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SUMMARY

Algebraic multigrid (AMG) is an iterative method that is often optimal for solving the matrix equations
that arise in a wide variety of applications, including discretized partial differential equations. It
automatically constructs a sequence of increasingly smaller matrix problems that hopefully enables
efficient resolution of all scales present in the solution. The methodology is based on measuring how
a so-called algebraically smooth error value at one point depends on its value at another. Such a
concept of strength of connection is well understood for operators whose principal part is an M-
matrix; however, the strength concept for more general matrices is not yet clearly understood, and
this lack of knowledge limits the scope of AMG applicability. The purpose of this paper is to motivate
a general definition of strength of connection, discuss its implementation, and present the results of
initial numerical experiments. Copyright c© 2006 John Wiley & Sons, Ltd.
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1. Introduction

Initially introduced over twenty years ago, the algebraic multigrid algorithm (AMG) [1, 2] has
become a workhorse of large-scale computational simulation, due in large part to its algorithmic
and parallel scalability for many important problems [3, 4, 5, 6, 7, 8]. In the past two decades,
many variations on the AMG algorithm have been introduced, including modifications to the
coarse-grid selection algorithms [9, 10, 11, 12], the definition of interpolation [13], or both
[14, 15, 16, 17]. A summary and comparison of many of these variations within the classical
AMG framework appears in [18]. Such variations arise because, while the guiding framework
of algebraic multigrid ideas addresses the need for solvers that can automatically adjust to
variations in the fine-scale dynamics of a discretized operator, the applicability of the original
algorithm and its variants is limited by the heuristics upon which they are based.
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134 J. BRANNICK ET AL.

The present work is part of a project aimed at transcending these limitations by asking not
what heuristic covers a particular choice, but, instead, by looking for a measure that definitively
answers the question. Such a measure is not generally practical (or feasibly computable) for
many problems where a simpler heuristic is known to be effective, but this is not our goal.
Instead, we aim to address the class of problems for which efficient multigrid solution is possible,
but current heuristics break down for various reasons.

Our approach is motivated by the observation that classical AMG coarsening heuristics are
typically applied well outside of the regime for which they were intended. While appropriate
for the diagonally dominant M-matrices arising from finite difference discretizations of elliptic
PDEs, the heuristics of [1] are often applied to matrices that substantially lack these properties.
Thus, we develop a new definition of strength of connection that is not dependent on such
assumptions but, instead, addresses the fundamental strength present in a discrete operator.
This measure of strength cannot, however, be easily computed in any setting of practical
interest. We further investigate the efficient approximation of the proposed strength measure
and find that, for the examples considered here, the measure can be accurately approximated
for short-range connections with an acceptable amount of computation.

Many other approaches to generalizing the AMG coarsening heuristics have been proposed
recently. The approach of compatible relaxation [19, 20, 14, 21, 12] uses a modified relaxation
scheme to expose the character of the slow-to-converge error. Coarse-grid points are then
selected where this algebraically smooth error is largest. As such errors are typically large
over much of the domain, heuristics are employed to prevent slow coarsening; however, these
heuristics often block or delay the selection of the dense coarse grids that best complement
pointwise relaxation for some problems. Chow [22] uses samples of algebraically smooth error
to determine the directions in which this error varies slowly and, thus, interpolation can be
very effective. For many problems, however, such a direction may not exist, and the proposed
technique does not apply. An approach that is similar to that proposed here is given by Bröker
[23], where the relative sizes of the entries of the SPAI preconditioning matrix [24] are used
to indicate strength of connection. In some respects, this approach is a special case of ours;
however, the measure used in [23] is based on the L2 sizes of the approximate inverse, not on
the energy norm that is more compatible with the objective of computation.

Background on the classical AMG coarsening algorithm is given in Section 2. We propose
our strength measure in Section 3 and give details needed to make it practical in Section 4.
Samples of the selected coarse grids are given in Section 5 for a number of problems where
these can be analyzed intuitively. Two-level and V-cycle convergence results using the Adaptive
AMG interpolation definition of [13] are given in Section 6.

2. Classical AMG Coarse-Grid Selection

The coarse-grid selection performed in the Classical AMG algorithm [1, 2] may be viewed
in terms of heuristics based on the properties of diagonally dominant M-matrices. These
heuristics identify properties of the errors that pointwise relaxation on the discrete problem
is slow to resolve and use these properties to define the important (or strong) connections
within the linear system. The coarse-grid points are then selected using maximal independent
subset heuristics to ensure a significant reduction in grid size, but also maintain accurate
approximation properties.
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AMG COARSENING 135

Consider the Gauss-Seidel iteration, with error propagation operator I − L−1A, for L the
lower-triangular part of A. Fixing this to be the fine-scale relaxation used in a multigrid method
for the symmetric and diagonally dominant M-matrix, A, the goal of coarse-grid correction is
to effectively reduce the error components that are not significantly reduced by Gauss-Seidel
relaxation. It is shown in [1] that such an error, e, must satisfy∑

i,j

(−aij)(ei − ej)2 �
∑

i

aiie
2
i .

Thus, if aij is large (relative to max
k 6=i

|aik| or max
k 6=j

|ajk|), then it must be true that ei ≈ ej .

This observation leads to the definitions of strong dependence and influence central to the
selection of AMG coarse-grid points. For a given degree of freedom, i, the set of points that i
strongly depends upon is denoted Si and defined as

Si =
{

j : −aij ≥ θ max
k 6=i

{−aik}
}

, (1)

for some suitable choice of 0 < θ ≤ 1. The set of points that are strongly influenced by i is
denoted ST

i , as j ∈ ST
i implies that i ∈ Sj .

Once strong connections are determined, a coarse grid is chosen so that all strongly
connected neighbors of any fine-grid point (that is not itself a coarse-grid point) are available
for direct or a path-length two indirect interpolation. That is, if two fine-grid points are strongly
connected to one another, they must have a common coarse-grid neighbor, so that this strong
connection may be accounted for indirectly in interpolation. This condition is usually expressed
as the first AMG coarsening heuristic,

H1: For each fine-grid point i, each point j ∈ Si must either be a coarse-grid neighbor or
strongly depend on at least one coarse-grid neighbor of i.

If used alone, this rule tends to create large coarse grids, as it is most easily satisfied by adding
points to the coarse grid. In practice, a second heuristic is used to limit the size of the coarse
grid,

H2: The set of coarse-grid points, C, should be a maximal subset of the original set of fine-
grid points such that no coarse-grid point strongly depends on any other coarse-grid
point.

Because these two goals may be contradictory, typical AMG implementations rely on enforcing
H1, using H2 as a guide. Recent work [10] examined the possibility of replacing H1 with a
weaker condition, requiring only a single strongly connected coarse-grid neighbor for each
fine-grid point, a technique that may be useful in reducing complexities in 3D parallel
implementations of AMG.

Because H2 is a weaker condition than H1, the selection of coarse-grid points is usually
accomplished by a two-pass algorithm that picks a set satisfying H2, then checks for any
points where H1 is violated, adding new coarse-grid points to compensate if this occurs. The
first stage is often implemented as a coloring algorithm [25, Chap. 8], where coarse points
are selected based on their number of strongly connected neighbors. Initially, all points are
weighted with the number of points that strongly depend upon them (that is, the size of ST

i ).
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The point with the largest weight is then selected to be a coarse-grid point. Since each j ∈ ST
i

is now strongly connected to a coarse-grid point, all such j are made fine-grid points so that
H2 is not violated. All strongly connected neighbors of these points (that is, k ∈ ST

j for any
j ∈ ST

i ) are then made more attractive as coarse-grid points, since they reflect unresolved
strong connections of fine-grid points. Thus, the weights of all such k are incremented for
each j ∈ Sk that was made a fine-grid point. The algorithm then repeats, selecting the new
largest-weighted point as a coarse-grid point.

In this way, an initial coarse grid is chosen that gives a maximal independent set over all
strong connections. Additional points are then added to the coarse grid, if necessary, adding the
minimal number of points needed to ensure that property H1 is enforced. Once the complete
coarse grid has been selected, an interpolation operator is defined so that it is accurate for
slowly varying errors along strong connections. We do not deal with the details of AMG
interpolation here and, instead, refer the reader to [25, Chap. 8] for details. The results in
Section 6 rely on a modification to the classical AMG interpolation procedure previously
developed by the authors in [13].

3. Measuring Strength of Connection

While the definition of strong dependence is appropriate for the case of diagonally dominant
M-matrices for which it was intended, it is frequently seen to break down when applied in
various other cases. Diagonally dominant M-matrices typically have near null spaces that can
be characterized as being locally slowly varying (or locally constant), and the AMG strength
heuristic relies on this being reflected in the coefficients of the matrix, A. If either the near
null space cannot be accurately characterized as locally constant or this is not reflected in the
matrix coefficients, then AMG performance typically suffers.

To derive a more general measure of strength of connection, we must consider what, exactly,
we are trying to quantify as strength. Two gridpoints can be considered related only through
the matrix equations,

Ax = b or Ae = r. (2)

The classical AMG definition of strength says that if a change in the solution (or error) at
point j significantly changes the source vector (or residual) at point i in an L2 sense, then
i strongly depends on j. Here, we propose a change in both what is measured and how it is
measured.

The ‘forward’ measurement used in Equation (1) captures one sense of connection. The
corresponding ‘backward’ measurement, that a change in the source vector (or residual) at
point j significantly changes the solution (or error) at point i, is, however, a more appropriate
sense of connection for AMG. This follows because the coarse-grid correction process in AMG is
needed to complement a given relaxation procedure, such as Gauss-Seidel, that make pointwise
adjustments based on the residual and not the error. Thus, when we change the residual at
point j in relaxation, this affects the local character of the remaining error, and it is the general
size of this effect that we are interested in measuring to characterize strength.

This point of view suggests that, for the purposes of defining a strength measure, we should
rewrite Equation (2) to highlight the changes in the solution or error in terms of the source or
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AMG COARSENING 137

residual:
A−1b = x or A−1r = e.

Thus, instead of looking at the entries in A to determine the strong connections, we consider
the entries of A−1 to be indicative of strength.

Appropriately quantifying this strength is also an important question. Classical approaches
to AMG consider the relative sizes of the off-diagonal entries as direct measures of strength.
While this pointwise approach is reasonable in the case of a diagonally dominant M-matrix, it
is not robust. Consider, for example, a symmetric diagonal scaling of the matrix, A, Â = DAD.
Even if the size of the entries in A−1 were a good reflection of the true strong connections,
the entries of the scaled inverse, Â−1 = D−1A−1D−1, may bear no relation to those of A−1

if the diagonal of D is chosen with sufficient variation. Yet, this sort of diagonal scaling does
not change the essential behavior of the linear system. The slow-to-converge modes of Jacobi
or Gauss-Seidel relaxation are simply scaled versions of the slow-to-converge modes of the
unscaled system, and the spectrum of relaxation is not changed at all. One of our objectives
is to find a measure that is insensitive to such scalings.

Additionally, the measure should be consistent with the variational setting of AMG for
symmetric and positive-definite matrices. As the components of the AMG algorithm are based
on minimizing the A-norm (or energy norm) of the error, this norm should affect the choice
of the coarse-grid points. That is, the “sizes” of the entries in A−1 should be measured, in
some fashion, using the A-norm. Looking for the strongest connections to a node i, we need
relative measures of the strength of connection of all nodes j to i that are reflected in the
coefficients (A−1)ij . Thus, we define the column vector, G(i), with entries

(
G(i)

)
j

= (A−1)ij .
The contribution of node j to the energy of this vector is then taken to be the measure of the
strength of dependence of node i on node j. That is, we define the strength measure,

Sij =
‖G(i) −

(
G(i)

)
j
I(j)‖A

‖G(i)‖A
, (3)

where I(j) is the jth canonical unit vector.
Note that Sij is, in fact, insensitive to diagonal scaling of A.

Theorem 1. Let A be a symmetric positive-definite n × n matrix and D a diagonal n × n
matrix. Take Â = DAD, and let Sij and Ŝij be the strength measures of A and Â, respectively,
as defined in Equation (3), for 1 ≤ i, j ≤ n, i 6= j. Then

Sij = Ŝij .

Proof: Note first that

S2
ij =

‖G(i) −
(
G(i)

)
j
I(j)‖2

A

‖G(i)‖2
A

= 1 +
‖

(
G(i)

)
j
I(j)‖2

A

‖G(i)‖2
A

,

because AG(i) = I(i), since A (and, thus, A−1) is symmetric. Thus,

S2
ij = 1 +

Ajj

((
G(i)

)
j

)2

(A−1)ii
.
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Similarly,

Ŝ2
ij = 1 +

Âjj

((
Ĝ(i)

)
j

)2

(Â−1)ii

= 1 +
D2

jjAjj

(
D−1

jj D−1
ii

(
G(i)

)
j

)2

D−2
ii (A−1)ii

,

where
(
Ĝ(i)

)
j

= (Â−1)ij , as Â−1 = D−1A−1D−1. So

Ŝ2
ij = 1 +

Ajj

((
G(i)

)
j

)2

(A−1)ii
= S2

ij ,

and the theorem follows. 2

4. Practical Implementation

Clearly, the measure in Equation (3) is not a practical choice for computation. Even in its

reduced form, S2
ij = 1 +

Ajj((A−1)ij)2

(A−1)ii
, computing Sij for all pairs of nodes, i 6= j, would

require O(n2) operations, assuming A−1 is already known. Computing A−1 itself is even less
practical. Thus, we look to approximate Sij for some set of j that are ‘near’ i.

Efficient approximation of Sij requires efficient approximation of A−1. A natural choice
to do this is to use the relaxation scheme of the AMG solver on the Gauss-Jordan system
AG = I or, column-wise, AG(i) = I(i). In fact, because this approximation directly takes
the smoother into account, it may be a more appropriate measure than the “exact” Sij .
If the relaxation scheme is somehow local (that is, writing the error propagation operator of
relaxation as I−M−1A, the matrix, M , is block diagonal with O(1) block size), then a few steps
of relaxation on AG(i) = I(i) with a zero initial guess leads to an approximation to G(i) that is
zero everywhere except in an O(1)-size neighborhood of i. For a non-local relaxation procedure,
such as Gauss-Seidel, restriction of the relaxation to a local neighborhood is necessary for a
practical method.

Using local relaxation in this manner allows local approximations of Sij to be computed
in O(1) time, for each node i. Relaxation on AG(i) = I(i) requires computing a residual,
r = I(i) −AG(i), then computing M−1r. Starting with a zero initial guess, no computation is
needed to form the first residual, which has non-zero values only at point i. Because M has,
by assumption, O(1) block size, M−1r and, thus, the new approximation also have O(1) nodes
with non-zero values. As we iterate this process, computing the residual for an approximation
to G(i) requires a matrix-vector product, AG(i). If G(i) has O(1) non-zero values, then applying
the matrix, A, to it results in a vector still has O(1) non-zero values, under the assumption
that the stencil size of A is also O(1) (as is true for the matrices arising from discretization
of elliptic PDEs that we consider here). The residual then has O(1) non-zero values and so
does the relaxed residual, M−1r, because M has O(1) block size. Thus, any O(1) number of
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sweeps of a local relaxation routine results in an approximation to G(i) that has O(1) non-
zero values. Computing Sij requires computing A-norms of two vectors, but both of these have
O(1) non-zero values. Thus, the required matrix-vector products need only be computed at
the nodes where the vectors have non-zero values, an O(1) computation, followed by an O(1)
dot product. So, a single Sij can be computed in O(1) time. For each node, i, however, the
computed Sij = 1, unless the approximation to G(i) is non-zero at node j, which is only true
for O(1) nodes, j. Thus, all non-trivial values, Sij , can be computed in O(1) time for each
node i. Note that the nodes for which Sij 6= 1 are determined based on the stencils of A and
M and, thus, reflect the propagation of errors in the relaxation process itself, with large values
reflecting nodes that are strongly connected to i by a few sweeps of relaxation. Because we can
compute these values in O(1) time for each node i, it follows that these local strength measures
can be computed for all nodes in O(n) time and, so, this computation does not change the
asymptotic complexity of the AMG algorithm.

The algorithm for computing Sij can, thus, be summarized as follows:

• For each node i, 1 ≤ i ≤ n:

– Relax µ times on AG(i) = I(i), with a zero initial guess, using a local smoother,
exploiting the locality by only performing operations where the answer is
expected to be non-zero

– For each j such that the approximation to
(
G(i)

)
j

is non-zero, compute

Sij =
‖G(i) −

(
G(i)

)
j
I(j)‖A

‖G(i)‖A
,

again exploiting the locality of the approximation to reduce computation.

Note that if the relaxation procedure chosen is such that the relaxation matrix, M̂ , for the
scaled matrix, Â = DAD, is given by M̂ = DMD, where M is the relaxation matrix for A,
then the computed strength measures, Sij and Ŝij , are equal.

Theorem 2. Let A be a symmetric positive-definite n×n matrix, D a diagonal n×n matrix,
and consider a relaxation process for A with error propagation operator I − M−1A. Take
Â = DAD, relaxation for Â with error propagation operator I − M̂−1Â, for M̂ = DMD,
and let Sij and Ŝij be the strength measures of A and Â, respectively, as defined in Equation
(3), for 1 ≤ i, j ≤ n, i 6= j, with G(i) and Ĝ(i) each computed by µ steps of relaxation on
AG(i) = I(i) and ÂĜ(i) = I(i), respectively. Then

Sij = Ŝij .

Proof: This can be seen in two, more general, pieces.

First, consider relaxation on ÂĜ(i) = DI(i), with initial guess Ĝ(i) = 0. The true
solution is Ĝ(i) = D−1G(i), where AG(i) = I(i), and, so, the initial error is D−1G(i).
Choosing relaxation based on M̂ = DMD, relaxation on ÂĜ(i) = DI(i) has error
propagation matrix

I − M̂−1Â = I −D−1M−1AD = D−1(I −M−1A)D,

Copyright c© 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 13:133–148
Prepared using nlaauth.cls



140 J. BRANNICK ET AL.

and the error propagation operator for µ sweeps of relaxation is D−1(I − M−1A)µD.
Thus, the error after µ sweeps of relaxation is D−1(I − M−1A)µG(i), and the
approximation after µ sweeps of relaxation on ÂĜ(i) = DI(i) is

D−1G(i) −D−1(I −M−1A)µG(i) = D−1(I − (I −M−1A)µ)G(i).

Taking D = I, we see that the approximation after µ sweeps of relaxation on
AG(i) = I(i) is (I − (I −M−1A)µ)G(i).

Now, for any matrix B, consider relaxation on By = b and on Bỹ = αb, with zero
initial guesses. The initial error for By = b is the exact solution, y, whereas the initial
error for Bỹ = αb is ỹ = αy. After µ sweeps of relaxation, the error for By = b will
then be (I−M−1A)µy, while the error for Bỹ = αb will be α(I−M−1A)µy. Likewise,
the approximation for By = b will be (I − (I − M−1A)µ)y, while the approximation
for Bỹ = αb will be α(I − (I − M−1A)µ)y. Thus, after any number of relaxations,
the two approximations will differ only by the same factor, α by which their right sides
differed. Thus, the approximation to Ĝ(i) after µ sweeps of relaxation on ÂĜ(i) = I(i)

is (Dii)D−1(I − (I −M−1A)µ)G(i).

Now, consider the computed strength measures, Sij and Ŝij .

Ŝij =
‖(Dii)D−1(I − (I −M−1A)µ)G(i) − ((Dii)D−1(I − (I −M−1A)µ)G(i))jI(j)‖Â

‖(Dii)D−1(I − (I −M−1A)µ)G(i)‖Â

=
‖D−1(I − (I −M−1A)µ)G(i) − (D−1(I − (I −M−1A)µ)G(i))jI(j)‖DAD

‖D−1(I − (I −M−1A)µ)G(i)‖DAD

=
‖(I − (I −M−1A)µ)G(i) − ((I − (I −M−1A)µ)G(i))jI(j)‖A

‖(I − (I −M−1A)µ)G(i)‖A

= Sij ,

because (D−1v)jI(j) = (D−1)jj(v)jI(j) = D−1((v)jI(j)), for any vector, v. 2

The role of relaxation may also be filled by a suitable preconditioned conjugate gradient
algorithm, allowing the computation of approximations to G(i) that are optimal in the sense
of minimizing the A-norm of the error in the approximations. Using the minimization property
of PCG [26], we can show that this, as well, is invariant to diagonal scaling.

Theorem 3. Let A be a symmetric positive-definite n × n matrix and D a diagonal n × n
matrix. Let M , the preconditioning matrix for A, be symmetric and positive definite. Take
Â = DAD and M̂ = DMD, and let Sij and Ŝij be the strength measures of A and Â,
respectively, as defined in Equation (3) for 1 ≤ i, j ≤ n, i 6= j, with G(i) and Ĝ(i) each
computed by µ steps of PCG applied to AG(i) = I(i) and ÂĜ(i) = I(i), respectively. Then

Sij = Ŝij .

Proof: Following the approach of the previous theorem, we first show that the PCG iteration
on ÂG̃(i) = DI(i) produces scaled versions of the iterates from the unscaled problem,
and then show that the iterates produced from iteration on ÂĜ(i) = I(i) differ from
those of ÂG̃(i) = DI(i) by a scalar factor.
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The preconditioned conjugate gradient algorithm applied to the system, Ax = b, with
(symmetric and positive-definite) preconditioner M and initial guess x0 = 0, produces
iterates xµ that satisfy

xµ = argmin
y∈Kµ(M−1b,M−1A)

〈A(x− y),x− y〉,

where the Krylov space,

Kµ(M−1b,M−1A) = span{M−1b,M−1AM−1b, . . . , (M−1A)µ−1M−1b}.

Let G(i)
µ and G̃(i)

µ be the iterates produced by µ steps of the PCG iteration on
AG(i) = I(i) and ÂG̃(i) = DI(i), respectively. Then

G(i)
µ = argmin

y∈Kµ(M−1I(i),M−1A)

〈A(G(i) − y),G(i) − y〉,

G̃(i)
µ = argmin

y∈Kµ(M̂−1DI(i),M̂−1Â)

〈Â(D−1G(i) − y), D−1G(i) − y〉.

Note that Krylov space Kµ(M̂−1DI(i), M̂−1Â) = Kµ(D−1M−1I(i), D−1M−1AD) and,
so,

Kµ(M̂−1DI(i), M̂−1Â)

= span{D−1M−1I(i), D−1M−1AM−1I(i), . . . , D−1(M−1A)µ−1M−1I(i)}
= D−1 span{M−1I(i),M−1AM−1I(i), . . . , (M−1A)µ−1M−1I(i)}
= D−1Kµ(M−1I(i),M−1A).

Thus,

G̃(i)
µ = argmin

y∈D−1Kµ(M−1I(i),M−1A)

〈Â(D−1G(i) − y), D−1G(i) − y〉,

= argmin
Dy∈Kµ(M−1I(i),M−1A)

〈A(G(i) −Dy),G(i) −Dy〉,

yielding G̃(i)
µ = D−1G(i)

µ .

To see that G̃(i)
µ and Ĝ(i)

µ differ by a constant, consider the iterates produced by µ steps
of PCG on Ax = b and A(αx) = αb,

xµ = argmin
y∈Kµ(M−1b,M−1A)

〈A(x− y),x− y〉,

x̃µ = argmin
y∈Kµ(αM−1b,M−1A)

〈A(αx− y), αx− y〉.

The scalar, α 6= 0, does not affect the span of the Krylov space and, so,

x̃µ = argmin
1
α y∈Kµ(M−1b,M−1A)

〈A(αx− y), αx− y〉,

= argmin
y∈Kµ(M−1b,M−1A)

〈A(x− 1
α
y),x− 1

α
y〉.
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Thus, x̃µ = αxµ.

Applying this to the iterates G̃(i)
µ and Ĝ(i)

µ , we have that the right sides for the
matrix problems ÂG̃(i) = DI(i) and ÂĜ(i) = I(i) differ by a scalar factor, because
DI(i) = diiI(i) and, thus,

Ĝ(i)
µ = diiG̃(i)

µ = diiD
−1G(i)

µ .

Computing Ŝij as in Equation (3), we then get

Ŝij =
‖diiD

−1G(i)
µ − diiD

−1(G(i)
µ )jI(j)‖DAD

‖diiD−1G(i)
µ ‖DAD

= Sij .

2

5. Grids Chosen

Having computed the strength measures, it remains to be specified how to determine a coarse
grid. Strong connections are determined by a thresholding of the strength measures, with node
i said to strongly depend on nodes j in

Si = {j : Sij − 1 ≥ θ max
k 6=i

{Sik − 1}},

where, in the tests shown here, we take θ = 0.25. We know that Sij ≥ 1 in the case that G(i)

is computed exactly, so we consider only the difference between the measures and 1 to more
easily distinguish between relative strength. Applying this threshold gives, for each node i, a
list of nodes that strongly influence i. This list is then passed to a coloring scheme, such as
that used in the first pass of the classical AMG coarse-grid selection algorithm (see [25, Chap.
8] for details). This coloring algorithm then selects a maximal independent subset of the graph
of the strong connections of A as the coarse grid.

A first test of this algorithm is to see whether it chooses coarse grids that coincide with
our intuition for cases where this intuition is known to produce good multigrid algorithms. As
such, we consider first the grids produced for the diffusion equation,

−∇ · K(x, y)∇p(x, y) = Q(x, y),

in two dimensions, for various diffusivities, K(x, y). Choosing constant K(x, y) = K, we consider
both isotropic and anisotropic diffusion on the unit square. In this section, the strength measure
is computed based on sweeps of both Jacobi and a Jacobi-preconditioned conjugate gradient
algorithm. We consider using PCG instead of straight Jacobi because, in our experience, it
is faster to resolve the local character of the inverse of A, measured in the A-norm, than
weighted-Jacobi alone, but has approximately the same cost. For the examples considered
here, however, good coarse grids are chosen in both situations.

We first consider the Poisson equation, K ≡ 1. Using 2 sweeps of either Jacobi or Jacobi-
preconditioned conjugate gradients generates the grid shown on the left of Figure 1, with
coarse-grid points indicated in white, whereas fine-grid points that are not selected are shown
in gray. In both cases, the coarsening algorithm naturally selects the fully coarsened grid,
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Figure 1. For the isotropic Poisson problem, the same coarse grid (shown at left) is chosen using
the measure approximated by 2 iterations of Jacobi or Jacobi-preconditioned CG. The grid at left
is also chosen for the diagonally scaled Poisson problem, using the measure approximated by two
iterations of Jacobi or Jacobi-preconditioned CG. At right is the coarse grid chosen for the grid-
aligned anisotropic problem, using either two iterations of Jacobi or Jacobi-preconditioned CG to

approximate the strength of connection measure.

known to be effective for this problem. Scaling the resulting discretization matrix by a diagonal
matrix, D, chosen such that dii = 105ri for ri chosen randomly from a uniform distribution
on the interval (0, 1), does not affect the results, producing the same grid shown on the left of
Figure 1.

The proposed method also appears robust to anisotropies. Choosing a diffusion tensor,
K ≡ QT [ 1 0

0 ε ]Q, for a rotation matrix, Q =
[

cos(α) sin(α)
− sin(α) cos(α)

]
, is known to cause difficulties for

classical AMG without tuning of the strong-connection threshold, θ [27, 2]. For grid-aligned
anisotropy (α = 0), the proposed coarsening algorithm chooses a semicoarsened grid, known
to be effective in multigrid algorithms with the pointwise smoothing considered. The coarse
grid chosen for this problem with ε = 0.01, using either Jacobi or Jacobi-preconditioned CG
to approximate the strength of connection measure is shown in Figure 1. For non-grid-aligned
anisotropy, with α = π

4 , the coarse grids chosen are shown in Figure 2. The L-shaped coarsening
pattern is a good grid selection for this problem, as each interior fine-grid node can interpolate
from its lower-left and upper-right neighbors along the direction of strong connection in the
differential operator.

6. Numerical Results

Choosing appropriate coarse grids is only one ingredient in designing an effective AMG coarse-
grid correction scheme. Equally important is the definition of the interpolation operator from
the coarse to the fine grid. Here, we combine the proposed coarsening approach with the
adaptive AMG interpolation algorithm of [13] to yield an effective variational AMG algorithm.

The adaptive AMG interpolation operator is determined by computing a prototype of
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Figure 2. Coarse grids chosen for the non-grid-aligned anisotropic problem with 2 iterations of Jacobi
(left) and Jacobi-preconditioned CG (right)

algebraically smooth error (that which is not being effectively damped by relaxation) and
then fitting an AMG-style interpolation to this error. Given a prototypical algebraically
smooth error, x, the interpolation formula is defined by considering the small-residual equation,
Ae ≈ 0, that is known to hold for the algebraically smooth error of many matrices, A, with
many pointwise relaxation schemes. Writing this out componentwise, we have

aiiei ≈ −
∑
j∈Ci

aijej −
∑
k∈Fi

aikek, (4)

where Ci is the set of all strongly connected neighbors of i that are also coarse-grid points
(Ci = C ∩ Si), and Fi is the set of all remaining points such that aik 6= 0 (Fi = {k : aik 6=
0, k 6= i, k /∈ Ci}).

Connections to points k ∈ Fi are collapsed based on the prototypical error. The quantity
di

kk is defined as

di
kk =

−
∑
j∈Ci

akjxj

xk
,

so that

di
kkxk = −

∑
j∈Ci

akjxj .

Interpolation is then determined by replacing a general algebraically smooth error, e, at points
k ∈ Fi in Equation (4) with the approximation,

ek = −
∑
j∈Ci

(
akj

di
kk

)
ej ,
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giving the interpolation formula,

ei = −
∑
j∈Ci

1
aii

aij +
∑
k∈Fi

aik
akjxk∑

j′∈Ci

akj′xj′

 ej .

Here, we make one small modification to this formula, because it is possible that di
kk = 0,

giving an ill-posed definition of interpolation. If, for fine-grid node k,
∑
j∈Ci

akjxj = 0, then

either k has no connection to a point in Ci, or the net result of the connections of k to Ci is
zero. In either case, point k can be thought of as being especially weakly connected to i, in
that it is a weak connection for i that is not connected to any of i’s strong connections. Such
a point should not have a significant effect on interpolation, but its connection to i must be
accounted for in order to ensure the accuracy of interpolation for algebraically smooth errors.
We follow classical AMG and collapse these points directly to the diagonal, weighted by the
prototypical error, x. That is, set Fi is partitioned into Fw

i and F c
i , where points k ∈ Fw

i

satisfy
∑
j∈Ci

akjxj = 0 and F c
i = Fi \ Fw

i . The resulting interpolation formula is then

ei = −
∑
j∈Ci

aijxi +
∑

k∈F c
i

aikxi
akjxk∑

j′∈Ci

akj′xj′

 ej

aiixi +
∑

k∈F w
i

aikxk

. (5)

Thus, we arrive at the setup algorithm:

• Given A,b
• Relax ν0 times on Ax = 0 with a random initial guess
• On each level:

– Determine local strong connections by µ relaxations on AG(i) = I(i) with a zero
initial guess for each i

– Choose coarse grid by coloring algorithm
– Relax ν1 times on Ax = 0 to improve representation of algebraically smooth

error
– Form interpolation, P , based on x, as in Equation (5)
– Compute Ac = PT AP , inject xc = (x)c

Here, we use Gauss-Seidel relaxation to expose the prototypical algebraically smooth error, x,
with ν0 and ν1 fixed to be 15. The strong connections are exposed with µ = 2 local sweeps of
pointwise Jacobi. Once the V-cycle components have been computed, V(1,1) AMG cycles with
Gauss-Seidel relaxation are used in the solve phase. We compute the asymptotic convergence
factors of these V(1,1) cycles and report them for both the Poisson problem and the grid-
aligned anisotropic problem from the previous section in Table I.
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grid Laplace Scaled Anisotropic Scaled
Laplace Anisotropic

32× 32 0.06 0.06 0.10 0.10
64× 64 0.07 0.07 0.10 0.10

128× 128 0.07 0.07 0.10 0.10
256× 256 0.07 0.07 0.10 0.10
512× 512 0.07 0.07 0.10 0.10

Table I. Asymptotic Convergence Factors of Resulting V(1,1) Cycles

These convergence factors are bounded independent of problem size, although parameters
ν0 and ν1 were chosen so that the 512 × 512 grid problems showed optimal performance. In
practice, the minimal values of ν0 and ν1 needed to achieve optimal multigrid performance
increase with problem difficulty and size. Successive coarsenings maintain the structure of the
fine-scale problems and, so, the complexities of the multigrid cycles remain nicely bounded,
independent of problem size, with grid complexities (defined as the number of points on all
grids divided by the number of finest-grid points) of approximately 4

3 for the Laplace problems
and 2 for the anisotropic problems.

The non-grid-aligned anisotropic problem from the previous section provides a more difficult
test for the algorithm. The first coarse grid, as shown in Figure 2, allows for an intuitively
good coarse-grid correction along the diagonal axis. Two-level multigrid results confirm this
expectation, with convergence factors below 0.20 for fine grids of 64 × 64 and 128 × 128
elements, for appropriate choices of ν0 and ν1. Multilevel results, however, degrade significantly,
due to inaccuracies introduced by using the prototypical algebraically smooth error to define
interpolation and compounded by collapsing weak off-diagonal connections to the diagonal
based also on this prototypical error. As the poor multilevel results are primarily caused by
inaccuracies in the interpolation formula used here (and can be easily improved by using
more information about the fine-scale problem), we do not further explore this problem here.
Resolution of this difficulty is the subject of current research.

One significant disadvantage of this approach for coarsening is its computational intensity.
For each fine-grid node i, µ relaxations are needed to determine its strong connections, followed
by the evaluation of an energy norm of the resulting vector. Even when this computation is
designed to take advantage of the sparsity of the resulting vectors (they are non-zero only in
a local neighborhood of i), the computation is still time consuming. It is very important that
the number of relaxations, µ, be kept as small as possible and that the computation of the
strength measures, Sij , be done in a way to exploit the local structure of the approximations,
G(i). Finding the optimal parameters for a robust coarsening scheme that is as efficient as
possible is currently under investigation.

7. Conclusions

A relaxation-based coarsening scheme for algebraic multigrid methods is proposed. The scheme
uses relaxation to compute local approximations to the matrix inverse, which are then turned
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into strength measures using an A-norm-based measure. The resulting coarsening scheme
is invariant under diagonal scalings of the matrix. When paired with the adaptive AMG
interpolation scheme, the resulting algorithm produces efficient AMG V-cycles for many
problems, but the interplay between the interpolation and coarse-grid selection is not as robust
as is hoped. Understanding this relationship is the subject of ongoing research.
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