1 and 4.2, the initial guesses used were n =
(
cos
(
π
40

)
, sin

(
π
40

)
, 0
)

and n =
(
cos
(
π
40

)
,− sin

(
π
40

)
, 0
)
. In addition, the simulations of Section 4.2 use

φ = V · y to initialize the electric potential for both guesses, where V is the potential
at the top substrate.
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For Section 4.3, let ξ1 =
∣∣∣tan−1

(
0.5−y
0.5−x

)∣∣∣, ζ1 = 9π
20 , and define the functions

n1 =

{
sin(ζ1) cos(ξ1) if x ≤ 0.5

− sin(ζ1) cos(ξ1) if x > 0.5,
n2 =

{
sin(ζ1) sin(ξ1) if y ≤ 0.5

− sin(ζ1) sin(ξ1) if y > 0.5,

n3 = cos(ζ1).

Then the two initial values for the director in the section are given by

n =

{(
0, 0, 1

)
if x, y = 0.5(

n1, n2, n3

)
otherwise,

n =

{(
0, 0, 1

)
if x, y = 0.5(

n1, n2,−n3

)
otherwise.

Finally, for Section 5.2, let ξ2 = 7π
16 and ζ2 = π

4 . The initial values for n are shown
in Table B.1.

Guess 1 Guess 2 Guess 3

n1 = cos (π/12)

n2 = sin (π/12)

n3 = 0

n1 = sin (ξ2) cos
(
ζ2 cos(4πx)

)
n2 = sin (ξ2) sin

(
ζ2 cos(4πx)

)
n3 = cos(ξ2)

n1 = cos (2πy) cos (π/8)

n2 = cos (2πy) sin (π/8)

n3 = sin(2πy)

Table B.1: Formulas for the initial guesses used in Section 5.2.


