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Abstract. It is well-known that two-level and multi-level preconditioned conjugate gradient
(PCG) methods provide efficient techniques for solving large and sparse linear systems whose coeffi-
cient matrices are symmetric and positive definite. A two-level PCG method combines a traditional
(one-level) preconditioner, such as incomplete Cholesky, with a projection-type preconditioner to get
rid of the effect of both small and large eigenvalues of the coefficient matrix; multi-level approaches
arise by recursively applying the two-level technique within the projection step. In the literature,
various such preconditioners are known, coming from the fields of deflation, domain decomposition,
and multigrid. At first glance, these methods seem to be quite distinct; however, from an abstract
point of view, they are closely related. The aim of this paper is to relate two-level PCG methods
with symmetric two-grid (V(1,1)-cycle) preconditioners (derived from multigrid (MG) approaches),
in their abstract form, to deflation methods and a two-level domain-decomposition approach inspired
by the balancing Neumann-Neumann method. The MG-based preconditioner is often expected to
be more effective than these other two-level preconditioners, but this is shown to be not always true.
For common choices of the parameters, MG leads to larger error reductions in each iteration, but
the work per iteration is more expensive, which makes this comparison unfair. We show that, for
special choices of the underlying one-level preconditioners in the deflation or domain-decomposition
methods, the work per iteration of these preconditioners is approximately the same as that for the
MG preconditioner, and the convergence properties of the resulting two-level PCG methods will also
be (approximately) the same. Numerical experiments are presented to emphasize the theoretical
results.

Key words. deflation, domain decomposition, multigrid, conjugate gradients, two-grid schemes,
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1. Introduction. The Conjugate Gradient (CG) method is a well-known itera-
tive method for solving large linear systems of equations,

Az =b, AeR™™ (1.1)

whose coefficient matrix, A, is sparse, symmetric, and positive definite (SPD). The
convergence rate of CG is naturally bounded in terms of the condition number of A,

denoted by k = k(A) := i‘:n%"((::)), where Apax(A) and Apin(A) are the largest and

smallest nonzero eigenvalues of A, respectively. If x is large, it is often more favorable
to solve a preconditioned system,

M Az = Mb, (1.2)

instead of (1.1) directly. To be effective, the preconditioner, M, should be chosen such
that M A has a smaller condition number or more clustered spectrum than A, and so
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that the matrix-vector product My is cheap to compute, relative to the improvement
that such preconditioners provide to the convergence rate. Traditional one-level pre-
conditioners, such as diagonal scaling, basic iterative methods, approximate inverse
preconditioning, and incomplete Cholesky preconditioners, are widely used. These
preconditioners, however, are well-known to not lead to scalable solution algorithms
for applications with highly refined grids or large coefficient ratios [23]. In these ap-
plications, preconditioned CG (PCG), with these one-level preconditioners, suffers
from slow convergence due to the presence of relatively small or large eigenvalues,
which have a harmful influence on the condition number of the coefficient matrix. In
what follows, we shall refer to such preconditioners as “one-level” preconditioners, to
distinguish them from their “two-level” counterparts introduced next.

An alternative to these preconditioners is to incorporate a second matrix within
the preconditioner to improve the performance of PCG, so that the resulting approach
gets rid of the effect of both small and large eigenvalues. This combined precondition-
ing is also known as ‘two-level preconditioning’, and the resulting iterative method
is called a ‘two-level PCG method’, abbreviated as ‘2L-PCG’. The term “two-level”
arises because the second preconditioner involves the solution of an auxiliary problem
that can, in some cases, be associated with a second, coarser discretization of the
continuum operator. Examples of 2L-PCG methods include preconditioners based
on multigrid, domain decomposition, or deflation techniques, where these methods
explicitly rely on preconditioning on two levels, see [21] and the references therein.
Generalizing (1.2), the linear system that is the basis of any PCG method can be
expressed as

PAx =Pb, P eR™", (1.3)

where P is either a one-level or two-level preconditioner. If P = M for a traditional
(one-level) choice of M, we simply recover the standard PCG method in (1.2). When
P is derived from deflation, domain decomposition, or multigrid approaches, the re-
sulting preconditioners appear, at first glance, to be quite different. However, it has
been shown in [21] that some of these methods are closely related, or even equivalent,
in their abstract forms.

In this paper, we focus on the comparison between two-level preconditioners in-
spired by the balancing Neumann-Neumann (BNN) [13], deflation (DEF) [18], and
multigrid (MG) [3,10,23,27] approaches. In [16,21], it was shown that BNN and DEF
have almost the same spectral properties, and that these properties are quite simi-
lar to those of the multigrid V(0,1)- and V(1,0)-cycle preconditioners, even though
these are typically not considered as allowable preconditioners for CG. Here, we will
compare preconditioners based on deflation and BNN to the 2L-PCG method that
mimics a multigrid V(1,1)-cycle preconditioner, denoted as the MG method. This MG
method is not compared with the other methods in [21], since it has very different
spectral properties and requires a different theoretical treatment, because of the more
general choice of one-level preconditioner allowed within MG. The aim of the current
research is to fill this gap and compare the abstract versions of MG, DEF and BNN.

Of course, the MG method [3,10,23,27] and its properties [1,6,9,14,17] are well-
known. Our intention is not to reproduce these results (although some known results
needed for the comparison are briefly reviewed), but to compare and connect MG
to other well-known 2L-PCG methods. A well-known comparison of multigrid and
domain-decomposition preconditioners is that of Xu [28], based on subspace correc-
tions. In [28], it is shown that certain multigrid and domain-decomposition algorithms
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fall into the same mathematical framework and, consequently, certain choices of the
components within the domain-decomposition framework lead, in fact, to a multi-
grid algorithm. Here, we consider a more abstract formulation than [28] and, as a
result, derive a more general result, based on a spectral analysis. A similar spectral
analysis for a two-level preconditioner based on multigrid principles has been carried
out in [4]. In that paper, a specific choice of the two-level preconditioner based on
exact eigenvectors of M A is analyzed, allowing for more pre- and post-smoothing
steps per iteration. The resulting two-level preconditioner is called a ‘multiplicative
two-grid spectral preconditioner’ and is shown to be effective for many practical appli-
cations, particularly when sequences of linear systems must be solved. In this paper,
we consider a somewhat more general preconditioner, based on a standard multi-
grid approach (but considering only one pre- and one post-smoothing step), although
eigenvectors of M A are sometimes used to illustrate the theoretical results. A con-
sequence of our main result is that any analysis of multigrid methods, such as that
in [1,2,6,11,14], can be directly applied to the corresponding domain-decomposition
or deflation-based preconditioner.

An important feature of the analysis considered here is that it is based on the
assumption that the same algorithmic components are used in all three approaches.
Because of their distinct origins, each of the deflation, domain-decomposition, and
multigrid algorithms has, primarily, been analyzed based on typical choices of M and
a corresponding coarse-grid correction process appropriate for a particular approach.
In contrast, we ask the question of whether one of these approaches is obviously
superior when the independent choices of the algorithmic components is removed.
Intuitively, we might expect the multigrid-based approach to yield better convergence
properties than the other 2L-PCG methods, since it alone relies on the use of two
applications of the fine-level preconditioner (in the pre- and post-smoothing steps),
in addition to a single coarse-grid correction step per iteration. DEF, on the other
hand, has optimal convergence properties in terms of its spectral properties compared
with certain other 2L-PCG methods (although not MG), see [21]. Therefore, our
comparison focuses on the relationship between the spectral properties of MG and
DEF. However, the comparison between MG and BNN is, in some cases, easier to
perform, so BNN is also used in the analysis. A numerical comparison of DEF and
MG, using components typical of each approach, for problems related to two-phase
fluid flow was recently presented in [12]. In that comparison, the performance of a
robust multigrid technique is clearly superior to that of deflation; the current research
was motivated by our desire to understand whether these results were because of some
fundamental difference between the multigrid and deflation frameworks, or because
of the differences in the choices made for the components within each algorithm’s
individual framework.

Several important practical issues are ignored in the analysis that follows. Most
significantly, we consider only two-level PCG algorithms. In practice, the multilevel
extensions of these algorithms are necessary to ensure the efficiency needed to solve
problems with the millions and billions of degrees of freedom currently required in
the field of computational science and engineering. Analysis of these approaches,
however, is much more technical than their two-level counterparts and is beyond the
scope of this paper. Furthermore, we do not aim to address several questions about
the sensitivities of these algorithms to the perturbations that naturally arise in their
multilevel extensions, such as to that of starting guesses or inexact solves on the coarse
level. For some analysis of these questions, see the discussion in [21].
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This paper is organized as follows. In Section 2, the two-level preconditioners
denoted by DEF, BNN and MG are described in detail. Some spectral properties of
MG are presented in Section 3. Thereafter, in Section 4, the spectral properties of
MG and DEF are compared for special choices of parameters; it is shown there that
MG can be less effective than DEF. In Section 5, we show that MG is always superior
to DEF for more sophisticated preconditioners. Subsequently, Section 6 is devoted
to the comparison of the MG, BNN and DEF preconditioners when their parameters
are chosen to yield the same cost per iteration. For special choices of preconditioners,
we show that they are almost spectrally equivalent. Section 7 is devoted to some
numerical experiments in order to illustrate the theoretical results. Conclusions are
presented in Section 8. An extended version of a previous draft of this paper is
available as a technical report [20].

2. Two-Level Preconditioned CG Methods. In this section, we describe
in detail the 2L-PCG algorithms that will be examined. The following definition is
assumed to hold throughout this paper.

DEFINITION 2.1. Let A € R™ ™ be a symmetric and positive-definite matriz,
and let Z € R™* and k < n be a deflation-subspace matriz with full rank. Define
the invertible Galerkin matriz, E € R¥*% the correction matriz, Q € R™*™, and the
deflation matriz, P € R™ " as follows:

P:=1-AQ, Q:=ZFE'7z¥ E.=7%AZ

In addition, let M € R™*™ be a given preconditioning matrix.

Note that we make no explicit assumptions here on the form of M. In some
cases, we will additionally assume that M is nonsingular, symmetric, and/or positive
definite. However, M may also, in some cases, be nonsymmetric, singular, or even
indefinite. We will, in all cases, specify when further assumptions are needed.

The following lemma will be frequently used, see [21,26] for more details.

LEMMA 2.2. Suppose that A € R™" and Z € R™ * are given. Let Q and P be
as in Definition 2.1, and let Ax =b. Then,

° Q — QT;

o (I — Pz =Qb;
o APT = PA;

e QAQ=0Q;

e PTZ = PAZ = 0;
o QAZ =1Z.

Proof. See, e.g., [21,26]. O

The deflation method (DEF) can be described as follows. In order to solve Ax = b,
we decompose z as ¥ = (I — PT)z + PTx, where (I — PT)x = Qb can be computed
immediately. For PTx, we solve the deflated system,

: (2.1)

for # = x +y with y € N(PA). From Lemma 2.2, PT% = PTz and, so, the unique
solution, x, can be obtained via (2.1) and the formula x = Qb + P7#. Moreover, the
deflated system can be solved using an SPD preconditioner, M, giving

PAZ = Pb

MPAz = M PV, (2.2)
see [15,206] for details. Hence, the two-level preconditioner corresponding to DEF is

Powe = MP. (2.3)
4



In order to derive the BNN and MG preconditioners, we consider the multiplica-
tive combination of preconditioners. This combination can be explained by consider-
ing the stationary iterative methods induced by the preconditioner. Assuming that
C1 and C; are given matrices (preconditioners), we combine ;1 := x; +C1(b— Ax;)
and zj41 =2, 1 + Co(b— Az, 1) to obtain zj41 = x; + Prm, (b — Az;), with

'sz =C1 4+ Cy — CrACY, (24)

which is the multiplicative operator consisting of two preconditioners. In addition, C
and Cy could be combined with another preconditioner, C's, in a multiplicative way,
yielding

ng =C14+Cy+C3— CyAC, — C3ACy; — C3ACY + C3AC, AC,. (25)
If one chooses C1 = @, Co = M and C3 = @ in (2.5), we obtain
PBNN = PTMP + Qa (26)

which is the two-level preconditioner corresponding to the abstract balancing Neumann-
Neumann (BNN) method when M is SPD. In [21], it was shown that BNN has the
same spectral properties as the 2L-PCG methods based on multigrid V(0,1)- and
V(1,0)-cycle preconditioners. In practice, BNN is always implemented based on these
‘reduced’ preconditioners, so that the amount of work per iteration is comparable to
that of DEF, see also [13,22].

On the other hand, we could also use M twice instead of Q, i.e., C; = M,Cs = Q
and C3 = M7 in (2.5). The resulting two-level preconditioner, well-known as the
multigrid V(1,1)-cycle preconditioner, is then explicitly given by

Puc = MTP+PTM +Q - MTPAM. (2.7)
The latter expression for Py also follows from the error-propagation operator:
V= (I —PycA) = (I - MTA)PT(I — M A), (2.8)
which is often written as
V:=8*PTS, S:=1-MA, (2.9)

where S* denotes the adjoint of S with respect to the A-inner product. Matrices S
and S* are known as the pre- and post-smoothers, respectively, and PT is the MG
coarse-grid correction operation. The resulting two-level PCG method with Py is
called MG, see [3,10,23,27]. Here, no assumption on the symmetry of M is needed
to guarantee that P, is symmetric; definiteness will be examined in Section 3.2.
Moreover, notice that Eq. (2.7) is only used for the analysis of MG, but that the
algorithm is never implemented using this explicit form, as the action of Py can be
computed using only a single multiplication with each of M, MT, and Q.

It can be observed that the two-level preconditioner corresponding to DEF is
included as a term in the two-level MG preconditioner when the same choice of a
symmetric M is used in both algorithms (cf. Eqgs. (2.3) and (2.7)). Hence, we might
expect that MG is always more effective than DEF. For common choices of M and
Z, this is indeed the case, see, e.g., Section 7.2. However, it is not true in all cases,
see Section 4.



| Name | Method | Two-level preconditioner, P |

PREC | Traditional Preconditioned CG | M

DEF Deflation MP

BNN Abstract Balancing PTMP+Q

MG Multigrid V(1,1)-cycle MTP+PTM +Q— MTPAM
TABLE 2.1

List of two-level PCG methods which are compared in this paper.

To summarize, the abbreviations and the two-level preconditioners corresponding
to the proposed 2L-PCG methods are presented in Table 2.1.

REMARK 2.3. We emphasize that the parameters of the two-level PCG methods
that will be compared can be arbitrary, so that the comparison between these methods
is based on their abstract versions. This means that the results of the comparison
are valid for any SPD matriz A, full-rank matriz Z, and matrix M that satisfies the
appropriate assumptions.

3. Spectral Properties of MG. In this section, we present some results related
to the spectral properties of the MG method. We first prove a result analogous
to [16, Thm. 2.5], demonstrating that the MG preconditioner also clusters a number
of eigenvalues at 1. Thereafter, we discuss necessary and sufficient conditions for the
MG preconditioner to be SPD. Note that while these are natural concerns from a
preconditioning point of view, these questions are not commonly considered for MG
methods, which are often applied as stationary iterations, in contrast to DEF, which
is always used as a preconditioner.

First, we present some notation in Definition 3.1.

DEFINITION 3.1. Let B be an arbitrary matriz and S be a subspace. Then,

e the null space and column space of B are denoted by N (B) and R(B), re-
spectively;
the spectrum of B is denoted by o(B);
dim S denotes the dimension of S;
if B is SPD, then the SPD square root of B is denoted by B'/?;
B is called convergent in the A-norm (or A-norm convergent) if ||B|la < 1.

3.1. Unit Eigenvalues of PycA. In [16,21], it was shown that DEF corre-
sponds to a coefficient matrix that has exactly k zero eigenvalues, whereas the matrix
associated with BNN has at least k£ unit eigenvalues. Theorem 3.2 shows that the
matrix corresponding to MG also has at least £ unit eigenvalues.

THEOREM 3.2. Let Py and S be as given in (2.7) and (2.9), respectively. Sup-
pose that

dim N (S) = m, (3.1)

for some integer m > 0. Then, PycA has one as an eigenvalue, with geometric
multiplicity at least k and at most k 4 2m.

Proof. In the following, we use the factorization of I — PycA = S*PTS as
given in Eqgs. (2.8) and (2.9). Note first that dimN(S*) = dim N (S) = m, see
also [20, Lemma 3.2].

Considering Eq. (2.9), there are three ways for a vector, v # 0, to be in N'(I —
PNIGA):

(i) v e N(S), so that Sv = 0;



(i) Sv e N(PT), yielding PTSv = 0;

(iii) PTSv € N(S*), so that S*PTSv = 0.
We treat each case separately.

(i) The geometric multiplicity of the zero eigenvalue of I — Py A must be at least
m, due to Eq. (3.1). This accounts exactly for all contributions to N (I —PycA) from
null space vectors of the first type.

(ii) Counting the geometric multiplicity of vectors of the second type is only
slightly more complicated. The fundamental theorem of linear algebra (see, e.g., [19])
gives an orthogonal decomposition of R™ as

R" =R (S)dN (ST). (3.2)
Since dim R (S) = n — m, it must be the case that
dim N (ST) = m. (3.3)

Now, consider the intersection of R (Z) with subspaces R (S) and A (S7):
Z1:=R(Z)NR(S), Z»:=R(Z)NN(S7),

and let dimZ; = k; and dim Z; = k. Note that necessarily k1 + ko = k, and
that ko is no bigger than m, because of (3.3). Since N(PT) = R(Z), we have
dim N (PTS)\WN(S) = ki, which is the contribution to the dimension of the null space
by vectors of the second type. Since k1 + ko = k for ks < m, the total dimension
of the null space arising from vectors of the first and second type must satisfy k <
ki+m<k+m.

(iil) Similarly, we can determine the dimension of the null space of the third type.
Note first that (cf. Eq. (3.2))

R =R (PTS) e N (S"P).

Let M := N(S*) and My = MNR (PTS). Then, the number of unit eigenvalues of
the third type is

my = dim My < dim M = m.
Thus, dim N (PycA) = m + k1 + mq, which can be bounded by
kE<m+ki+m <k-+2m.

Since counting the geometric multiplicity of zero eigenvalues of I — Py A is trivially
equal to the geometric multiplicity of unit eigenvalues of Py A, the proof is complete.
d
REMARK 3.3.
o PycA has at least k unit eigenvalues, even if S is singular.
e If zero is not an eigenvalue of S, then it is also not an eigenvalue of S* (which
18 similar to ST). Thus, Theorem 3.2 then says that PycA has exactly k unit
eigenvalues in this case.
e Since M may be nonsymmetric, the geometric and algebraic multiplicity of
the zero eigenvalue of S (or, equivalently, the unit eigenvalues of M A) should
be distinguished, since they might differ. !

LA simple example is Gauss-Seidel for the 1D Poisson problem with homogeneous Dirichlet
boundary conditions. Take A = tridiag(—1,2,—1) and M ~! to be the lower-triangular part of A.
Then, S has eigenvalue 0 with algebraic multiplicity %, assuming that n is even. Since there is only
one eigenvector corresponding to this eigenvalue, the geometric multiplicity is 1.
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e In a similar manner as Theorem 3.2, it can be shown that PyyyA has at least
k and at most 2k + m unit eigenvalues.

3.2. Positive Definiteness of Py¢. A 2L-PCG method is guaranteed to con-
verge if P, as given in (1.3), is SPD or can be transformed into an SPD matrix, see,
e.g., [5] for more details. This is certainly satisfied for BNN and DEF when M is
SPD, see [21]. Here, we examine this issue for MG. It is obvious that, while Py¢ is
always symmetric, it (and, therefore, also PyeA) is not positive definite for all choices
of Z and M, as in the next example.

EXAMPLE 3.4. Suppose that M = I and Z = [vy---vy], where {v;} is the set
of orthonormal eigenvectors corresponding to eigenvalues {\;} of A, where the \;
(and, correspondingly, the v;) are ordered so that Agy1 < A;j < A, for all j such that
k < 7 <n, but no ordering is assumed on A1 through A,. Then,

Puo=P+Pl+Q—-PA=21—-22Z" + ZN'ZT — A+ 227 A, (3.4)
where A = diag(\1, ..., \,). Multiplying (3.4) by v; gives us
Pucvi = 20; — 2227 v + ZA 1 Z0; — vy + N ZZ7 ;.

This implies

1 )
n x Vis fori=1,...k;
Pucvi = { (2—=XN)v, fori=k+1,...,n. 39

Hence, if A has eigenvalues {\;}, then the spectrum of Py is given by

1 1
— e, — 2= A e 2=Anp.
{)\15 7)\ka k41, ) }

In this case, P, is positive definite if and only if A, < 2. Furthermore, since Py is
always symmetric by construction, Pye is SPD if and only if A, < 2.

Example 3.4 shows that Py can be indefinite for some choices of Z and M. This
highlights an important difference between MG and DEF. Indeed, many precondi-
tioners, M, that make sense with DEF lead to indefinite Py, while choices of M
that lead to SPD P, might give nonsymmetric operators for Ppgp.

THEOREM 3.5. Let M € R™™ and Z € R"*F be as defined in (2.1). Let Py be
as given in (2.7). A necessary and sufficient condition for Py to be SPD is that Z
and M satisfy

min  w’ (M +M" - MAM™)w > 0. (3.6)

w: wlAZy Yy
w#0

Proof. By definition, Py is positive definite if and only if u” Pycu > 0 for
all vectors u # 0. Taking u := A2y, this means that Py, is SPD if and only if
yTAV2P, A2y > 0, for all y, or that AY/2P,,AY/? is positive definite. Moreover,
AY2Py, AY? is symmetric and, so, it is SPD if and only if its smallest eigenvalue is
greater than 0. This, in turn, is equivalent to requiring that I — AY/2P,,AY? has
largest eigenvalue less than 1. But I — AY2?P,,A'Y/? is a similarity transformation
of V (see Eq. (2.8)), AY2VA~1/2 = T — AV/?P,,AY?  which can be written as
A2V A=Y2 = (RS)T(RS), for

R:=1—A"2QAY? S:=1-AY?MAY2
8



Note that the cigenvalues of (RS)T(RS) are the singular values squared of RS (sce,
c.g., [8]), which are also the eigenvalues of (RS)(RS)T = RSSTR. So, the largest
eigenvalue of A1/2V A=1/2 is less than 1 if and only if the largest eigenvalue of RSST R
is less than one. This happens if and only if

uTR(S5T)Ru,

pron <1, Vu#0. (3.7)

To maximize this ratio, we write u = AY2Zy; + Ry, and note that R is the L2-
orthogonal projection onto the orthogonal complement of the range of A'/2Z. Then,

u"R(SST)Ru = y3 R(SS")Rys, v"u =yl Z"AZy, + y3 R?ys.

So, maximizing the ratio over all choices of y; means choosing y; = 0, so that the
denominator of (3.7) is as small as possible. Therefore,

uTRSST Ru yd RSST Ry,
T <1lVu#0 < TR <1Vys #0. (3.8)
Thus, if the ratio on the right of (3.8) is bounded below 1 for all ys, so must be the
ratio in Eq. (3.7). But, if the ratio in (3.7) is bounded below 1 for all z, then it is
bounded for x = Rys, which gives the bound at the right-hand side of (3.8).
Equivalently, we can maximize the ratio over R(R) = R(AY2Z)* (i.e., the or-
thogonal complement of the range of A'/2Z). So, the largest eigenvalue of RSSTR is
less than 1 if and only if
TS3T
max o9 L g (3.9)
w:mJ_Al/2ZyVy xr-x
z#0

By computation, we have SST = [ — A/2 (M + MT — MAMT) A'/2. Therefore, the
bound (3.9) is equivalent to requiring

T AY2 (M + MT — MAMT) AY 2y

- > 0.

min

m:mJ_Al/2ZyVy €r-x
z#0

Taking w = A2z, this is, in turn, equivalent to

min — w’ (M +M" = MAM")w >0,
wiw L AZyVy
w#0

because w’ A= w > 0 for all w. O

Intuitively, we expect the spectral properties of Py to reflect those of M, with
some account for the effect of the coarse-grid correction. Eq. (3.6) is particularly
interesting in comparison with Theorem 3.6, which gives a necessary and sufficient
condition for M to define a convergent smoother, see also [7,29].

THEOREM 3.6. Let M € R™*" and Z € R™** be as defined in (2.1). Let S be
as given in (2.9). A necessary and sufficient condition for S to be convergent in the
A-norm is

minw? (M 4+ MT — MAM™)w > 0. (3.10)

w#0

9



Proof. See [7,29]. O
Note that when M is invertible, Theorem 3.6 amounts to the condition

[S]la<1 & Amn(M '+ M™T—A)>0,

that can also be found, for example, in [29, Thm. 5.3]. On the other hand, Theorem 3.5
gives

min  w'Mw >0 & min oI (M~ M1 — Ay >0,
wiw LAZyVy viv=MTw,wl AZyVy
w#0 v7#0
where
M:=M+M" - MAM". (3.11)
Necessarily,

min wl Mw > mianMw,
w:w L AZyVy w#0
w#0

so the condition for Py to be SPD is weaker than the condition for a convergent S in
the A-norm. In other words, the A-norm convergence of S implies both convergence
of I — PycA, and that Py is SPD. However, Py can be SPD even if ||S]|a > 1, as
long as coarse-grid correction effectively treats amplified modes.

4. Comparing MG and DEF for a particular choice of M and Z. In this
section, we show that abstract preconditioners in the MG framework do not always
lead to better conditioned systems than DEF (although our example does not reflect a
practical parameter choice, particularly from the point of view of MG). Such problems
can even be found in the case of M = I, see [20, Sect. 4]. Here, we show that this can
be generalized for an arbitrary SPD M used in both DEF and MG when Z consists of
eigenvectors of M A. We start with some spectral bounds on MG and DEF under these
assumptions. Thereafter, we perform a comparison between the condition numbers
for MG and DEF.

THEOREM 4.1. Suppose that M is given and {\;} is the set of eigenvalues of M A
with corresponding eigenvectors {v;}. Let the columns of Z be given by vy, ..., v,. Let
Pour and Pye be as given in (2.3) and (2.7), respectively. Then,

(i) PucA has the following eigenvalues:

L, fori=1,... k;
{ Ai(2=X;), fori=k+1,...,n, (4.1)

(i) PpurA has the following eigenvalues:

0, fori=1,...k;
{)\i, fori=k+1,...,n. (4.2)

Proof. The proof follows from [4, Prop. 2] and [26, Sect. 4]. O
If we make the added assumption that M is SPD (so that Pprr is also SPD) and that
0 <)\ <2fork <j<n (sothat Py is SPD), then we can compare DEF and
MG based on their condition numbers. If we order the remaining eigenvalues so that
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A1 < Aj <A, for B < j < n, the resulting expressions for xyg and Kpee depend
only on eigenvalues Axy+1 and A, of M A:

1 An
Ryve = —— y Rper = 37—
¢ mln{/\k+1(2 - /\k+1); /\n(2 - )\n)} /\k+1

(4.3)

(under the assumption that Z consists of eigenvectors of M A). So, for some choices of
Z and M, MG yields a larger condition number than DEF, see [20] for some concrete
examples.
Using this result, we can graph the region of space parametrized by A\;41 and
An where each method is preferable; see Figure 4.1. Note first that if A\y11 = Ay,
then o(PycA) consists of at most two different eigenvalues, 1 and A, (2 — A,,). Also,
if Ayt = 2 — Any then mue = g1 (2= Mest)] " = [An(2 = An)] 7", while kpee =
Qf’j\n. In general, the region, 0 < A1 < A, < 2, is naturally partitioned into two
subdomains, along the line where Ap1+1(2 — Ag+1) = A (2 — \p), which occurs when
A1 =2 = At
o if Mey1(2 — Mig1) < A2 — M), then rye = [Arg1(2—= Aeg1)]”'. Thus,
Kue < Kper if and only if

1
Akr1 <2—)\—n;

o i App1 (2= Mer1) = An(2=An), then ke = [M(2 — M) Thus, fue < Kose
if and only if

Mer1 < A2(2—\y).

Figure 4.1 depicts these regions graphically. For any given Ar4; and A, the method
with smallest condition number follows immediately from this figure. Example 4.2
gives some consequences of Figure 4.1.
EXAMPLE 4.2.
(a) If o(MA) C (0,0.5], then (Ag+1,An) falls within Region By and, hence,
Kper < Kua-
(b) If o(MA) C (0,2) with A1 = 2 — Ay, then (Apt1,An) falls within either
Region Ay or As and Kpgr > Kye holds.
Case (a) says that if M is a ‘bad’ smoother (no eigenvalues of S are less than 5 ), then
MG is expected to require more iterations to converge than DEF does. On the other
hand, Case (b) implies that if M is a ‘good’ smoother (all eigenvalues that need to be
handled by relaxation are done so with eigenvalues of S bounded in a neighborhood of
the origin), then MG should converge in fewer iterations than DEF.

5. Effect of Relaxation Parameters. While DEF may have a smaller condi-
tion number than MG for some choices of M and Z, MG methods often make use of
an added, relaxation, parameter that can be very important in leading to an efficient
algorithm. We illustrate this here by considering M = «al for an optimized choice of
a. Such a choice of relaxation scheme within MG is commonly known as Richardson
relaxation.

5.1. Analysis of Scaling Relaxation. Instead of considering the original linear
system (1.1), we could consider preconditioning for the scaled linear system:

aAr =ab, a>0, (5.1)
11



1.8f S B N

1.6 - 1
1.2f A ¢ 7

0.8 LS 1
0.6F __,—"‘ 7)\k+1:)\n 4
0.4l B]_ —ikﬂ;z_?; )_17
=== k+l n

0.2r —22/5_y \H
- )\k+1_)\n(2 )\n)

00 0.5 1 15 2

k+1

FiG. 4.1. Partitioning of region 0 < Ap11 < Ap < 2. In regions A1 and Az, kue < Kpsr,
while in regions B1 and B2, kprr < kue. Here, we assume that M is SPD and that Z consists of k
eigenvectors of MA. The two condition numbers are equal (i.e., kue = kper) along the red (dotted)
and green (dotted-dashed) lines.

for a given choice of M. A subscript, «, will be added to the notation for operators
and matrices, if they are for (5.1). So, Ppgr.. and Pya .. denote the deflation matrix
and MG-preconditioner based on (5.1), respectively:

Poerad =M —aAZ(ZT (aA)Z) 1 ZT)(aA)
=aM(I - AZ(ZTAZ)"'ZT)A;

PucoaA=T— (T M (aA)I - Z(Z"(aA)Z) 1 ZT(aA)(I — M(ad)) (5.2)
=T —(IT—aMTAI—-2(ZTAZ)1ZTA)(I — aMA).

Solving the scaled linear system (5.1) for a given choice of M is, then, equivalent
to solving the preconditioned linear system (1.2) with preconditioner oM, as (I —
aAZ(ZT(aA)Z) 1 ZT) = (I — AZ(ZTAZ)~1ZT). The parameter, «, can then be
regarded as a parameter of the relaxation only instead of the linear system (i.e., the
relaxation processes are rescaled, but there is no net effect on coarse-grid correction).
Therefore, DEF is scaling invariant:

An(MPaA) An(MPA)

K o= = =K .
DEE: Mer1(MPaA) — M1 (MPA) PEF

In contrast, MG is not scaling invariant, and the positive-definiteness property of
Puc.. depends strongly on «; it is well-known that Richardson relaxation (where
M = al) is convergent if

2
0<a< ———, (5.3)
[ All2
see, e.g., [29]. For multigrid, a typical choice of « is close to m, which guarantees
that the slow-to-converge modes of relaxation are only those associated with the small
12



eigenvalues of A [2,11]. A better choice of « is possible if we make further assumptions
on how the eigenvectors of A associated with small eigenvalues are treated by coarse-
grid correction. Indeed, it is possible to get an explicit expression for the optimal «
under such assumptions, see the next subsection.

5.2. Optimal Choice of a. The best value of o depends on M and Z, so the
optimal «, denoted as a.,., can only be determined if these are fixed. In this case, the
job of relaxation is specifically to reduce errors that are conjugate to the range of Z.
In this section, we consider M = «l and the columns of Z to be given by eigenvectors
of A. The best choice of « is then the one that minimizes the ‘spectral radius’ of
relaxation over the complement of the range of interpolation, i.e.,

. |27 (I — aA)z|
min T
2yt ZT Az=0 Wy T~ T
z#0

THEOREM 5.1. Suppose that M = ol and Z = [vy---vi]|, where {v;} is the
set of orthonormal eigenvectors corresponding to eigenvalues {\;} of A, where the \;
(and, correspondingly, the v;) are ordered so that Agy1 < A;j < A, for all j such that
k < 3 <n, but no ordering is assumed on A1 through \i. Moreover, let P be as
giwen in (5.2) such that Pyg oA is SPD. Then, K(Pyc.A) is minimized for

2
)\k-i-l + )\n .

«

(5.4)

opt —

Proof. Note first that, by choosing M = al, the error-propagation operator for
MG, V, can be written as (cf. Eq. (3.4)).

V=I-PuA=I-aA)PT(I-ad)=2al+Z\N 2" — 20277 —a*A+*ZAZ".

So, applying Py to an eigenvector, v;, of A gives (cf. Eq. (3.5))
1

Py = N fori=1,...,k;
YT a2 —aN)vg, fori=k+1,....n.

Thus, PycA has eigenvalue 1 with algebraic multiplicity k, and n — k eigenvalues of
the form a\; (2 — a\;), fori=k+1,...,n.

Let {o;} be the set of eigenvalues of Py, A, which are positive and sorted increas-
ingly, so that its condition number is given by Z*. By assumption, a);(2 —a);) > 0
forall i = k+1,...,n and, by calculation, a\;(2 — a);) <1 for all @ and A;. Thus,

o1 = min {a\(2—aN)}, o, =1.
i€[k+1,n]

Since the function f(A) := aA(2 — a)) is concave down,

‘ [rlinrll ]{a/\i(2 —a))} =min{aXe11(2 — adpt1), A (2 —aN,)} . (5.5)
€lk+1,n

Subsequently, we choose «,,, to maximize this minimum eigenvalue,

max min {aAg+1(2 — aXpr1), e\, (2 — ar,)}.

This is achieved when

M e11(2 — @dpt1) = Al (2 — a\y);
13



: _ 2
ie., for a = YT a

COROLLARY 5.2. Let the conditions of Theorem 5.1 be satisfied. Then, Ky a,,, <
Rper-

Proof. If the optimal weighting parameter, «,,,, is substituted into (5.5), then
the smallest eigenvalue of Py a,,, A is equal to

ANk 1An

—_ 5.6
(A1 + An)? (56)
As a consequence, the condition number of Pyq .,,, A is then given by
A An)?
Fnicay: = (’”‘17—'—) (5.7)

4)\k+1 An

Finally, Ky a,,, < kper follows from the fact that

M1 +An)? _ Ao
ZDVEED VD VT

= ()\k—i-l + )\n)2 S (2)\71)27

which is always true, since A\p4+1 < A\p,. O
REMARK 5.3.

o Using this weighting, the condition numbers corresponding to MG and DEF
are the same if the spectrum of A is ‘flat’ (i.e., if Agy1 = A\ ). In all other
cases, using the optimized parameter, «,,, in MG leads to a more favorable
condition number than DEF.

e In Section 4, it has been shown that it is possible to have Kyc > Kpgr. How-
ever, Theorem 5.1 shows that these examples can never be constructed if an
optimal relaxation parameter is used.

e In practice, approximations to a are fairly easy to compute, although the
exact eigenvalue distribution is usually unknown. Gershgorin’s theorem gives
us estimates of both A1 and A, which can be used to approrimate \p11. A
naive approxrimation can be made by assuming that the spectrum is dense
between A1 and A, and that \p+1 is simply a linear function of k: Ag41 =
AL+ 2 (A = A

o An optimal weighting parameter, «,,, can also be considered for general pre-
conditioners, M ; however, it is often much more difficult to express «,,, ex-
plicitly, as it depends on the spectral properties of M A, which may not be
known. In general, the optimal choice of « is such that relaxation converges
as quickly as possible on the modes that are not being treated by the coarse-grid
correction phase. Thus, if the spectral picture of M A is known well-enough to
approzimate the eigenvalues corresponding to A\p4+1 and \,, a similar choice
of a,ye as in Eq. (5.4) may be possible.

6. Symmetrizing the Smoother. In the previous section, we have seen that
MG can be expected to converge in fewer iterations than DEF for specific choices
of M and Z, when the same components are used in both MG and DEF. However,
the fact that MG requires fewer iterations than DEF for many preconditioners does
not necessarily mean that it is more efficient, since each iteration of MG is more
expensive, due to the use of two smoothing steps. In order to make a fairer comparison
between DEF and MG, we now consider DEF using the preconditioning version of
the symmetrized smoother:

SS8* = (I — MA)(I — MTA)=1— MA, (6.1)
14



with
M:=M+M"—MAM". (6.2)

Note that ]T/[/, as defined here, is the same as in Eq. (3.11). We then use M as the
preconditioner in DEF, since this choice allows implementation in such a way that each
iteration of BNN, DEF, and MG has similar cost. In this section, the spectra of MG,
BNN and DEF are compared, using M in DEF and BNN and M in MG. For general
Z and M such that M is SPD, we show that BNN and DEF, both with preconditioner
M, and MG with smoother M yield the same eigenvalues for those modes that are
not treated by the coarse-grid correction. This statement is completely independent
of the choices of M and Z and, as such, is more general than similar results that have
appeared previously (e.g., that of [28]).

THEOREM 6.1. Let M € R™*™ be as given in (2.1) such that Pye with smoother
M is SPD. In addition, let M be as defined in (6.2) such that Pyyy with preconditioner
M is SPD. Then, the eigenvalues of PycA and PpywA are equal.

Proof. We show the equivalence of MG and BNN by examining the eigenvalues
of their error-propagation forms,

I—PuA = S*PTS;
I_PBNNA = PT(I_ MA)PT.
We examine both methods by making the same similarity transformation,
I—PA— A3(I —PA)A™ 2,

which allows us to make use of the fact that I — A%QA% is an orthogonal projection
in the L2-inner product. Computing the similarity transformed systems, we have

{ AN = Puc M)A~ = (1= ALMTAR)(I - A2QAY)(I - AbMAY),

(I — AZQA>)(I — A3MA3)(I — A3QA?).

Nl= =

A3 (I — Payn A)A™

By defining C' := (I — A2QA2)(I — A2 MA?), we can rewrite the latter expressions
as

Az(I —PucA)A—2 = CTC,
A2 (I — Py A)A™2 ccr,
where the following the equalities are used:
(I —A2QA2)?2 = [ — A3QA*;
(I—A2QA:)T = - A:QAz;
(I —AsMA=)T = J— Az MTAs;
I—AzMAz = (I—AzMAz2)(I — Az MTAz).

Since A%(I - PMGA)A*% and A%(I - PBNNA)A*% are similar to I — PucA and
I — Pan A, respectively, and, o(CTC) = o(CCT) (see, e.g., [21]), we obtain

o(I = PucA) = o(CTC) = o(I — PoxnA),

and the theorem follows immediately. O .

From Theorem 6.1, we obtain that MG with M and BNN with M give exactly
the same condition number. This also implies that the condition number of MG is
not smaller than the condition number of DEF.

COROLLARY 6.2. Let M be given and M be as in Theorem 6.1. Then,
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(Z) Rue = Kpnns

(”) Kppr < Kue,
where Kye, kpyy and Kpge are the condition numbers corresponding to MG, BNN and
DEF, respectively.

Proof. The corollary follows from Theorem 6.1 and [16, Thm. 2.7]. O

REMARK 6.3.

e Ordering the smoothers in the opposite way would lead to a different definition
of M ; this, in turn, could change the eigenvalues of MG and BNN, although
an analogous result to Theorem 6.1 still holds for the consistent choice of S
and M.

e Corollary 6.2 shows that BNN, DEF and MG are expected to show comparable
convergence behavior for special choices of the fine-level preconditioners. We
note that this result is only valid in exact arithmetic. If coarse-grid systems
are solved inaccurately, for example, DEF might have convergence difficulties,
while BNN and MG are less sensitive, see, e.g., [21].

7. Numerical Experiments. In this section, we present the results of some
numerical experiments to demonstrate the theoretical results presented above, as well
as to compare with the performance of a one-level preconditioned CG algorithm,
where the preconditioner M is used alone, denoted by PREC. In these results, a
random starting vector is chosen and used for each iterative method, and the iterative
process is terminated when the norm of the relative residual, %, falls below a
fixed tolerance, § = 1078, We start with a 1-D Laplace-like problem to illustrate
the theory obtained in Section 4. Then, a two-dimensional bubbly flow problem is
used to show the performance of DEF, BNN and MG with the choices discussed in the
previous section. Finally, a two-dimensional Finite-Element discretization of Poisson’s
equation is used to demonstrate the difference between the typical choices of M and
Z for BNN, MG, and DEF. We stress that these examples are chosen to highlight
the presented theory and not to present the efficiency of the solvers; in practice, very
different choices of M and Z are used for each method (see [12,25]) and much larger
problem sizes are needed for these approaches to be more efficient than optimized
direct solvers.

7.1. 1-D Laplace-like Problem. Several 1-D Laplace-like problems are con-
sidered, with the matrices

By 0
a=|" 2 | BoeRr (7.1)

S

0 vy B

where we vary the constants 3 and v so that each test case corresponds to a different
region within Figure 4.1, see Table 7.1. In addition, we choose M = I and Z consisting
of eigenvectors corresponding to the smallest eigenvalues of A. In all examples, we
use a = 1 in AMG, so that we can see cases where DEF is faster to converge than
AMG. Right-hand side, b, is chosen randomly. We take n = 100 (other values of n
lead to approximately the same results) and the number of projection vectors, k, is
varied. The results of the experiment can be found in Table 7.2.

Table 7.2(a) shows that DEF yields a smaller condition number and is faster than
MG for the choices of 5 and 7 in (T1). On the other hand, as observed in Table 7.2(b),
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| Test Problem | 164 vy | Range of \; Region | Expected Fastest Method |

(T1) 1.5  —0.125] [1.25, 1.75] B2 DEF

(T2) 1 —0.05 | [0.9, 1.1] Al / A2 | MG

(T3) 0.25 —0.1 [0.05, 0.45] Bl DEF

(T4) 1.25 —0.125 | [1.0, 1.5] A2 / B2 | MG/DEF
TABLE 7.1

Test cases corresponding to different regions as presented in Figure 4.1.

(a) B =15, v=—0.125.
| [ k=2 | k=20 | k=60 |
| Method | #Tt. kK | #Tt. & | #Tt. kK |

PREC 11 14 ] 11 14 ] 11 1.4
DEF 11 1.4 110 1.3 18 1.1
BNN 11 1.7 110 1.7 18 1.7
MG 15 23| 15 23| 12 2.3

(b) B=1, v =—0.05.

| | k=2 | k=20 [ k=60 |

| Method | #It. kK | # It. kK | #It. kK |
PREC 9 1.2 |9 1.2 |9 1.2
DEF 9 1.2 |9 1.2 |7 1.1
BNN 9 1.2 |9 1.2 |7 1.1
MG 5 1.01 | 5 1.01 |5 1.01

(¢) p=0.25, y=—0.1.
| [ k=2 | k=20 | k=60 |
| Method | #1It. v | #It. & [#1It. s |
PREC | 34 9.0 | 34 9.0 | 34 9.0
DEF 34 8.8 | 24 49 |11 1.4
BNN 34 19.6 | 25 11.0 | 11 3.2
MG 30 10.1 | 22 5.7 | 11 1.9

(d) B =125, v=—0.125.

| | k=2 | k=20 | k=60 |
| Method | # It. &k | #It. kK | #It. kK |
PREC 11 1.5 | 11 1.5 | 11 1.5
DEF 12 1.5 | 11 148 1.1
BNN 12 1.5 | 11 1.5 (8 1.5
MG 10 1.3 | 10 1.3 19 1.3
TABLE 7.2

Results of the experiment with test cases as presented for the Laplace-like problems where the
coefficients are given in Table 7.1. The results are presented in terms of number of iterations, #
It., and condition number, k.
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B and v can also be chosen such that MG yields a smaller condition number and is
faster to converge than DEF.

Since the condition number associated with DEF is always below that of MG in
the case presented in Table 7.2(c), DEF is expected to converge in fewer iterations than
MG; however, that is not the case. The two methods converge at roughly the same
rate for large k, but MG is faster than DEF for small k. This can be explained by the
fact that the spectrum of eigenvalues of MG consists of two clusters, see Figure 7.1(c).
If the first cluster of ones in the spectrum of MG is omitted (or is approximated by a
Ritz value), then the condition number of the remaining spectrum is smaller than that
of DEF. When k = 20, the ratio of the largest to smallest non-unit eigenvalues of MG
is approximately 3.5, while the ratio of the largest to smallest nonzero eigenvalues of
DEF is 4.9. While the CG convergence bound predicts 20 iterations for DEF (which
requires 24), it predicts only 16 iterations for MG when ignoring the unit eigenvalues
(which requires 22). These “extra” iterations for MG are likely the result of resolving
the Ritz value at one.

Finally, MG has a smaller condition number and is faster than DEF for small k in
the case presented in Table 7.2(d). On the other hand, for large k, DEF has a smaller
condition number than MG and performs somewhat better than MG. Indeed, the best
method depends on k (through Ag41) for this case with = 1.25 and v = —0.125.

S
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(c) B=0.25, vy = —0.1. (d) B =125, v=—0.125.

Fic. 7.1. Eigenvalues associated with DEF and MG for the test cases with k = 20 as presented
in Table 7.2.
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7.2. 2-D Bubbly Flow Problem. Using pressure-correction techniques for
solving the Navier-Stokes equations, the major computational bottleneck that arises
in modeling bubbly flows is the solution of the Poisson equation with a discontinuous
coefficient,

v (Lvpx) =0 x=(@ — (0,1)?
v (p(X)Vp( )) 0, (2,y) € 2= (0,1)% (7.2)

where p denotes the pressure and p is a piecewise-constant density coefficient, see [12,
24] and the references therein. We consider circular bubbles of air in the domain,
Q, that is otherwise filled with a fluid, see Figure 7.2(a) for the geometry. Here, a
density contrast of 102 is considered. A standard second-order finite-difference scheme
is applied to discretize (7.2), where we use a uniform Cartesian grid. Nonhomogeneous
Neumann boundary conditions are imposed so that the resulting linear system (1.1) is
still compatible. Moreover, we consider here the Incomplete Cholesky decomposition
without fill-in, IC(0), as the preconditioner, M. We refer to [21] for more details
about this experiment.

Composition Density

air Q 10° airQ 10° Q Q,

water airO 10°° 10
Q, Q,
air 10° airi 10°
(a) Geometry of the piecewise-constant (b) Geometry of the subdo-
coefficient, p. mains, 2;, where k = 3.

Fia. 7.2. Settings for the bubbly flow problem.

Let the open domain, €2, be divided into subdomains, ;, j = 1,2,...,k + 1,
such that Q = Ufillﬂj and ;N Q; = 0 for all 4 # j. The discretized domain
and subdomains are denoted by €, and €, respectively. Then, for each Q,; with

j=1,2,...,k+1, a projection vector, z;, is defined as follows:
N J 0 wme )\ Qs
(2)i .—{ U me (7.3)

where x; is a grid point of €2;,. The subdomains are identical square domains, which
are chosen independently of the bubbles and the number of them can be varied, see
also Figure 7.2(b). It can be shown that these projection vectors accurately approx-
imate the slowly varying eigenvectors corresponding to small eigenvalues when £ is
sufficiently large, see [12] and the references therein. Then, we take Z := [z1 23 - -+ zj].
Hence, Z consists of orthogonal, disjoint and piecewise-constant vectors. We remark
that the projection vectors are not restricted to choices that are common in DDM
and deflation. Typical MG projection vectors could also be taken, as will be seen in
the next subsection.
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Results for DEF, BNN, and MG using the same choice for M (IC(0)) are presented
in Table 7.3. From the table, it can be observed that, for all k&, DEF and BNN
require the same number of iterations, whereas MG requires the fewest number of
iterations, as expected. Recall that this does not necessarily mean that MG is the
fastest method with respect to computing time, since each iteration of MG is more
expensive than an iteration of DEF. Moreover, note that the difference in performance
between the cases with £k = 3 and k£ = 15 is small. In these cases, the subspace
spanned by the corresponding projection vectors allows only poor approximations to
the eigenvectors associated with the smallest eigenvalues of A. With k£ = 63, the
eigenvectors associated with the smallest eigenvalues of A are well-approximated by
the coarse-grid correction and, so, we see fast convergence for all methods.

I T = W 7
Mol 2 [IERS=IIP
| Method | #1t. [Zetle Jyq il g lnosl

DEF 149 1.5x 1078 | 144 3.1x 1078 | 42 1.8 x 1078
BNN 149 1.5 x 1078 | 144 3.1x1078 | 42 1.1 x10°8
MG 86 1.0x 1077 | 93 6.5 x 1078 | 32 1.9 x 1078
TABLE 7.3
Number of iterations required for convergence and the 2—mnorm of the relative errors of 2L-
PCG methods, for the bubbly flow problem with n = 642 and using the same M in all three methods.
PREC requires 137 iterations and leads to a relative error of 4.6 x 1077

We now perform the same experiment as above, but using the symmetrized IC(0)
preconditioner, M + M*T — MAM™, in DEF and BNN. In contrast to the previous
experiment, the amount of work for each iteration of BNN, MG and DEF is now
approximately the same and Theorem 6.1 holds. The results of this experiment are
presented in Table 7.4. As can be observed in the table, the performance of all three
methods is now nearly identical, as expected from the theory of Section 6.

| | k=22-1 | k=4-1 | k=8-1 ]
Tow—all M=zl [ex—cll2
‘ Method ‘ # 1It. W ‘ # It. W ‘ # It. [[z]]2 - ‘

DEF 87 72x107% | 94 1.3x10°% | 34 7.6 x 1077
BNN 87 72x107% | 94 1.3x 1078 | 34 7.6x107°
MG 86 1.0 x 1077 | 93 6.5x 1078 | 32 1.9 x 1078
TABLE 7.4
Number of iterations required for convergence and the 2—norm of the relativ/e errors of 2L-PCG
methods, for the bubbly flow problem with n = 642 and using the symmetrized M in DEF and BNN.
PREC requires 137 iterations and leads to a relative error of 4.6 x 1077

7.3. Comparing choices of M and Z. In this section, we compare the pre-
conditioners that result from making choices for M and Z that are typical for each of
the families of preconditioners considered here. For simplicity, we will base our com-
parison on a two-dimensional finite-element discretization of the constant-coefficient
Laplace operator, —Awu = f, on the unit square with Dirichlet boundary conditions.

For DEF, we consider a similar combination of results as those presented in the
previous subsection, with M chosen as the inverse of the IC(0) approximation to A,
and Z chosen based on subdomain vectors. Note that since we consider the problem
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with Dirichlet boundary conditions, we include all subdomain vectors, z;, in Z, in
contrast to the Neumann boundary condition case considered in Section 7.2.

For BNN, we consider a similar partitioning of the computational domain into
subdomains (now with overlap along subdomain boundaries), with Z chosen based
on the overlapping subdomain vectors, weighted so that the columns of Z remain a
partition of unity. To choose M, however, we use the matrix given by assembling
local exact inverses of the assembled element-stiffness matrices over each subdomain,
weighted to account for the subdomain boundary overlap. In these tests, we ignore the
elimination of the interior degrees of freedom on each subdomain that is normally used
in BNN [13]; while important for practical reasons, our goal here is to present a simpler
comparison within the framework considered above. For the interior subdomains, the
locally assembled element-stiffness matrices are singular; we address this singularity
when computing the inverse by first computing the exact LU factorization of the
(singular) matrix, then adding a small constant to the lower-right diagonal entry of U
before computing U ~'L~1. This has the effect that M A has (k—2)? large eigenvalues,
one for each singular subdomain matrix whose LU factorization has been perturbed.
Each of the eigenvectors corresponding to these eigenvalues, however, is in the range
of Z and, thus, the errors associated with these modes are exactly eliminated by the
coarse-grid correction process.

For MG, we consider a weighted Jacobi smoother, with M = %D‘l, where D is
the diagonal part of the discretization matrix. The subdomain vectors in Z are chosen
based on linear interpolation from a coarse grid that is coarsened by a factor of 2, 4,
or 8 in each direction.

Table 7.5 gives iteration counts for 2L-PCG using DEF, BNN, and MG as pre-
conditioners with M and Z chosen as for deflation. In these tests, we always take the
grid to be evenly divisible by the number of subdomains, so that each subdomain is of
the same size. For each problem size, we consider the performance of these algorithms
when the subdomains have 22, 42, and 82 points each. For this choice of M and Z,
we see that the iteration counts for all methods are similar when the subdomains are
of the same size. As expected, as the size of the subdomains grows (and, thus, the
total number of subdomains shrinks), the iteration counts grow somewhat.

| | 2% pts per subdmn | 42 pts per subdmn | 8% pts per subdmn |
[ n |DEF BNN MG | DEF BNN MG | DEF BNN MG |

322 12 11 8 15 14 10 18 17 12
642 12 11 9 17 16 13 22 21 17
1282 13 12 9 17 16 14 24 23 19

TABLE 7.5
2L-PCG iteration counts for preconditioners with M and Z chosen as in subdomain-based
deflation preconditioners.

Similarly, Table 7.6 gives iteration counts for 2L-PCG using DEF, BNN, and
MG as preconditioners with M and Z chosen as for BNN. Here, we assume that the
subdomains are overlapping and, so, the fine-grid domain size is of one point fewer
in each direction than would evenly divide the domain into the required number of
subdomains. For each problem size, we consider the performance of these algorithms
when the subdomains have 22, 42, and 82 points each. For this choice of M and Z,
we see that the performance of the DEF and BNN preconditioners is nearly identical
(as expected) and grows roughly with the logarithm of the subdomain size. The
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preconditioner based on MG with this choice of M and Z performs quite poorly,
however. This is, perhaps, not surprising, since the MG preconditioner applies the
smoother based on M twice per iteration, and measures reduction in the residual
between these steps and not after the coarse-grid correction step that damps the
errors magnified by M. While Theorem 4.1 does not directly apply here (as the
columns of Z are not eigenvectors of M A), we see similar results; the spectrum of
M A is not tightly clustered around 1 and, thus, the convergence of MG is poorer than
that of DEF and BNN.

| | 22 pts per subdmn | 42 pts per subdmn | 82 pts per subdmn |

n |[DEF BNN MG | DEF BNN MG

[DEF BNN MG |

312 6 5 295 12 11 158 18 17 170

632 6 5 > 500 12 11 404 18 17 > 500

1272 6 5 > 500 12 11 > 500 18 17 > 500
TABLE 7.6

2L-PCG iteration counts for preconditioners with M and Z chosen as in balancing Neumann-
Neumann preconditioners.

While geometric multigrid is almost always used with coarsening by a factor
of only 2 in each direction, this is not a requirement of the algorithm. However,
because of the overlapping nature of bilinear interpolation on a quadrilateral grid, the
coarsening process in multigrid cannot easily be thought of in terms of subdomains.
In Table 7.7, we give iteration counts for conjugate gradient using DEF, BNN, and
MG as preconditioners using M and Z chosen as for MG, with coarsening by factors
of 22, 42, and 82, resulting in a coarse-grid matrix £ = ZT AZ that is of the same
size as those for DEF or BNN with 22, 42, and 82 points per subdomain, respectively.
Here, we again see the nearly equivalent performance of DEF and BNN, with slightly
smaller iteration counts for MG.

| | coarsening by 22 | coarsening by 42 | coarsening by 82 |

[ n [DEF BNN MG [DEF BNN MG | DEF BNN MG |
312 12 11 6 23 22 14 41 40 26
632 12 11 6 23 22 14 43 42 27
1272 12 11 6 23 22 14 43 42 27

TABLE 7.7

2L-PCG iteration counts for preconditioners with M and Z chosen as in geometric multigrid.

The results in this section emphasize that, to a large degree, the particular choice
of a DEF, BNN, or MG-style preconditioner is much less important than the choice of
M and Z (with the exception of the poorly conditioned choice of M that arises from
the local Neumann conditions used within BNN). We emphasize, however, that this
comparison is made only in terms of the number of 2L.-PCG iterations for each choice
of M and Z. As discussed earlier, for the algorithms compared here, the cost per
iteration of the MG-style preconditioner is larger than that for the DEF or (reduced)
BNN preconditioners. From Theorem 6.1 and its corollary, we know that by choosing
M so that the cost per iteration of these approaches is the same, their performance
will also be equivalent, as shown in the example given in Table 7.4. The results in
this section show that when M and Z are held constant, we still often see consistent
results for all methods.
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8. Conclusions. We compare two-level PCG methods based on deflation (DEF),
balancing Neumann-Neumann (BNN) and multigrid V(1,1)-cycle (MG) precondition-
ers in their abstract forms, which all consist of combinations of one-level (traditional)
and projection-type preconditioners. When specific choices are made for the algorith-
mic components, each MG iteration is more expensive than a DEF or BNN iteration,
due to the more sophisticated form of the two-level preconditioner. At first glance,
we would expect MG to be the most effective method; however, we have shown that
there exist some choices for the algorithmic components for which DEF is expected
to converge faster than MG in exact arithmetic.

When Richardson relaxation is used with an optimal weighting as the one-level
preconditioner, the MG preconditioner is shown to always yield a smaller condition
number than those for DEF or BNN. For more sophisticated and effective one-level
preconditioners, we still expect MG to be superior to DEF and BNN, although the
work per iteration of MG remains more than for the other methods.

If, on the other hand, the one-level preconditioners are chosen carefully (as pre-
scribed above), there are variants of the BNN, DEF, and MG preconditioners that
all require the same amount of work per iteration. In this case, their spectra differ
only in one cluster of eigenvalues around 0 or 1. Hence, these methods are expected
to show a comparable convergence behavior, assuming that coarse-grid systems are
solved accurately. This is observed in the given numerical results.
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