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Local post-processing for locally conservative fluxes in the
Galerkin method for groundwater flows

E. T. Coon,1 S. P. MacLachlan,2 and J. D. Moulton,3

Abstract. The Galerkin Finite-Element Method using bilinear basis functions (in two
dimensions) offers many advantages in the numerical treatment of flow through porous
media. A significant disadvantage of this approach, however, is the lack of an explicit
discrete requirement of conservation of mass on mesh cells. While this shortcoming is
a concern in the case of single-phase flows, it is critical in the case of multi-phase flows,
where lack of conservation may lead to inaccurate or non-physical simulations. Here, we
extend the approach of Cordes and Kinzelbach [1992] for computing continuous veloc-
ity fields based on finite-element solution data to the important cases of heterogeneous
media, non-zero recharge, and non-homogeneous boundary conditions. We introduce a
new technique, which solves a problem similar to that in Cordes and Kinzelbach [1992],
but using a local mixed finite element basis. Finally, we compare the two approaches and
give numerical results that demonstrate the usefulness of the improved velocity fields.

1. Introduction

The continuous Galerkin Finite Element Method (here-
after GFEM) has many advantages for the numerical mod-
eling of flow through porous media. One advantage is the
properties of the resulting discrete matrix equations, which
are optimally solved using methods such as multigrid (Ruge
and Stüben [1987]; Dendy [1982]; Alcouffe et al. [1981]). This
method solves the second-order form of porous flow for pres-
sure, while fluxes must be calculated via post-processing.
The simplest post-processing applies Darcy’s Law directly
to the pressure solution, but this results in a locally non-
conservative flow field.

Although the necessity of conservative fluxes for single-
phase flow is unclear (see, e.g., the discussion in Mosé et al.
[1994]), it is essential for applications such as multi-phase
flow or reactive transport, where non-conservative fluxes
can generate negative concentrations and other non-physical
results. Therefore, many researchers have turned to the
first-order form of the flow equations, because such ap-
proaches explicitly build local mass conservation into the
discretization. These discretizations include Finite Volumes,
Mixed Finite Elements, and Discontinuous Galerkin meth-
ods, among others. However, due to the additional complex-
ity of these discretization methods, the appeal of the GFEM
remains. Moreover, the GFEM does have a discrete mass
conservation statement in its equations. This statement is a
weak condition with no explicit control volume (Cordes and
Kinzelbach [1996]; Hughes et al. [2000]); however, it can still
be used to derive various projections and post-processing
techniques. For example, Wheeler [1974] presented a one-
dimensional post-processing technique that results in super-
converging fluxes at nodes. Carey et al. [1985] extended
this to two dimensions, resulting in methods for develop-
ing globally conservative fluxes. More recent efforts, includ-
ing Hughes et al. [2000], Carey [2002], and Cockburn et al.
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[2007], have generated various methods to post-process for
locally conservative fluxes.

All of these methods define global post-processing prob-
lems; a linear system on the entire domain must be solved.
In many simulations where multiscale or upscaling algo-
rithms are used (cf. MacLachlan and Moulton [2006]; Hou
and Wu [1997]; Hou et al. [1999]; Arbogast [2000]; Efendiev
and Durlofsky [2002]; Hughes et al. [1998]), global solves on
the finest scale, whether for pressure or post-processing of
fluxes, are not computationally feasible. Indeed, even in the
case where global pressure solves are feasible, the cost of
global post-processing for locally conservative fluxes may be
prohibitive. To retain the efficiency of computation with
upscaled pressure fields, the calculation of fluxes must not
use global solves.

Alternatively, Cordes and Kinzelbach [1992] presented
an algorithm in which the weak conservation statement in
GFEM is enforced on a specified control volume. In this
method, a series of local problems are solved for edge fluxes
that are locally conservative by construction. This approach
requires no global solves, so the method works well for mul-
tiscale applications.

In the method of Cordes and Kinzlebach, a refined dual
mesh is introduced and local mass balance equations are de-
fined on dual mesh cells. These equations are closed through
an irrotationality constraint. In Section 2, we review and
extend this method, allowing for anisotropic and hetero-
geneous permeability, nonzero source terms, and nontrivial
boundary conditions. In Section 3, we introduce a new ap-
proach, where mixed finite elements are used to discretize lo-
cal problems on the same dual mesh. This leads to the same
local mass balance equations, but with a new closure. We
provide numerical examples in Section 4 that demonstrate
the superconvergence of the resulting fluxes, and compare
the accuracy of the two approaches. Finally, we apply the
method to a physically relevant permeability field.

2. Generalization of the Cordes and Kinzel-
bach Method

Saturated flow in porous media is governed by two equa-
tions: mass balance

∇ · v = f, (1)

and Darcy’s law,
v = −K∇p. (2)
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The former balances the flow field v with source terms f .
The latter defines velocity v throughout the domain as a
function of pressure p and permeability K. Together, these
equations are called the first-order form. The second-order
form combines these equations into a single, elliptic equation
for pressure,

−∇ · K∇p = f. (3)

Here, we consider a rectangular domain, Ω ⊂ R2, with a
Cartesian mesh. We use the GFEM with bilinear basis func-
tions for pressure to discretize (3). Appropriate boundary
conditions are specified, and the resulting discrete system is
solved using multigrid. The solution of weights, pi, where
p ≡

X
i

piφi, are taken as input data to post-process.

In our discrete equations, we need to index elements that
surround a given node, nodes that border a given element,
and other topological relations. Indices i and j are used
to index nodes, e is used to index elements, and s is used
to index side edges of the elements. On this quadrilat-
eral mesh, we introduce the sets C ≡ {N,S,E,W} and
D ≡ {NW,NE, SW,SE}, to index topological relations be-
tween nodes, edges, and quadrilateral elements. Further-
more, subscripts indicate the base object to which the su-
perscripted index is referring. For instance, qs

i for each s ∈ C
refers to the fluxes along the edges to the North, South,
East, and West of node i, while Ωe

i for each e ∈ D indexes
the elements to the Northwest, Northeast, Southwest, and
Southeast of node i.

Under the GFEM, the weak form of (1) near node i is
given by: X

e∈D

Z
Ωe

i

φi∇ · v =
X
e∈D

Z
Ωe

i

φif. (4)

Noting that the basis function, φi, is zero on the outer
boundary of the patch defined by Ωe

i for all e ∈ D, the
divergence theorem and product rule yield

−
X
e∈D

Z
Ωe

i

∇φi · v =
X
e∈D

Z
Ωe

i

φif. (5)

A weak, nodal flux, Qe
i , from node i to each neighboring

element Ωe
i and local source terms, F e

i , can then be defined
as

Qe
i ≡ −

Z
Ωe

i

∇φi · v and F e
i ≡

Z
Ωe

i

φif, (6)

Figure 1. Dual mesh on which conservation principles
are enforced. For this and all figures, solid black lines
are the grid lines of the original Cartesian mesh, dot-
ted blue lines are the refined mesh on which we will de-
fine unknown fluxes q, and dashed red lines are the dual
mesh on which nodal fluxes Q are assumed to exist. Con-
trol volumes for conservation equation (7) consist of these
dual-cell diamonds.

respectively, resulting in a discrete mass-conservation equa-
tion, X

e∈D

Qe
i =

X
e∈D

F e
i . (7)

These nodal fluxes are evaluated from the local bilinear pres-
sure solution given on each element and Equation (2):

Qe
i =

Z
Ωe

i

∇φi · (Ke
i∇p)

=

Z
Ωe

i

∇φi ·

 
Ke

i∇

 X
j∈D

pj
eφ

j
e

!!
, (8)

where the pj
e refer to pressures at the nodes j ∈ D around

element e and the φj
e are the nodal basis functions. While

mass conservation is not explicitly included in this second-
order form of the GFEM discretization, this weak mass-
conservation principle is enforced. However, as both v and
φi vary throughout element e, this conservation equation
does not have an explicit control volume associated with it.
To define a control volume, a refined dual mesh is formed
by connecting midpoints of the Cartesian mesh edges. The
nodal fluxes Qe

i are taken to be the averaged flux across dual
cell edges, as shown in Figure 1.

This dual mesh gives rise to three types of local control
volumes: those centered on nodes, those entirely contained
within elements, and incomplete dual cells that intersect the
boundary of Ω. Using the Qe

i as boundary data on these

QNW
i

qW
i

qS
i

QSE
i

QNE
i

QSW
i

qN
i

qE
i

Figure 2. Local problem domain around node i. Fluxes
from node i to elements e ∈ D, Qe

i , are specified as
boundary data for the local problem, while refined fluxes
around node i, qs

i , for edges s ∈ C, are unknowns to be
determined.

εh

εh

Γ

Figure 3. Path taken for integration of irrotationality
constraint around a typical interior cell.
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dual cells, we calculate the interior refined fluxes, {qs
i }s∈C ,

defined as fluxes on half-edges of the original GFEM mesh.
For the sake of simplicity, we assume throughout the fol-

lowing that the Cartesian mesh is uniform with square ele-
ments of size h. This is not a limitation of the method; sim-
ilar results have been derived for non-square meshes. Also,
permeability K is assumed to be a piecewise constant tensor
on the mesh cells, with arbitrary jumps across mesh edges.

2.1. Node-Centered Dual Cells

On node-centered dual cells, the local problem domain is
shown in Figure 2. Mass balance in each sub-cell of the dual
mesh provides the following four discrete equations,

qW
i − qN

i = QNW
i − FNW

i ,

qS
i − qW

i = QSW
i − FSW

i ,

qE
i − qS

i = QSE
i − FSE

i ,

qN
i − qE

i = QNE
i − FNE

i . (9)

Summing these equations yields (7), which enforces mass
conservation on the entire dual cell. However, as the left-
hand sides of these equations sum to zero, only three of the
four equations are linearly independent.

To make the system well-posed, the additional constraint
of irrotationality around node i is added. At any point in
the domain where p is sufficiently differentiable, ∇×∇p = 0
identically, implying that over any closed path Γ contained
in Ω, I

Γ

∇p · ds = 0 (10)

by Green’s Theorem. This path is chosen to be the dual-
cell boundary, shrunk uniformly via a parameter ε around
node i (Figure 3). To simplify this, write ∇p = K−1v, and
note that, as ε → 0, v can be approximated by the (con-
stant) velocities on the edges of the appropriate quadrant.
For example,

vNW ≈ 2

h

"
qN

qW

#
. (11)

Evaluating Equation (10) over this path then results in a
fourth, linearly independent equation for the unknowns qs

i

for s ∈ C,

aNq
N
i + aW qW

i + aSq
S
i + aEq

E
i = 0, (12)

where

aN = {K−1
NE}11 − {K

−1
NE}12 + {K−1

NW }11 + {K−1
NW }12,

aW = {K−1
SW }22 − {K

−1
SW }12 + {K−1

NW }22 + {K−1
NW }12,

aS = {K−1
SW }11 − {K

−1
SW }12 + {K−1

SE}11 + {K−1
SE}12,

aE = {K−1
NE}22 − {K

−1
NE}12 + {K−1

SE}22 + {K−1
SE}12.

Three mass balance equations from (9) and this irrotation-
ality constraint (12), are solved for the refined fluxes.

2.2. Element-Centered Dual Cells

Element-centered dual cells are handled similarly to node-
centered cells. The local problem domain is shown in Figure
4. As all sources are handled in the node-based dual cells,
local mass balance implies

qW
e − qN

e = −QNW
e ,

qS
e − qW

e = −QSW
e ,

qE
e − qS

e = −QSE
e ,

qN
e − qE

e = −QNE
e , (13)

−QNW
e

qS
e

qW
e

qE
e

qN
e

−QSW
e −QSE

e

−QNE
e

Figure 4. Local problem domain within an element.
Fluxes are the negative of the corresponding nodal fluxes.

where the fluxes from the nodes, j ∈ D, to element e, given
by Qj

e, are negated to match the outward flux convention.
As before, these equations are linearly dependent, and irro-
tationality is used to close the system. Since, in this case, the
permeability is constant throughout the cell, velocities are
continuous along the corresponding path Γ (now centered at
the center of element e). The corresponding irrotationality
constraint is given by

{K−1
e }11

“
qN

e + qS
e

”
+ {K−1

e }22
“
qE

e + qW
e

”
= 0. (14)

Three mass balance equations from (13) and this irrota-
tionality constraint (3), are solved for the refined fluxes.

2.3. Dual Cells Adjacent to the Boundary

On a Cartesian mesh, all dual cells that intersect the do-
main boundary are located at nodes and consist of either
edges or corners. In edge cases, dual cells consist of three
unknown fluxes, and two mass-balance equations. See, for
example, Figure 5. In corner cases, dual cells consist of two
unknown fluxes and one mass-balance equation.

Global boundary conditions must now be applied. In
the case of one or more edges with Neumann data, these

qW
i qE

i

QNE
iQNW

i

qN
i

Figure 5. Local problem domain at an edge. In the case
of Neumann boundary conditions, qW

i and qE
i are known,

while, for Dirichlet data, they must be determined.

Γ(a) Γ(b)

εh
εh

Γ

Figure 6. Path taken for integration of rotationality
constraint in a boundary cell.
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edge fluxes are fixed by the Neumann data. Discrete mass-
balance equations completely determine (or potentially over-
determine) the system.

In the case of Dirichlet pressure boundary data every-
where, the pressure field has incorporated this data already.
Thus, while the mass-balance equations are not singular, the
system is still under-determined. The system is again closed
via irrotationality. However, no closed path around node i
can be completely contained in Ω. Instead, we consider the
full form of (10) for a path, Γ, parametrized as x(s) for
s ∈ [a, b], Z

Γ

∇p · ds = p(x(b))− p(x(a)), (15)

by the Fundamental Theorem of Calculus for line integrals.
Again, this path is taken to be the dual-cell edges, shrunk
uniformly to the node i, as in Figure 6. For a bilinear pres-
sure field, the pressure difference on the right-hand side of
(15) is given by a scaled difference between pressures at the
neighboring nodes, for example in the case of Figure 5,

p (x(b))− p (x(a)) = ε (pi+1 − pi−1) . (16)

For example, in the case of a node on the bottom boundary,
the full irrotationality equation is given as

aEq
E
i + aNq

N
i + aW qW

i =
(pi+1 − pi−1)

2
, (17)

where

aE = {K−1
NE}22 − {K

−1
NE}12,

aN = {K−1
NE}11 − {K

−1
NE}12 + {K−1

NW }11 + {K−1
NW }12,

aW = {K−1
NW }22 + {K−1

NW }12.

2.4. Aggregation

Once the refined fluxes, qs
i and qs

e for s ∈ C, are calculated,
they are aggregated to form fluxes on centers of the original
Cartesian mesh edges, in the same locations that fluxes in
mixed FEM or Finite Volume methods would be specified.
This is done by simply summing two fluxes on the refined
mesh to determine fluxes on the original mesh. Equiva-
lently, velocities are aggregated by averaging the velocity on
the two segments. This aggregation process eliminates de-
pendence on the cell-centered dual cell fluxes. As will be
demonstrated via numerical experiment in Section 4, this
aggregation recovers superconvergence on centers of edges
of the original, unrefined mesh.

3. Local Boundary Value Problems

Second-order-form methods like GFEM result in discon-
tinuous, non-conservative fluxes when the fluxes are deter-
mined directly from (2) using piecewise bilinear pressure ba-
sis functions. In the previous section, a discrete mass bal-
ance equation satisfied by discrete fluxes was derived. Once
an appropriate control volume is associated with this mass
balance equation, conservative flux fields were determined.

The method described in Section 2, based on enforcing
local irrotationality, is only one approach to determining
locally conservative flux fields based on second-order-form
pressure data. Here, we consider the same local problems
as those in Section 2. However, instead of applying an ir-
rotationality constraint, we now discretize and solve these
local problems using standard mixed finite elements to cal-
culate the refined fluxes, qs

i and qs
e . This method is shown

to be equivalent to the previous (geometric) approach in
cases without recharge, and the difference between the two
methods in the presence of recharge is derived.

3.1. Local Problem Method

The local problems on a dual cell, given flux boundary
conditions Qe

i and sources F e
i as defined in (6), are solved

using the first-order form. Note that source terms include
the integrated source over the entire element from the orig-
inal mesh, and not just contributions from the dual-mesh
element. As a result, element-centered dual cells have no
source terms; this is necessary to maintain consistency with
the weak conservation law enforced in the pressure solve.

The first-order weak form given by mixed finite elements
is Z

Ω

u ·
`
K−1v

´
−
Z

Ω

(∇ · u) p =

Z
∂ΩD

(∇ · u) gD (18)

∀ u ∈ H(div; Ω),

−
Z

Ω

(∇ · v)w = −
Z

Ω

fw (19)

∀ w ∈ L2(Ω),

for Dirichlet pressure boundary data, gD on ∂ΩD. The prob-
lem is discretized by selecting finite-dimensional subspaces
of L2(Ω) and H(div; Ω) to approximate p, w, u, and v.
Using lowest-order Raviart-Thomas mixed finite elements
(Raviart and Thomas [1977]), the four triangular quadrants
of the dual cell are considered elements. Pressure basis func-
tions, ϕ, are piecewise constant on these elements, and linear
flux basis functions are defined by

(ψ` · nm) (xm) =


1, if ` = m
0, otherwise

. (20)

where xm is the midpoint of edge m and nm is the normal
vector to edge m. Because the Raviart-Thomas elements
satisfy Equation (20), the discrete representation of (19) is
an explicit statement of local mass conservation.

Integration and assembly in these dual cells result in the
block matrix equations»

A BT

B 0

– »
qi

pi

–
=

»
0
−Fi

–
, (21)

where entries of A and B are given by, respectively,

a`m =

Z
Ω

ψ` ·
`
K−1ψm

´
and b`m = −

Z
Ω

ϕ`∇ · ψm.

(22)
Within each block’s entries, ` and m refer to a global num-
bering of the basis functions, where ψ represents basis func-
tions inH(div; Ω), and φ represents basis functions in L2(Ω).
This discrete system of equations uniquely determines the
weight vectors qi and pi associated with corresponding basis
functions, ψ and φ.

On node-centered interior problems, the unknowns in
Equation (21) are four pressure weights, pe

i for e ∈ D, and
four interior flux weights, qs

i for s ∈ C. Boundary conditions
on the local problem are given by specifying the fluxes, Qe

i ,
from Equation (8) across the dual-mesh edges, following the
discrete conservation law in Equation (7). Sources on these
cells, F e

i for e ∈ D, are taken from Equation (6).
This system is solved for the four unknown interior fluxes.

To do this, the vector of flux unknowns, qi, is first parti-
tioned into two pieces, the weights, qs

i for s ∈ C, of the
interior basis functions (corresponding to the fluxes on the
edges of the refined mesh) and the weights, Qe

i for e ∈ D,
of the basis functions on the edges of dual mesh, which are
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treated as known using Equation (8). This induces a parti-
tioning on the matrix, A, into block two-by-two form,24 A11 A12 BT

11

AT
12 A22 BT

12

B11 B12 0

3524 qi

Qi

pi

35 =

24 0
0
−Fi

35 . (23)

Once assembled, the B matrices consist of zeros and plus or
minus ones, indicating the direction of the contribution of
flux basis functions to mass conservation. As the B12 matrix
specifies the flux across a dual-cell edge into the correspond-
ing element, B12 = −I .

The Qe
i are known via (8), so these are treated as Dirich-

let data in the mixed form. Therefore, this block of degrees
of freedom can be eliminated, resulting in a reduced system,»

A11 BT
11

B11 0

– »
qi

pi

–
=

»
−A12Qi

−Fi +Qi

–
. (24)

Solution of this system determines the refined fluxes on
node-centered dual cells.

For element-centered dual cells, the problem setup is iden-
tical, with element-centered degrees of freedom instead of
nodal-centered variables; in this case, the vector of sources,
Fe, is identically zero. For local problems that intersect the
boundary of Ω, smaller systems are derived and boundary
data from the original global problem is applied: Neumann
flux data on ∂Ω specifies the edge fluxes for the local prob-
lem, while Dirichlet pressure data is incorporated directly
in the weak form in Equation (18). These problems become
simplified versions of the node-centered case and, so, we fo-
cus on this case only.

3.2. Method Comparison in the Node-Centered Case

To compare the two methods, we manipulate the system
above to derive a closure for the mass balance equations.
This closure can then be compared to Equation (12). When
written out, the second block of equations in (24) is2664

−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1

3775
2664
qN

i

qW
i

qS
i

qE
i

3775 =

2664
−FNW

i +QNW
i

−FSW
i +QSW

i

−FSE
i +QSE

i

−FNE
i +QNE

i

3775 (25)

which is identical to (9). This block is singular, as the
boundary-value problem is specified with all-Neumann data;
similarly, a constant shift in the pressures, pe

i for e ∈ D, is in
the null space of BT

11. To account for this, one pressure un-
known is fixed. Next, eliminating A12Qi in the upper block
of the right-hand side of (24) gives

(A11 + A12B11) qi + BT
11pi = −A12Fi. (26)

Adding the four equations in (26), and noting that the
column-wise sums of BT

11 are all zero (as the row-wise sums
of the matrix B11, shown in (25), are all zero) eliminates the
pressure unknowns, resulting in a single equation in only qs

i

for s ∈ C. This, along with the mass conservation equations,
determines the refined fluxes.

In Appendix A, we show the resulting equation is identi-
cal to the irrotationality equations (Equations (12) and (3))
determined in Section 2 in the case of zero recharge. There-
fore, face-centered cells always have the same solution. In
the node-centered cells with recharge, the difference is de-
rived in the appendix. This difference is small for all cal-
culated examples. Therefore, both mixed finite-element
methods for the first-order equations and the discrete mass
conservation equations (along with an irrotationality con-
straint) may be used to define a series of local problems
for locally mass-conserving fluxes on a refined mesh. These
fluxes are consistent with a given second-order-form pressure
solution.

4. Numerical Examples

To illustrate the use of this method, we consider three
examples. Each example is specified on the same domain,
Ω = [0, 1]×[0, 1], discretized on a regular Cartesian mesh. In
the first two examples, an analytic pressure and permeability
are specified. From these, analytic velocity and consistent
forcing terms are calculated using Equations (1) and (2).
This exact solution is then compared to computational tests,
where the permeability and forcing are specified. Pressure
solutions are calculated using bilinear finite elements (where
the resulting linear systems are solved using the BoxMG
multigrid package (Dendy [1982])), and velocities are calcu-
lated as in Sections 2 and 3.

For the final example, the permeability field is chosen to
be a subdomain of that given within a single layer of the
SPE 10 Benchmark problems (Christie and Blunt [2001]).
Results are compared to finely-resolved calculations.

4.1. Smooth, Anisotropic Permeability

We first consider the case of a full-tensor permeability,
whose entries are constant:

K =

»
2 1
1 2

–
(27)

The analytic pressure solution is given by:

p(x, y) = y2 (1− y)2 x (1− x) + (1− x) . (28)

Solutions are run for varying grid resolutions, and conver-
gence results are shown in Figure 7. Note that, as expected,
pressure converges with second-order accuracy. While linear
convergence is expected in the velocity solutions, the aggre-
gated velocity on mesh-edge centers is superconvergent and
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Figure 7. Convergence of the example in Section 4.1,
a constant, full-tensor permeability field with polyno-
mial pressure. At left, the accuracy of the pressure so-
lution across grids. In the velocity convergence plot at
right, solid lines are x-velocity while dashed are y-velocity
(though the difference in errors is, in this case, not visi-
ble). Velocities calculated on the refined mesh using both
the local-problem, Raviart-Thomas based method (RT)
and the modified Cordes and Kinzelbach method (CK)
are, as expected, first order. Aggregated fluxes (or aver-
age velocity), defined on the original pressure mesh super-
converge with second-order accuracy at grid mid-points.
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also second-order accurate. This problem has a non-zero
source term, and mass conservation is exact by construc-
tion. Also, as both the recharge terms and permeability are
smooth, the difference in errors is small – less than 0.1% of
the total error in both the L2 and L∞ norms.

4.2. Interface Example

This example prescribes an interface at x = 1
2
, with the

permeability on the left, K1 = 100, and on the right, K2 = 1.

p(x, y) =

(
1 + 4x+ xy2 + 2x2y2 0 ≤ x < 1

2
,

β0 + 4αx+ β1xy
2 − β2x

2y2 1
2
≤ x ≤ 1

(29)
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Figure 8. Convergence of the example in Section 4.2,
an interface of two regions with constant permeability.
Conventions are as in Figure 7. Here, however, recharge
terms are irregular enough for the terms derived for the
Raviart-Thomas local problems to become important, es-
pecially in the more accurate aggregate solution.

101 102 103

number of grid cells

10−4

10−3

10−2

10−1

Pr
es

su
re

L 2
er

ro
r

1

2

101 102 103
10−1

100

101

102

V
el

oc
ity

L 2
er

ro
r

1 1

Figure 9. Convergence rates of pressure (dots) and ve-
locities in two directions (crosses) of a series of prob-
lems on the permeability field in Figure 10. Note the
piecewise-constant nature of the permeability affects the
convergence rates in the L2 norm.

where

α =
K1

K2
, β1 = 4− 3α ,

β0 = 3− 2α , β2 = 4− 6α ,

Boundary conditions are entirely Dirichlet, given by eval-
uating the above pressure field at the boundaries, but the
problem directs flow in both x and y directions. Conver-
gence rates are shown in Figure 8. Here, because of the
variability in permeability and recharge, the difference be-
tween the methods derived in Appendix A is evident. The
Raviart-Thomas local problem solutions are more accurate
in both the un-aggregated (∼ 0.01% more accurate in the
L2 norm) and aggregated (∼ 30% more accurate) cases, but
the true advantage is in the aggregated cases, where more
accurate treatment of source terms becomes non-negligible.

4.3. Highly Discontinuous Permeability

Finally, we consider a section of the permeability pro-
vided for the SPE 10 Benchmark, taken from layer 70,
which is well in the fluivial Upper-Ness permeability region
of the benchmark. The permeability is scalar in the hori-
zontal directions, but highly channelized and discontinuous
in the section taken. Boundary conditions are applied as
p(x = 0, y) = 1 and p(x = 1, y) = 0, with no flux across
y = 0, 1, and no source terms (indicating that the local
problem equations and irrotationality equations are identi-
cal, and both methods provide the same fluxes). Conver-
gence is tested on a series of problems, starting with the
coarsest scale of 61× 221, where each cell is a single perme-
ability in the SPE model. These solutions are compared to
a highly-resolved, 481× 1761 simulation. Convergence rates
are shown in Figure 9, and the coarse-scale solution is shown
in Figure 10.

5. Conclusions

We demonstrate two methods for post-processing second-
order, GFEM pressure solutions for explicitly locally mass-
conservative fluxes. Unlike most other post-processing tech-
niques, which require the solution of a global problem on
the entire domain, this method requires only the solution of
local problems. This property makes it an ideal candidate
for second-order upscaling algorithms, on which global prob-
lems are computationally infeasible. These approaches work
by applying a control volume to the discretely enforced con-
servation principle enforced by the second-order weak form.

pressure and flux

0 250 500 750 1000

log(permeability)

−6 −4 −2 0 2

Figure 10. Pressure (with flux vector glyphs) and log
of permeability for the solution of the SPE Benchmark
10 problem in Section 4.3, under flooding boundary con-
ditions.
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The two methods are demonstrated and compared on a se-
ries of analytic problems, and superconvergence on mesh
edge centers is demonstrated. Finally, we present an exam-
ple application of the method to a commonly used bench-
mark problem with physically realistic permeability fields.
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Appendix A: Irrotationality and Equation (26)

The geometrically based irrotationality equations pre-
sented in Section 2 and the Raviart-Thomas system dis-
cussed in Section 3 provide two ways to define well-posed
local problems for locally conservative fluxes. Here, we com-
pute the difference between the two methods. To do this, we
first calculate the closure equation in the Raviart-Thomas
problem; this equation, along with three mass balance equa-
tions, determines the fluxes.

In Section 3.2, the Raviart-Thomas system on a dual-cell
around a node is manipulated to arrive at a single closure
equation for the undetermined set of mass balances. Specif-
ically, block elimination led to the reduced system given in
Equation (26), restated for convenience:

(A11 + A12B11) qi + BT
11pi = −A12Fi. (A1)

The details of the closure equation are now derived for com-
parison by summing the rows of this reduced system. In the
case of a diagonal tensor permeability on a uniform rectan-
gular mesh, matrix A11 is written as

A11 =

26666664
γNE,NW
11 αNW 0 αNE

αNW γNW,SW
22 αSW 0

0 αSW γSW,SE
11 αSE

αNE 0 αSE γSE,NE
22

37777775 , (A2)

where

αe =
1

12

“ 1

Ke
11

+
1

Ke
22

”
βe1,e2

k =
1

6

“ 1

Ke1
kk

+
1

Ke2
kk

”
γe1,e2

k = αe1 + αe2 + βe1,e2
k .

The row and column ordering is
˘
qN

i , q
W
i , qS

i , q
E
i

¯
. Similarly,

the matrix A12 is written as

A12 =

266664
δNW δNW 0 0

0 −δSW −δSW 0

0 0 δSE δSE

−δNE 0 0 −δNE

377775 , (A3)

where

δe =
1

12

“ 1

Ke
22

− 1

Ke
11

”
. (A4)

The columns of A12 are indexed as
˘
QNW

i , QSW
i , QSE

i , QNE
i

¯
.

B11 is given in Equation (25).

Summing the four rows of (A1) results in

3
“
βNE,NW

11 qN
i + βNW,SW

22 qW
i + βSW,SE

11 qS
i + βSE,NE

22 qE
i

”
= 2

“
δNWFNW − δSWFSW + δSEFSE − δSEFNE

”
,

(A5)

where the pressure unknowns have been eliminated because
the column sums of BT

11 are zero. This closure of the Raviart-
Thomas system is readily compared with the equivalent clo-
sure of the same mass balance equations in the modified
Cordes and Kinzelbach approach, given in Equation (12).
In the case of a diagonal permeability tensor, Equation (12)
may be written as“
βNE,NW

11 qN
i + βNW,SW

22 qW
i + βSW,SE

11 qS
i + βSE,NE

22 qE
i

”
= 0 .

(A6)
Hence, the only difference between these closures is the forc-
ing. Therefore, the difference between the solutions that
results from these closures, ∆qs

i for s ∈ C, is given by

C∆qi = ∆Fi , (A7)

where ∆Fi = [0, 0, 0, r]T ,

r =
2

3

“
δNWFNW − δSWFSW + δSEFSE − δSEFNE

”
, and the matrix may be written as

C =

26664
1 −1 0 0

0 1 −1 0

0 0 1 −1

βNE,NW
11 βNW,SW

22 βSW,SE
11 βSE,NE

22

37775 . (A8)

Given the structure of ∆Fi, it is apparent that the difference
is captured completely by the fourth column of the inverse
of C. Inversion of C then gives

∆qs
i = r

“
βNE,NW

11 + βNW,SW
22 + βSW,SE

11 + βSE,NE
22

”−1

(A9)

for each s ∈ C. Thus, r is a key scaling factor in the differ-
ence between these methods and, in many cases, it is small or
zero. For example, in an isotropic medium, all δe’s are zero
and hence r = 0, and the two methods are identical. If the
source term and permeability tensor are smooth functions,
then Taylor expansion shows that cancellation eliminates
the first-order terms. Moreover, even for smooth interfaces
between highly anisotropic regions, cancellation on either
side of the interface occurs, making r relatively small. The
difference is largest when source terms and anisotropic per-
meability are highly variable on the scale of the grid spacing.

For element-centered dual cells, the two methods are iden-
tical. Specifically, the Raviart-Thomas equations have the
same form as derived above for the node-centered case, but
there is no source term in the element-centered dual cell.
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