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SUMMARY

Algebraic multigrid methods continue to grow in robustness as effective solvers for the large and sparse
linear systems of equations that arise in many applications. Unlike geometric multigrid approaches,
however, the theoretical analysis of algebraic multigrid is less predictive of true performance. Multigrid
convergence factors naturally depend on the properties of the relaxation, interpolation, and coarse-grid
correction routines used; yet, without the tools of Fourier analysis, optimal and practical bounds for
algebraic multigrid are not easily quantified. In this paper, we survey bounds from existing literature,
with particular focus on the predictive capabilities of the theory, and provide new results relating
existing bounds. We highlight the impact of these theoretical observations through several model
problems and discuss the role of theoretical bounds on practical performance.
Copyright c© 2013 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The successes of multilevel preconditioners in solving linear systems that arise from
discretizations of differential equations in the physical sciences have been numerous in recent
years, with both geometric and algebraic multigrid methods being applied to a wide range
of practical problems. Geometric multigrid methods, whose modern development started with
the seminal paper by Brandt [1], are traditionally constructed through careful Fourier or
finite-element analysis to ensure that coarse-grid correction is accurate on error for which
relaxation is least effective. Typically, performance is guaranteed through this process, with
convergence factors that are bounded independently of the mesh parameters. In contrast,
algebraic multigrid (AMG) methods attempt to form a multilevel process through matrix
and graph properties alone [2–4], often motivated by heuristic arguments aimed to match
the performance of geometric multigrid methods for simple (elliptic) problems. Nevertheless,
AMG performance similar to that of geometric multigrid has been demonstrated on a range of
problems, including those with irregular meshes or significant jumps in material parameters.

A common criticism of existing algebraic multigrid theory is the apparent lack of practical
benefit. By itself, establishing convergence of AMG is valuable; however, a reasonable estimate
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2 S.P. MACLACHLAN AND L.N. OLSON

of convergence speed is much more beneficial, as it can confirm the performance of a given
method or guide the AMG setup phase toward improved parameters and components. Thus,
our ideal bounds form a predictive theory, giving sharp bounds on the convergence factors
obtained in practice, with explicit dependence on parameters of the method. For a general
AMG method and broad class of problems, achieving such results is unlikely. This realization,
however, motivates our presentation and assessment of the existing AMG framework and offers
directions toward a more applied view of the theory.

In this paper, we review the current state of two-level theoretical analysis of various
algebraic multigrid approaches. One focus of our analysis is relationships between the various
bounds in the literature, particularly with an eye towards sharpness of the bounds. Numerical
experiments are presented to highlight the loss of sharpness that appears in commonly used
bounds. An important consequence of this point of view is an understanding of how these
bounds are (or can be) used to make informed choices about the components and parameters
of an AMG algorithm for particular problems. We do not generally consider the important
case of multilevel convergence bounds, simply because there are many fewer options for these
bounds and they contribute less directly to practical AMG algorithms. A review of such bounds
was recently presented in [5], with some insight into the relationship of two-level and multilevel
bounds presented in [6]; an excellent general treatment of both two-level and multilevel theory
appears in [7]. In general, theory for multilevel methods relies on more difficult conditions than
the two-level theory proposed here, including either additional stability criteria for V-cycles [8],
or more expensive cycling, as in AMLI-type methods [9].

A convergence bound that is optimal in terms of both sharpness and computability is likely
elusive given the myriad of methods that may be constructed through various combinations
of relaxation methods, coarse-grid selection schemes, definitions of interpolation, and forms of
coarse-grid correction cycling. For any given set of choices, the resulting worst-case convergence
factor per multigrid cycle may be expressed exactly, as the operator norm of the error-
propagation matrix, for the norm in which convergence is measured. We note that this remains
only a bound on the true (measured) per-cycle convergence factor for any given iteration
and initial error, albeit a sharp bound, as it is both achieved for a particular error and the
expected asymptotic convergence factor of stationary iteration for most initial errors. While
this norm can be computed directly as a singular value, such computation is impractical.
Conversely, the convergence factor may be easily bounded in terms of the convergence factor
of the relaxation operator, but this neglects the important role of coarse-grid correction. The
convergence bounds considered in this paper occupy a middle ground in that they are typically
based on upper bounds of the true operator norm that are careful to account for the acceleration
provided by a coarse-grid correction process.

In the abstract, the focus of multigrid convergence theory is solely on bounding the two-level
or multilevel convergence factors of algorithms such as AMG. For A ∈ Rn×n, if the bound on
the error reduction in each iteration of AMG is independent of n, then only a fixed number
of (stationary) iterations are needed to reach any fixed tolerance required of the solution,
independently of problem size. In addition, if the computational complexity of each cycle is
bounded by an O(n) number of operations, then the method is said to scale optimally, requiring
only O(n) operations to reach any fixed tolerance. While fundamentally important, we do not
explicitly consider complexity here, as it does not naturally enter into the convergence bounds
discussed; a more natural approach is to apply these bounds to algorithms with O(n) per-cycle
complexity and to measure reduction versus a reasonable unit of work. We also note that in
the absence of such a convergence bound, optimal scalability may still be possible through the
use of Krylov acceleration, but we also do not consider this here.

In Section 1.1, we introduce the AMG algorithm and the notation to be used in subsequent
sections. We follow in Section 1.2 with a short introduction to AMG theory and further
motivation of the goals of this paper. In Section 2, we discuss classical approaches to AMG
theory, focusing first on the natural sharp bounds of two-level convergence, then on the
split bounds that arise in many contexts. More recent two-level theoretical developments
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THEORETICAL BOUNDS FOR AMG 3

from [10–12] are then discussed in Section 3. The roles of compatible relaxation, reduction-
based AMG, and adaptive AMG principles in computing bounds on AMG performance are
discussed in Section 4. Examples that highlight the various convergence bounds from these
works are discussed in Section 5.

1.1. The algebraic multigrid algorithm

Consider the matrix equation
Au = f (1)

with n so-called fine-grid points (or degrees of freedom) and where A ∈ Rn×n is assumed to
be symmetric and positive definite. In a purely algebraic context, we refer to a grid as a set of
unknowns. Thus, the fine-grid equations in (1) are defined over a full index set, Ω = {1, . . . , n},
by
∑

j∈Ω aijuj = fi for each i ∈ Ω. In this section, we introduce notation through a brief look
at the two-level AMG algorithm. Fine-grid vectors and matrices are denoted with no index,
while vectors and matrices on the coarse level are denoted with a subscripted c.

The solution phase of AMG follows the familiar geometric approach. The two-level multigrid
method consists of the steps outlined in Algorithm 1.

Algorithm 1: AMG Solution Phase

u← Ĝ(u, f) {Pre-relaxation on the fine grid, Ω}
rc ← Rr {Restriction of the residual to the coarse-grid, Ωc}
ec ← A−1

c rc {Solution of the coarse-grid problem on Ωc}
ê← Pec {Interpolation of the coarse-grid correction to the fine grid}
u← u + ê {Correction of the fine-grid solution}
u← G(u, f) {Post-relaxation on the fine grid}

Throughout the paper, we assume that a disjoint splitting of the fine-level index set exists:
Ω = F ∪ C, where C represents the set of indices associated with coarse-level variables and F
is its complement of variables belonging only on the fine level. We thus have Ωc = C. Next,
we define grid-transfer operators,

P : Ωc → Ω and R : Ω→ Ωc,

as interpolation and restriction, respectively. Here, we assume both operators to be full rank
and to be associated through the Galerkin relationship R = PT . Interpolation may take any
form, although we highlight some theoretical approaches that only apply when P takes the
“classical” form P =

[
Wfc

I

]
. Once P is defined, we assume that the coarse-grid operator is

always constructed through the variational principle: Ac = PTAP . These choices are motivated
by the assumption that A is symmetric and positive definite, so that it defines both an
inner product 〈u, v〉A = 〈Au, v〉, where 〈·, ·〉 denotes the Euclidean inner product, and a norm

‖u‖A = 〈u, u〉1/2A . As a result, the solution of (1) is equivalent to a minimization process:
u = argminv〈Av, v〉 − 2〈f, v〉. Letting D = diag(A) we define the following additional notation
for discrete inner products:

〈u,v〉D = 〈Du,v〉,
〈u,v〉AD−1A = 〈D−1Au, Av〉.

For each inner product, the associated norm is also defined using the same subscript.
Additionally, we define G as the post-relaxation error-propagation operator on the fine grid,

u← Gu + (I −G)A−1f or e← Ge.

Also, let G denote the associated affine update operator for the solution so that

u← G(u, f),
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4 S.P. MACLACHLAN AND L.N. OLSON

as in Algorithm 1, with similar definitions for pre-relaxation, Ĝ (possibly trivial, with Ĝ = I,
or different than G). In general, we write G = I −MA for some matrix M ; as an example,
G = I − ωD−1A gives weighted Jacobi relaxation. In what follows, we assume that both
relaxation processes are norm-convergent (in the A-norm), meaning that ‖G‖A < 1.

An essential part of the two-grid analysis is the coarse-grid correction (CGC) error-
propagation operator, T . A single two-level correction step is defined by u← u + Pec, where
ec is the error correction from the coarse problem. Since ec is defined by Acec = PT (f −Au),
the error propagation in the CGC step is written as

e← (I − P (PTAP )
−1
PTA)e, (2)

which defines the error-propagation operator, T . Since A is symmetric and positive definite,
T = I − PA−1

c PTA is an orthogonal projection. This observation characterizes the error after
CGC as minimized in the energy norm over the range of interpolation.

We summarize the critical assumptions made above, which we use uniformly throughout
this paper.

Assumption 1. Assume A is symmetric and positive-definite, P is full rank, G is a norm-

convergent relaxation operator (‖G‖A < 1), and T = I − P (PTAP )
−1
PTA.

1.2. Algebraic Multigrid Theory

Early efforts to develop a theoretical framework for multigrid focus on geometric-based
methods — i.e., methods that rely on the structure or geometry of the problem to
define a coarse level discretization — and rely on techniques such as local Fourier (mode)
analysis [1, 13] in the development of convergence bounds. Subsequent contributions in [14]
and [15] concentrate on bounding the convergence of the multigrid method by analyzing only
the performance of the relaxation scheme. As a result, observations from these works and
results initiated in [16–18] were central to forming theory based on the algebraic properties of
the resulting matrix problems for these geometric methods. Simultaneously, related ideas were
developed in an algebraic-based multigrid context in [19] (see Section 2).

In this paper, we focus on the development of algebraic theory for AMG, by which we mean
approaches that are quantified by properties of the matrices involved, and not by reliance on the
underlying PDEs, discretization, or mesh properties. It is important to note that this is not
the only approach to delineate the theory; indeed, several theoretical developments occupy
a middle ground, such as the work of [8, 20, 21], where algebraic conditions are verified by
finite-element theory. This suggests that alternative perspectives in reviewing the theoretical
development may be valuable — e.g., by highlighting the theory based on regularity arguments.
In this paper we concentrate specifically on the algebraic distinction set forth by the early works
noted above.

The theory of [18] is further generalized in [22]. Together, [18,19,22] form a basis for much of
the classical theoretical analysis of algebraic multigrid and contribute to much of the motivation
presented in [4]. Since [4], the algebraic multigrid method has evolved in a number of directions
too large to fully review, including algorithmic advances in parallelism [23,24] and application-
focused methods [25–27]. Progress in generalizing the algorithm and improving convergence
and robustness has largely been made in the scope of defining alternative interpolation
operators [10, 28–31], of introducing different coarsening strategies [32–36], and on methods
that automatically adapt the construction of the multilevel hierarchy to the problem [31, 37].
These developments have rapidly improved the viability of AMG as a commonplace solution
technique, and their motivation is often deeply rooted in the underlying theory.

A notable theoretical contribution within this development is presented in [10], where an
algebraic multigrid method called AMGe is formulated using interpolation based on local finite-
element stiffness matrices. Heuristics are developed in terms of the spectrum of the operator,
A, to ensure acceptable convergence of the two-grid scheme. These heuristics guide both the
relaxation process and the definition of interpolation. In particular, two new measures are
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presented that quantify the impact of the choice of interpolation, P , on the CGC process.
We detail the AMGe framework more in Section 3 and place these theoretical results in the
context of earlier theory related to classical AMG.

The complementary nature of relaxation and CGC has long been recognized as the key to a
successful AMG method. Revisiting the underlying process in [33, 34] leads to both insightful
algorithmic advances and novel contributions to the nature of AMG theory. Recently, in [11,12],
the theoretical structure of various methods was summarized and generalized, motivating a
direction for further algorithmic and theoretical development of AMG.

In this paper, we highlight the connection between several advances in the theoretical
development of AMG, by reviewing the theoretical convergence bounds in the literature
and by analyzing their relationships. In particular, we establish the loss-of-sharpness among
various bounds on AMG performance and discuss the impact and computability of the various
theoretical measures introduced. We also prove new relationships between these bounds,
which further highlights the sharpness in the theory and motivates the different approaches.
Furthermore, we consider implications of these bounds through several intuitive examples and
aim to highlight directions of research that may lead toward more useful theoretical tools for
practical application of AMG.

In the following, we limit our discussion of convergence to the two-level V(0, 1)-cycle, since
two-level V(1, 0) and V(1, 1) cycling yields similar theory and bounds, as shown in Lemma 4.1
of [17]. In particular, if we consider relaxation schemes whose error-propagation operators are
of the form G = I −MA (including, most notably, Gauss-Seidel and Jacobi relaxation), then
the error-propagation operation of the V(0, 1)-cycle is the A-adjoint of the operator for the
V(1, 0)-cycle with relaxation in reverse ordering, as summarized in the following theorem.

Theorem 1 (Lemma 4.1 of [17]). Under Assumption 1, the A-adjoint of GT is TG†, with
G† = I −MTA.

Since GT and TG† are A-adjoints, they have the same A-norm, ‖GT‖A = ‖TG†‖A. Further,
since T is an A-orthogonal projection, the symmetric V(1, 1)-cycle error-propagation operator
reduces to

(I −MA)(I − P (PTAP )
−1
PTA)(I −MTA) = GTG† = (GT )(TG†).

As a result, ‖GTG†‖A = ‖GT‖2A. Thus, we focus only on bounds for the V(0, 1)-cycle, ‖GT‖A,
since bounds for V(1, 0)- and V(1, 1)-cycles follow naturally.

2. ON SHARP THEORY

Early approaches to multigrid convergence theory were based on geometric properties of the
continuum PDE to be solved, including knowledge of the eigenfunctions of the operator and
information about the discretization [1,13]. In [38], a new approach was proposed, specifically
focusing on the algebraic nature of the matrix problem. In this section, we revisit the basics
of this early theory and expose the loss of sharpness in bounding the multilevel convergence
factor.

For a given multigrid hierarchy, we seek a bound on the resulting per-cycle convergence
factor, estimating (exactly, if possible) the reduction in ‖e‖A from a two-level V(0, 1)-cycle.

Given the CGC operator, T = I − P (PTAP )
−1
PTA, the A-orthogonal projection onto the

range of interpolation, R(P ), is given by S = I − T = P (PTAP )
−1
PTA, showing that R(T )

is the A-orthogonal complement of R(P ). Thus, the energy norm is naturally decomposed
as ‖e‖2A = ‖(I − T )e‖2A + ‖Te‖2A; this relation is useful in analyzing the multigrid error-
propagation operator, since the role of coarse-grid correction is explicitly represented.

The reduction in ‖e‖A from a two-level V(0, 1)-cycle is naturally expressed by the form

‖GTe‖2A ≤ (1− δ∗)‖e‖2A.

Copyright c© 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2013)
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6 S.P. MACLACHLAN AND L.N. OLSON

Ideally, we target a sharp bound in the sense that

‖GT‖2A := sup
e6=0

‖GTe‖2A
‖e‖2A

= 1− δ∗. (3)

We note the use of the supremum, rather than maximum, in (3) is unnecessary, since we are
restricted to Rn; yet, to be consistent with the literature, we use the supremum and infimum
notation throughout the paper.

In order to guarantee a parameter-independent bound on convergence, the key challenge is
to identify sufficient conditions on the matrix operator, the relaxation method, and coarse-grid
correction (interpolation). One approach is to assume that relaxation is effective on the range
of T — i.e., there exists δ > 0 such that

‖GTe‖2A ≤ (1− δ)‖Te‖2A for all e. (4)

Then, since T is an A-orthogonal projector,

‖GTe‖2A ≤ (1− δ)‖e‖2A for all e

also holds. Following [18, Lemma 2.3], we note that a similar inequality holds for v ⊥ R(T ),

‖Gv‖2A ≤ ‖v‖2A for all v ⊥ R(T ),

simply by the norm-convergence of G. Combining these, we assume there exists δ > 0 such
that

‖Gv‖2A ≤ ‖v‖2A − δ‖Tv‖2A for all v.

This assumption, which asserts that relaxation effectively reduces errors remaining after
coarse-grid correction, establishes convergence of a two-grid V(0, 1)-cycle as summarized in
the following theorem.

Theorem 2. Under Assumption 1, if there is a δ > 0 such that

‖Ge‖2A ≤ ‖e‖2A − δ‖Te‖2A for all e, (5)

then

‖GT‖2A ≤ 1− δ. (6)

An equivalent form of the assumption in (5) is given in [7, 39]. This assumption yields a
bound on convergence; however, the sharpness of this bound has not yet been established. To
be sharp, the largest δ that satisfies (5) should equal δ∗ in (3). Indeed, writing

δ̂ = inf
e:Te6=0

‖e‖2A − ‖Ge‖2A
‖Te‖2A

,

we show that δ∗ = δ̂ through the following theorem, establishing the sharpness of (6).

Theorem 3. Under Assumption 1, if

δ̂ = inf
e:Te6=0

‖e‖2A − ‖Ge‖2A
‖Te‖2A

, (7)

then δ̂ defines a sharp bound on the two-grid V(0, 1)-cycle convergence factor; that is,

‖GT‖2A = 1− δ̂. (8)
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Proof
Writing the A-orthogonal decomposition of e as

e = Te + (I − T )e

gives ‖e‖2A = ‖Te‖2A + ‖(I − T )e‖2A. Noting that the supremum below is achieved over the
constrained set with Te 6= 0 (since Te = 0 gives ‖GTe‖A = 0), we have

‖GT‖2A = sup
e:Te6=0

‖GTe‖2A
‖e‖2A

= sup
e:Te6=0

‖GTe‖2A
‖Te‖2A + ‖(I − T )e‖2A

.

Then, defining ê = argsup
e:Te6=0

‖GTe‖2A
‖Te‖2A + ‖(I − T )e‖2A

, we see that T ê also achieves the

supremum, since T ê also satisfies the constraint and

‖GTT ê‖2A
‖TT ê‖2A + ‖(I − T )T ê‖2A

=
‖GT ê‖2A
‖T ê‖2A

≥ ‖GT ê‖
2
A

‖ê‖2A
.

Thus, as expected, the supremum is achieved by error e that satisfies (I − T )e = 0. With this,

‖GT‖2A = sup
e:Te6=0

‖GTe‖2A
‖e‖2A

= sup
e:Te6=0

‖G(Te + (I − T )e)‖2A
‖Te‖2A

= sup
e:Te6=0

‖Ge‖2A
‖Te‖2A

,

which results in

1− ‖GT‖2A = inf
e:Te 6=0

‖Te‖2A − ‖Ge‖2A
‖Te‖2A

= inf
e:Te6=0

‖e‖2A − ‖Ge‖2A
‖Te‖2A

= δ̂. (9)

The utility of the convergence estimate in (8) is limited by its computability. Indeed,

determining δ̂ from (7) is computationally prohibitive and motivates the development of more
tractable estimates at a cost of sharpness in the bound. Correspondingly, early theory [16,40]
in algebraic multigrid initially considers a separated, less-sharp form of the convergence bound.

To see this, from (9) we define δ(e), αg(e), and βg(e) for a given error e with

δ(e) =
‖e‖2A − ‖Ge‖2A

g(e)︸ ︷︷ ︸
αg(e)

g(e)

‖Te‖2A︸ ︷︷ ︸
1/βg(e)

, (10)

for any non-negative function g(e). Then, letting

α̂g = inf
e:g(e) 6=0

αg(e), (11)

β̂g = sup
e:g(e) 6=0

βg(e), (12)

we can naturally bound the convergence factor in terms of α̂g and β̂g by noting that, for e
such that g(Te) 6= 0,

‖GTe‖2A ≤ ‖Te‖2A − α̂gg(Te)

≤ ‖Te‖2A −
α̂g

β̂g
‖Te‖2A =

(
1− α̂g

β̂g

)
‖Te‖2A

≤

(
1− α̂g

β̂g

)
‖e‖2A. (13)

Copyright c© 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2013)
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8 S.P. MACLACHLAN AND L.N. OLSON

For g(e) chosen such that g(e) 6= 0 for all e 6= 0, or so that g(e) 6= 0 for all e such that Te 6= 0,
this leads to a bound on the two-grid convergence rate and, consequently, the sharp convergence
bound, δ̂, according to

‖GT‖A =
√

1− δ̂ ≤

√
1− α̂g

β̂g
and, equivalently, δ̂ ≥ α̂g

β̂g
.

Several natural choices of g(e) exist. In [4, Eqn. (3.3a)], g(e) = ‖e‖2AD−1A is used, although
the weaker approximation property in [4, Eqn. (5.4)] takes g(e) = ‖Te‖2AD−1A. More recently,
Aricó and Donatelli [41] note that a more-general norm of e can be used as g(e), in contrast
to the choices made in [4]. They use this only in the case of multilevel circulant/Toeplitz type
matrices, where the difference between ‖e‖2AD−1A and their choice of ‖e‖2A2 is minimal, but the
circulant/Toeplitz structure guides their smoothing and approximation properties. We note,
however, that the freedom of choice of g(e) clearly offers avenues for controlling the sharpness

of the resulting bounds. Choosing g(e) = ‖Te‖2A naturally leads to β̂g = 1 and α̂g = δ̂, which
we know gives a sharp bound, with a similar result for g(e) = ‖e‖2A − ‖Ge‖2A (discussed further
in Section 3.1), while other choices are expected to lead to bounds of varying sharpness if the
corresponding smoothing and approximation bounds can be shown.

Breaking down (13), we see that that bounding α̂g,

ᾱg ≤ α̂g = inf
e:g(e)6=0

‖e‖2A − ‖Ge‖2A
g(e)

, (14)

leads to the assumption that relaxation satisfies

‖Ge‖2A ≤ ‖e‖2A − ᾱgg(e) for all e (15)

for some ᾱg; this is the so-called smoothing assumption (terminology which first appeared
in [42]). While practical, the smoothing assumption typically results in immediate loss-of-

sharpness in the convergence estimate, even when using the optimal bound, since α̂g and β̂g
generally do not simultaneously achieve their extreme values.

Since the assumptions in (15) are only placed on relaxation, similar assumptions are needed
on coarse-grid correction in order to bound the convergence factor, ‖GT‖2A. Indeed, if we
assume the smoothing property in (15) with ᾱg and consider the bounds in (12) and (13),
then a bound analogous to (14) results in

β̄g ≥ β̂g = sup
e:g(e) 6=0

‖Te‖2A
g(e)

.

That is, there exists a β̄g > 0 such that

‖Te‖2A ≤ β̄gg(e) for all e. (16)

Since the two-level bound in (13) only depends on g(Te), and not on g(e) for general e, a
reasonable weak approximation assumption is that there exists β̄g > 0 such that

‖Te‖2A ≤ β̄gg(Te) for all e. (17)

With this, we obtain sufficient conditions for two-grid convergence, summarized by the
following theorem.

Theorem 4. Under Assumption 1, if there exists ᾱg > 0 such that

‖Ge‖2A ≤ ‖e‖2A − ᾱgg(e) for all e (smoothing)

and there exists β̄g > 0 such that

‖Te‖2A ≤ β̄gg(Te) for all e (approximation),

then ‖GT‖A ≤
√

1− ᾱg/β̄g.

Copyright c© 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2013)
Prepared using nlaauth.cls DOI: 10.1002/nla



THEORETICAL BOUNDS FOR AMG 9

Equation (16), which establishes a stronger form of the approximation assumption in (17),
is sufficient to establish convergence for multilevel V-cycles [4]. The strong approximation
assumption in (16) is dependent on g(e) directly, contrasting with (17), which is only defined
over R(T ). As shown in [7], the strong approximation assumption ensures `2-boundedness of
the coarse-grid correction step.

The choice in [4] of g(e) = ‖e‖2AD−1A is appealing because it naturally leads to weaker but
more intuitive forms of the weak and strong approximation properties. From the form of the
CGC operator, T , as an A-orthogonal projection, we can rewrite ‖Te‖A = infec ‖e− Pec‖A.
Thus, the main theoretical challenge in analyzing coarse-grid correction is to define conditions
on the interpolation operator that guarantee a bound of the form in (16) or (17). With this
choice of g(e) and denoting β̄s = β̄g, the strong approximation assumption in (16) is rewritten
as

inf
ec
‖e− Pec‖2A ≤ β̄s‖e‖2AD−1A for all e. (18)

For the weaker approximation assumption in (17), a similar statement arises in a weaker
norm. Since, by definition, the range of T is A-orthogonal to the range of P , for any ec, we
have that

‖Te‖2A = 〈ATe, Te〉 = 〈ATe, Te− Pec〉
≤ ‖Te‖AD−1A‖Te− Pec‖D. (19)

Thus, if we are able to quantify the quality of interpolation with

inf
ec
‖e− Pec‖2D ≤ β̄w‖e‖2A for all e, (20)

for some β̄w > 0, then (19) shows that the approximation assumption in (17) holds. In (18)
and in (20), we use subscripts to distinguish these strong and weak forms of the bound.

In this form, these approximation assumptions place natural demands on interpolation and,
thus, were recognized early in the development of algebraic multigrid as a critical component
in establishing convergence. In [38], this restriction on interpolation was analyzed in terms
of eigenvectors of A, which led to one of the first concise statements of the so-called Brandt-
McCormick Principle, namely, that P should be chosen so that, for any λ > 0,

sup
e∈Vλ(A)

inf
ec

‖e− Pec‖2A ≤ cλahs. (21)

Here, Vλ(A) is the set of all eigenvectors of A with unit A-norm with eigenvalue no larger than
λ, a and s are constants, and h is a parameter reflecting the discretization mesh size [38, §3].
The strong approximation property in (18) naturally implies (21). To see this, let e ∈ Vλ(A)
with A denoting a standard finite-difference discretization of a differential operator. Then
‖e‖2AD−1A ≤ ‖D

−1‖‖Ae‖2 ≤ Ch2λ, where the Ch2 factor is a result of the size, 1/(Ch2), of
the diagonal entries in A.

Such approximation assumptions first appeared in a similar form, also implying this choice of
g(e) = ‖e‖2AD−1A. The original formulation of an approximation assumption was by Hackbusch
as

‖A−1 − P (PTAP )
−1
PT ‖ ≤ chs; (22)

see [42, Eqn. (3.2)], [40, Eqn. (2.7)], and [43, Eqn. (C1)]. Rewriting (18) as

sup
e6=0

inf
ec

‖e− Pec‖2A
‖e‖2

AD−1A

≤ β̄s

and explicitly replacing the infimum with the A-orthogonal projection onto the complement
of R(P ) gives

sup
e6=0

inf
ec

‖e− Pec‖2A
‖e‖2

AD−1A

= sup
e6=0

‖e− P (PTAP )
−1
PTAe‖2A

‖e‖2
AD−1A

.
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10 S.P. MACLACHLAN AND L.N. OLSON

Next, we relate these norms to `2-norms in the usual way, giving

sup
e6=0

inf
ec

‖e− Pec‖2A
‖e‖2

AD−1A

= sup
e6=0

‖A1/2e−A1/2P (PTAP )
−1
PTAe‖2

‖D−1/2Ae‖2
.

Now, taking u = D−1/2Ae, we have

sup
e6=0

inf
ec

‖e− Pec‖2A
‖e‖2

AD−1A

= sup
u6=0

‖A−1/2D1/2u−A1/2P (PTAP )
−1
PTD1/2u‖2

‖u‖2

= ‖A−1/2D1/2 −A1/2P (PTAP )
−1
PTD1/2‖2

≤ ‖A1/2‖2‖A−1 − P (PTAP )
−1
PT ‖2‖D1/2‖2.

Thus, Assumption (22) can imply the strong approximation assumption in (16), depending on
s. Assumption (22) was also formulated in [16], although in a slightly more general context.

In general, the approximation assumptions as written in (17) and (16) directly relate the

boundedness of β̂g to P , when g(e) is chosen appropriately. In addition, it is important to
note that other forms of the approximation assumptions emerge with choices other than
g(e) = ‖e‖2AD−1A. Indeed, the computation in (19) is replicated for any symmetric, positive-
definite matrix B, leading to a generalized weak approximation assumption: This assumption
is

inf
ec
‖e− Pec‖2B ≤ β̄w,B‖e‖2A for all e (23)

compatible with the choice of g(e) = ‖e‖2AB−1A, with the corresponding generalized strong
approximation assumption becoming

inf
ec
‖e− Pec‖2A ≤ β̄s,B‖e‖2AB−1A for all e.

These generalized assumptions, as well as their classical counterparts, have an intuitive
explanation: each vector, e, must be approximated by something in the range of interpolation,
R(P ), with accuracy proportional to ‖e‖A. In (21), this is imposed on every eigenvector, where
‖e‖2A is just the eigenvalue. In (20), this is imposed in the more general sense of [19, Thm.
4.1].

We note that, in the case where B = A, these generalized weak and strong approximation
assumptions coincide, and that the norms on both sides of the inequality are A-norms. Thus,
in this case, β̄ = 1 naturally satisfies the inequality. While this may seem to be an optimal case
for the theory, because the approximation assumption is trivially satisfied, the corresponding
smoothing assumption from (15) is

‖Ge‖2A ≤ ‖e‖2A − ᾱ‖e‖2A for all e,

which cannot generally be satisfied for a suitable ᾱ bounded away from 0. It seems natural,
therefore, to consider B to be an approximation to A, but not particularly close to A. We
explore such a choice of B in Section 3.1.

3. ON MEASURES

Implicit in the separated bounds — e.g., (10) — is the additional assumption on smoothing
that only error that is slow to reduce through relaxation — i.e., algebraically smooth error —
yields relatively small residuals. Thus, approximation assumption (18) ensures that these
errors are adequately reduced by coarse-grid correction. It is important to note that the extra
assumption on smoothing does not hold for all relaxation schemes, even if they satisfy the
regular smoothing assumption in (15). In particular, certain forms of distributed relaxation
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for Maxwell’s equations are effective because they accurately address a large family of errors
that yield small residuals [44]. Such relaxation techniques, however, rely upon much more
specialized knowledge of the problem than we assume. For more standard algebraic multigrid
approaches, typical choices of relaxation include the Richardson, Jacobi, and Gauss-Seidel
iterations, which often satisfy this assumption for the discrete PDE models for which AMG is
effective.

To formalize the role of relaxation in addressing algebraically smooth error, we use modified
versions of the approximation assumptions discussed above. In particular, we define optimal
weak and strong constants, β̂w and β̂s, by using (20) and (18) to arrive at

β̂w = sup
e6=0

inf
ec

‖e− Pec‖2D
‖e‖2A

(24)

and

β̂s = sup
e6=0

inf
ec

‖e− Pec‖2A
‖e‖2

AD−1A

. (25)

In [10], the element-based AMG (AMGe) framework is introduced. The goal of AMGe is to
break up the global problem of building the AMG hierarchy based on properties of the system
matrix into localized pieces that are directly optimized with low cost. At the center of this
approach are the so-called AMGe measures,

M1(Q, e) =
‖(I −Q)e‖2D
‖e‖2A

and M2(Q, e) =
‖(I −Q)e‖2A
‖e‖2

AD−1A

,

although we note that it is assumed in [10] that A is pre-scaled to have unit diagonal,
simplifying the D-norm to the standard `2 norm and the AD−1A norm to the A2 norm. In
these measures, Q is taken to be any projection onto the range of P , written Q = PR, for some

R such that RP = I, the identity on the coarse scale. By choosing R = (PTDP )
−1
PTD or

R = (PTAP )
−1
PTA, the projection-based bounds in (24) and (25) are respectively recovered.

For more general choices of R, these measures are generalizations of those in (24), for measure
M1, and (25), for measure M2, where the minimization over vectors vc is replaced by the
action of R on e itself. That is, the variational principle in the strong and weak measures is
replaced by an explicit projection onto the range of P .

Replacing the minimization with such a projection has the consequence that boundedness of
the AMGe measures is a weaker condition than that of the corresponding AMG measure — i.e.,
for any e,

inf
ec

‖e− Pec‖2D
‖e‖2A

≤M1(Q, e) (26)

and

inf
ec

‖e− Pec‖2A
‖e‖2

AD−1A

≤M2(Q, e). (27)

As such, boundedness of M1 for all e is sufficient to guarantee two-level convergence, and
boundedness of M2 for all e guarantees both two-level convergence (as above) and multilevel
convergence (if the corresponding bound holds uniformly across all grids), simply by taking
the supremum over e 6= 0 on both sides of (26) and (27).

When the coarse set, C, is restricted to be a subset of the fine-grid degrees of freedom,
further specialization is possible. In this setting, we implicitly partition the matrix A as

A =

[
Aff −Afc
−ATfc Acc

]
, (28)

Copyright c© 2013 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (2013)
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12 S.P. MACLACHLAN AND L.N. OLSON

with vectors partitioned to match; for example, e = ( ef
ec ). In this setting, many interpolation

schemes take the form P =
[
Wfc

I

]
, with Wfc denoting the coarse-to-fine interpolation weights.

Under these conditions, a common special case of measure M1 is when R =
[

0 I
]
, giving

Qe = Pec. Thus, this choice of R means that the value of

τ̂w = sup
e6=0

‖e− Pec‖2D
‖e‖2A

(29)

is always an upper bound on the weak AMG approximation constant, β̂w, in (24). For choices
of interpolation P that conform to the classical multigrid expectation that P =

[
Wfc

I

]
, the

numerator of this bound then simplifies to a fine-grid only calculation. From this point of
view, only upper bounds on τ̂w are relevant; small values of τ̂w guarantee reasonable AMG
performance (as long as the corresponding smoothing assumption holds with a reasonable
constant, ᾱw); however, large values for τ̂w do not lead to the opposite conclusion. Indeed,
large values of τ̂w may result from a poorly performing multigrid algorithm, but may also arise
if the difference between the optimal choice of vc is far from ec (as is the case in the example
in Section 5.1 below), or if there is a large gap in the constants given by the sharp theory and
the bound due to the separated smoothing and approximation assumptions. Thus, the lower
bound on τ̂w provided in [45] offers limited insight into AMG performance. Consequently, we
do not consider these lower bounds in the following discussion.

A thorough analysis of the relationship between τ̂w, AMG convergence, and other
fundamental constants is given in [45]. The partitioning of A in (28) highlights the block
structure of the partitioned form, for which the block-diagonal dominance of Aff and Acc can
be measured with the Cauchy-Bunyakowski-Schwarz (or CBS) constant [46],

γA = sup
vf 6=0,vc 6=0

vTf Afcvc(
vTf Affvf

) 1
2
(
vTc Accvc

) 1
2

. (30)

Many characterizations of γA exist, especially for matrices arising from finite-element
discretizations of elliptic PDEs. One intuitive result for a symmetric and positive-definite
matrix, A, is that the eigenvalues, λ, of the generalized eigenvalue problem,[

Aff −Afc
−ATfc Acc

](
xf
xc

)
= λ

[
Aff 0

0 Acc

](
xf
xc

)
,

are in the interval [1− γA, 1 + γA] with the endpoints obtained by the extremal eigenvalues [46,
Corollary 9.4].

With this, the combined quality of the partitioning and choice of P =
[
Wfc

I

]
can be assessed

by the CBS constant, γÂ, of the transformed matrix,

Â =

[
I Wfc

0 I

]T [
Aff −Afc
−ATfc Acc

] [
I Wfc

0 I

]
. (31)

In this setting, τ̂w is bounded from above according to the next theorem.

Theorem 5 (Theorem 10 of [45]). Under Assumption 1, with A partitioned as in (28) and
with Dff = diag(Aff ), a diagonal matrix with entries matching the diagonal of Aff , if γÂ is

the CBS constant for Â defined by (31) and τ̂w is defined as in (29), then

τ̂w ≤
1

λmin(D−1
ff Aff )

1

1− γ2
Â

. (32)

The implications of this result are not immediately apparent for a typical A. In order to
ensure a small value of τ̂w, guaranteeing fast AMG convergence, two properties must hold.
First, the smallest eigenvalue of D−1

ff Aff must be bounded sufficiently away from zero while,
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second, the CBS constant for Â must be bounded away from one. The condition on the
spectrum of D−1

ff Aff depends only on the properties of the partition and is guaranteed to
hold if (unweighted) Jacobi relaxation on the fine-grid submatrix, Aff , is quick to converge.
Incidentally, this is closely related to the principle of compatible relaxation, discussed in
Section 4. The condition on the CBS constant, γÂ, is exposed by considering the block entries

of Â,

Â =

[
Aff AffWfc −Afc

WT
fcAff −ATfc Acc −ATfcWfc −WT

fcAfc +WT
fcAffWfc

]
. (33)

For γÂ to be small, Â must be spectrally close to its diagonal blocks. This requires that the
off-diagonal AffWfc −Afc ≈ 0, which suggests defining Wfc as the “ideal” interpolation of
A−1
ffAfc.
Recent interest in the AMG literature has focused in many ways on the weak approximation

property; however, a generalization of Theorem 5 (as originally stated in [45]) can also be
derived for the strong analogue of τ̂w,

τ̂s = sup
e6=0

‖e− Pec‖2A
‖e‖2

AD−1A

,

that forms an upper bound for β̂s as given in (25). The resulting bound is

τ̂s ≤
1

λmin(D−1
ff Aff +A−1

ffAfcD
−1
cc ATfc)

1

1− γ2

ÂD−1A

, (34)

where ÂD−1A is defined by applying the same transformation as is used in (31). There are
two notable features of this bound. First, it depends on λmin(D−1

ff Aff +A−1
ffAfcD

−1
cc A

T
fc)

rather than λmin(D−1
ff Aff ), as in the weak bound in (32). Since Aff and AfcD

−1
cc A

T
fc are both

symmetric positive semi-definite, we have that

λmin(D−1
ff Aff +A−1

ffAfcD
−1
cc A

T
fc) ≥ λmin(D−1

ff Aff ),

suggesting that the bound on τ̂s may be smaller than that on τ̂w. Second, the typical “ideal”
interpolation in AMG results from minimizing γÂ as follows in the weak bound. The strong
bound, however, suggests an analogous definition of an ideal strong interpolation operator,
given by choosing Wfc to have γ

ÂD−1A
= 0, yielding

Wfc =
(
AffD

−1
ff Aff +AfcD

−1
cc A

T
fc

)−1 (
AffD

−1
ff Afc +AfcD

−1
cc Acc

)
.

While the above bounds on these measures are in many ways more computable than directly
bounding the approximation property or the smoothing assumption, the cost is in the form
of sharpness of the bound. That is, two-level (for M1) and multilevel (for M2) convergence
estimates based on bounding these measures are no better than those obtained by directly
bounding the approximation properties from which they are derived. While the bounds on
these measures may be easily expressed in terms of fine-scale generalized eigenvalue problems,
these are only given as upper bounds to optimal bounds of the approximation properties. As
a result, if no acceptable bound is found on these measures, the true performance of the AMG
algorithm cannot be assessed.

3.1. Return to sharp theory

In [11], the two-level theory for measure M1 is extended to general relaxation techniques with
error-propagation operators of the form G = I −MA. The generalized measure of [11] weights

the norm in the numerator of M1 by the matrix X = (M +MT −MTAM)
−1

. This weight
arises naturally from the symmetric smoother,

G†G = (I −MTA)(I −MA) = I − (M +MT −MTAM)A = I −X−1A.
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Norm-convergence of G = I −MA guarantees symmetry and positive-definiteness of X−1.
Thus, weighting matrix X represents a natural norm in which to measure the performance of
relaxation, since X−1 is the approximation to A−1 used in the symmetrized relaxation scheme.
Furthermore, the measure,

µ(Q, e) =
〈(M +MT −MTAM)

−1
(I −Q)e, (I −Q)e〉

‖e‖2A
=
〈X(I −Q)e, (I −Q)e〉

‖e‖2A
, (35)

for Q = PR, where P is the AMG interpolation operator and R satisfies RP = I, is a
measure of the performance of relaxation on those components orthogonal to the range of
P . Moreover, µ(Q, e) is bounded below by a generalized weak approximation assumption of
the type considered in (23), namely

µ(Q, e) ≥ inf
vc

‖e− Pvc‖2X
‖e‖2A

.

The corresponding smoothing assumption, that

‖(I −MA)e‖2A ≤ ‖e‖2A − α‖e‖2AX−1A,

holds with constant α = 1, by the definition of the AX−1A-norm. Thus, boundedness of µ(Q, e)
for all e 6= 0,

sup
e6=0

inf
ec

‖e− Pec‖2X
‖e‖2A

≤ sup
e6=0

µ(Q, e) ≤ K,

for any choice of R with Q = PR, is sufficient to guarantee convergence of the two-level
V(0, 1)-cycle whose error-propagation operator is GT = (I −MA)T . Consequently, Theorem
2.2 of [11] may be stated as

Theorem 6. Under Assumption 1, let Q be any projection onto the range of P . If µ(Q, e) ≤ K
for all e 6= 0, then

‖GT‖A ≤
(

1− 1

K

) 1
2

.

We note that the argument above establishing Theorem 6 essentially follows the proof of
Theorem 2.2 in [11]; however, we state it in the more general setting of generalized weak
approximation properties. Theorem 6.9 of [7] gives conditions under which a rigorous lower
bound is also possible.

If we again consider the special case where P =
[
Wfc

I

]
, with Q = PR for R =

[
0 I

]
, then

the numerator of the bound in (35) simplifies to include the fine-grid submatrix, Xff , of X.
As noted in [45], in this case, boundedness of the measures µ(Q, e) and M1(Q, e) is equivalent
in the sense that

λmin(D−1
ffXff ) ≤ 〈X(I −Q)e, (I −Q)e〉

〈D(I −Q)e, (I −Q)e〉
≤ λmax(D−1

ffXff ), (36)

where Dff is the diagonal of Aff . Thus, defining µ̂ = sup
e6=0

µ(Q, e) leads to the inequality [45],

λmin(D−1
ffXff )τ̂w ≤ µ̂ ≤ λmax(D−1

ffXff )τ̂w.

Two conclusions follow directly from this observation. First, when Q = PR for R =
[

0 I
]
,

boundedness of µ(Q, e) for all e 6= 0 is again sufficient to guarantee two-level multigrid
convergence, giving another point of view on the reasoning discussed above. Second, this
bound again loses sharpness, due to the lack of sharpness in (36).

While this choice of the projection, Q, onto the range of P leads to a bound that is several
steps away from being sharp, it is interesting to note that the measure, µ(Q, e), can be made

sharp by choosing the optimal projection, QX = P (PTXP )
−1
PTX. Theorem 4.3 from [12]

shows this, and can be rewritten as
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Theorem 7. Under Assumption 1, let X = (M +MT −MTAM)
−1

and QX =

P (PTXP )
−1
PTX. Then, taking K = sup

e6=0
µ(QX , e), we have

‖GT‖2A = 1− 1

K
. (37)

Remark 1. Here we present an alternate proof to that given in [12]. While the proof in [12]
is based on a more general bound that also provides insight into the related hierarchical basis
preconditioner, the proof we give here is more direct, following from the generalized split theory
discussed in Section 2.

Proof
From (7), we have that

1− ‖GT‖2A = inf
e:Te6=0

‖e‖2A − ‖Ge‖2A
‖Te‖2A

= inf
e:Te6=0

‖e‖2AX−1A

‖Te‖2A
.

Equivalently, we can characterize convergence by

K =
1

1− ‖GT‖2A
= sup

e6=0

‖Te‖2A
‖e‖2

AX−1A

.

This immediately leads to a generalized strong approximation assumption: if

‖Te‖2A ≤ K‖e‖2AX−1A for all e,

then ‖GT‖2A ≤ 1− 1/K. The bound is sharp if K is the smallest constant for which the
generalized strong approximation assumption holds.

Alternately, ‖Te‖2A is bounded by using a generalized weak approximation assumption by
writing

‖Te‖2A =
〈
X−1/2ATe, X1/2(Te− Pec)

〉
≤ ‖Te‖AX−1A‖Te− Pec‖X , (38)

for any ec, where the Cauchy-Schwarz inequality is sharp if

X−1/2ATe = λX1/2(Te− Pec)

for some scalar λ. This is equivalent to

ATe = λX(Te− Pec).

As a result, the generalized weak approximation assumption,

inf
ec
‖Te− Pec‖2X ≤ K‖Te‖2A for all e, (39)

guarantees that
‖Te‖2A ≤ K‖Te‖2AX−1A for all e,

from (38). This bound is sharp if the bound in (39) is sharp for some e and the Cauchy-Schwarz
inequality in (38) is sharp for that e. Then, writing ec as a projection yields

inf
ec
‖Te− Pec‖2X = ‖(I − P (PTXP )

−1
PTX)Te‖2X

= ‖(I − P (PTXP )
−1
PTX)e‖2X

= inf
ec
‖e− Pec‖2X .
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As a result, choosing

K = sup
e:Te6=0

inf
ec

‖e− Pec‖2X
‖Te‖2A

yields a sharp bound on the generalized weak approximation assumption in (39). The
maximizer of the supremum satisfies the generalized eigenvalue problem

TTATe = λ(I − P (PTXP )
−1
PTX)

T
X(I − P (PTXP )

−1
PTX)e,

which, using properties of projections gives,

ATe = λX(I − P (PTXP )
−1
PTX)e,

thus ensuring the sharpness of the Cauchy-Schwarz inequality in (38) for the e that gives the
sharp definition of K.

Finally, since ‖GT‖2A ≤ 1− 1/K from Theorem 6, and we have found an e such that
‖GTe‖2A = (1− 1/K)‖e‖2A, the equality in (37) holds.

Theorem 7 shows that the generalized weak approximation assumption in (23) yields a
sharp two-level bound (choosing B = X in the notation of (23)). Since both this bound and

the bound in (7) are sharp, the constant 1/K must be equal to δ̂ as defined in Theorem 3.
However, a direct proof of the equality between these constants requires more work. To show
this equality, we first rewrite δ̂ in terms of X and, then, review the necessary details of [12] to
directly demonstrate the equivalence.

Lemma 1. Under Assumption 1, constant δ̂ from (7) satisfies

δ̂ = inf
e:Te6=0

‖e‖2A − ‖Ge‖2A
‖Te‖2A

= inf
e:Te6=0

〈X−1ATe, ATe〉
‖Te‖2A

, (40)

where X = (M +MT −MTAM)
−1

.

Proof
Direct calculation yields

‖GTe‖2A = 〈AGTe, GTe〉 = 〈ATe, Te〉 − 〈X−1ATe, ATe〉,

which leads to (40).

Theorem 8. Under Assumption 1, constants δ̂, defined in (7), and K = sup
e6=0

µ(QX , e) for

X =
(
M +MT −MTAM

)−1
and QX = P (PTXP )

−1
PTX, satisfy

δ̂ =
1

K
.

Proof
We use (40) to prove equality with K given as

δ̂ = inf
e:Te6=0

〈X−1ATe, ATe〉
〈ATe, Te〉

,

K = sup
e6=0

〈X(I −QX)e, (I −QX)e〉
〈Ae, e〉

. (41)

The goal of the proof is to show that the X−1 in the numerator of the infimum-based expression
for δ̂ can be moved to the denominator of a similar expression for 1/K, appearing as X in
the numerator of (41). To do this, we first follow the proof of Theorem 4.3 in [12] to derive
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an equivalent expression for K, then make use of the properties of orthogonal projections to
show this is equal to 1/δ̂.

Writing e = Pv + Tw in (41), it is apparent that the supremum is achieved when v = 0.
As a result, an equivalent expression for K is

K = sup
e:Te6=0

〈X(I −QX)e, (I −QX)e〉
〈ATe, Te〉

. (42)

Now, writing e = Tw, we argue that

K = sup
e:e=Tw 6=0

inf
w

〈X((I − T )w + Te), ((I − T )w + Te)〉
〈Ae, e〉

by noting that the choice of w only affects the value of the numerator. Thus, in order
to minimize the numerator over all choices of w, we first write (I − T )w + Te = e + (I −
T )(w − e) and then note that (I − T )(w − e) ∈ Range(P ). Thus, the infimum is attained
when (I − T )(w − e) = −QXe, the X-orthogonal projection of e onto the range of P .

Now, since e = Tw, we write w = Te + (I − T )w, simplifying the numerator to give

K = sup
e:e=Tw 6=0

inf
w

〈Xw,w〉
〈Ae, e〉

.

Here, the outer supremum in this expression is over all non-zero vectors, e ∈ Range(T ), while,
for each such e, the inner infimum is over all w such that e = Tw.

This expression for K is shown to imply that

K = sup
e6=0

〈Be, e〉
〈Ae, e〉

by Theorem 4.1 in [12], where B is defined by

E = I −B−1A = (I −MA)T (I −MTA).

Since λmax(E) = 1− 1/K, we also have λmax

(
A

1
2EA−

1
2

)
= 1− 1/K. Defining the `2-

orthogonal projection onto the range of A
1
2P as QA = A

1
2P (PTAP )

−1
PTA

1
2 , we write

A
1
2EA−

1
2 = (I −A 1

2MA
1
2 )(I −QA)(I −A 1

2MTA
1
2 ),

yielding A
1
2EA−

1
2 = Y Y T for Y = (I −A 1

2MA
1
2 )(I −QA). Thus,

1− 1

K
= λmax(Y TY ) = λmax

(
(I −QA)(I −A 1

2MTA
1
2 )(I −A 1

2MA
1
2 )(I −QA)

)
= sup

v 6=0

vT (I −QA)(I −A 1
2 (M +MT −MTAM)A

1
2 )(I −QA)v

vTv

= sup
v 6=0

vT (I −QA)(I − (I −QA)A
1
2 (M +MT −MTAM)A

1
2 (I −QA))(I −QA)v

vTv
.

Noting that the numerator is independent of QAv, we conclude that v ∈ Range(I −QA),
implying that

1− 1

K
= 1− inf

v:(I−QA)v 6=0

〈(M +MT −MTAM)A
1
2 (I −QA)v, A

1
2 (I −QA)v〉

〈(I −QA)v, (I −QA)v〉
.

Finally, taking e = A−
1
2v gives

1

K
= inf

e:Te6=0

〈X−1ATe, ATe〉
〈ATe, Te〉

= δ̂.
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4. THEORETICALLY MOTIVATED ALGORITHMS

Several algorithmic advances in algebraic multigrid methods that are independent of the
theoretical development have also been proposed recently. First discussed in [33], the method
of compatible relaxation (CR) attempts to measure the quality of a partition in (28) based on
the potential multigrid convergence. While the CR principle only gives a measure of quality, it
was quickly adapted to guide the coarse-grid selection process within AMG [34,35]. More direct
control of the CR principle was proposed in the reduction-based AMG (AMGr) framework [47],
with a corresponding coarse-grid selection algorithm that guarantees a two-level convergence
bound [36].

A similar framework for interpolation, adaptive (or bootstrap) multigrid, was developed
simultaneously [29–31, 37, 48]. In adaptive multigrid methods, the interpolation operator is
treated as a “work in progress”, and adapted to fit a collection of algebraically smooth errors.
While these approaches were developed largely independently of the theory discussed above,
we show that they can, in fact, be directly related to the bounds presented in the preceding
sections. A recently introduced third family of methods based on M-matrix properties includes
strong bounds on the multigrid approximation, but less certain bounds on the coarsening
rates [49,50].

4.1. Theoretically motivated partitioning approaches

In [33], CR is defined as “a modified relaxation scheme which keeps the coarse-level variables
invariant.” While there are several ways to enforce this (cf. [35]), the simplest form of
CR is through F -relaxation, where relaxation is applied only to the fine-grid subproblem,
Affvf = rf . CR was introduced with the motivation that “a general measure for the quality
of the set of coarse variables is the convergence rate of the compatible relaxation” and it is
claimed that the convergence factor of CR must be bounded away from 1 in order to yield
an efficient multigrid algorithm [33]. While this assertion was not substantiated in [33], later
analysis (as discussed below) shows that if CR is fast to converge, then there is an interpolation
operator that leads to fast convergence in the two-grid sense.

From the theoretical point of view, the question is whether a quickly converging CR method
is sufficient to guarantee a bound on M1(Q, e) or µ(Q, e) for some choice of P . The bound
in (32) indicates a connection in this respect, where we see that if λmin(D−1

ff Aff ) is small,

then the bound on τ̂w can be large and, conversely, that if λmin(D−1
ff Aff ) is large, then τ̂w

is bounded by a small factor times 1
1−γ2

Â

. Furthermore, the connection between the spectrum

of D−1
ff Aff and the rate of convergence of a compatible, weighted Jacobi relaxation scheme

is straightforward. If λmin(D−1
ff Aff ) is small, then the spectral radius of the weighted Jacobi

error-propagation matrix, Iff − ωD−1
ff Aff , must be close to one. If, on the other hand, a

weighted-Jacobi relaxation is quick to converge, then either λmin(D−1
ff Aff ) must be bounded

away from zero or the eigenvalues of D−1
ff Aff must be tightly clustered (even if they are all

small).
To formalize this, consider the minimization of µ(Q, e) over all possible choices of P for a

given coarse-grid, defining

µ? = inf
P

sup
e6=0

µ(PR, e),

for fixed R such that RP = I for all P admissible in the minimization. Then Theorem 5.1
of [11] establishes a bound on µ? only in terms of properties of compatible relaxation based
on a given relaxation error-propagation operator for the full-grid system, G = I −MA.

Theorem 9 (Theorem 5.1 of [11]). Under Assumption 1, let σ(M) = 1
2 (M−1 +M−T ) and take

ω = λmax(σ(M)
−1
A) and ∆ ≥ 1 to be such that 〈M−1v,w〉 ≤ ∆〈σ(M)v,v〉 12 〈σ(M)w,w〉 12 .
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Let Mff be the block of M associated with F , as in (28), and ρf = ‖I −MffAff‖Aff . Then

µ? ≤ ∆2

2− ω
· 1

1− ρf
. (43)

The bound on µ? in (43) depends on three parameters: ∆, ω, and ρf . Parameters ∆ and ω
depend only on the fine-grid relaxation process. In particular, bounding ω away from 2 to limit
the size of 1/(2−ω) is equivalent to assuming that the slow-to-converge modes of the symmetric

smoothing operator, I − σ(M)
−1
A, are those associated with small eigenvalues of σ(M)

−1
A,

noting that this is reliant on the approximation of σ(M) to A, rather than that of 1
2 (M +MT )

to A−1. In many ways, multigrid relies on this relationship for efficiency and, as a result, many
common relaxation schemes satisfy this property. Ensuring that ∆ is small is again a property
of M ; for example, if M is symmetric and positive-definite, then ∆ = 1. To ensure that the term
1/(1−ρf ) is not large requires that ρf be bounded away from 1, which implies quick convergence
of compatible relaxation method with operator I −MffAff , measured in the Aff -norm. Thus,
Theorem 9 establishes the existence of an interpolation operator that leads to fast multigrid
convergence if CR is quick to converge (and ∆ and ω are appropriately bounded).

In addition, a stronger result [47] gives the form for an interpolation operator that guarantees
good multigrid performance.

Theorem 10 (Theorem 1 of [47]). Under Assumption 1, let Mff be symmetric and positive
definite and satisfy vTfM

−1
ff vf ≤ vTf Affvf ≤ λmaxv

T
fM

−1
ff vf for all vf , and assume that[

M−1
ff −Afc

−ATfc Acc

]
is positive semidefinite. Partition A as in (28) and define relaxation by G =

I − 2
1+λmax

[
Mff 0

0 0

]
A and interpolation by P =

[
MffAfc

I

]
. Then,

‖GT‖2A ≤ 1− 4

(λmax + 1)
2 .

Here, the bound on the multigrid convergence factor depends only on the spectral-
equivalence bound between Aff and M−1

ff . This, in turn, determines the convergence
factor of the weighted compatible relaxation process, with error-propagation operator I −

2
λmax+1MffAff . As a result, if the weighted compatible-relaxation process converges quickly,
then the prescribed two-grid multigrid cycle also converges quickly.

Turning the principle of compatible relaxation into practical algorithms has, in many ways,
been less successful than the use of compatible relaxation as a theoretical tool. Two similar
approaches are proposed in [34, 35], where the fine-grid relaxation is defined as relaxation on
Affvf = rf with error-propagation operator Gff = I −MffAff . A coarse grid is selected by
first running relaxation on the homogeneous problem with a non-zero initial guess over the
entire grid, followed by marking points where relaxation made a small pointwise change to
the error as candidate points for the coarse-grid. A subset of these points, typically selected
as a maximal independent subset, is chosen as a candidate set of coarse-grid points, and the
relaxation and selection phase is repeated on the remaining points until relaxation quickly
converges.

A more direct approach for compatible weighted-Jacobi relaxation is proposed in [36], where
a diagonal-dominance criterion is proposed to select a set of fine-grid points where Aff is
guaranteed to be sufficiently diagonally dominant that weighted-Jacobi can be proven to be
quick to converge on the fine-grid subproblem. In combination with the AMGr algorithm
described in Theorem 10, this approach leads to efficient and scalable solvers for several PDE-
based problems.

4.2. Adaptive and bootstrap AMG

The principle of “self-correcting” (later called “bootstrap” or “adaptive”) multigrid methods
was first suggested in the original AMG papers [2, 3], where it was realized that while
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simple scalings of the matrix can lead to serious problems with AMG heuristics, acceptable
performance can be recovered by adjusting interpolation to account for the scaling. This idea
has been greatly expanded, with three independent implementations of this principle: adaptive
smoothed aggregation [30,31], adaptive AMG [29], and bootstrap AMG [37,51,52]. All of these
methods share a common goal of building a more general AMG setup stage, thereby allowing
treatment of more general problems within the AMG family of algorithms. The common
approach is to develop a single vector, or set of vectors, that represent “prototypical” errors
that are slow to be reduced by relaxation; these vectors are then used in the definition of the
AMG interpolation operators. The various methods differ in how they generate the vectors
(sequentially or concurrently) and how the vectors are used in the AMG interpolation process
(directly in [30,31], indirectly in [29], and in a least-squares process in [37,51,52]).

In [29], a connection between the adaptive/bootstrap methods and classical AMG theory is
studied, in terms of the use of a single vector to characterize the slow-to-converge modes of
relaxation. There, it is shown that the bound on the weak approximation property in (20) is
not made unduly small by the prototypical error vector used in determining interpolation. If
this vector is representative of the slow-to-converge modes, then this indicates, but does not
guarantee, good AMG convergence. In the bootstrap setting [37], in contrast, the use of a least-
squares minimization in the (row-wise) definition of interpolation again indirectly controls the
constant in (20), with optimal constants achieved over the set of prototype vectors indicating,
but not guaranteeing, a good overall approximation property.

4.3. Graph Laplacians and M-matrices

In the past few years, a new direction has been opened in AMG theory, based on (unsmoothed)
aggregation multigrid principles applied to graph Laplacians and other M-matrices [49,50,53].
These approaches build on two-level theory for unsmoothed aggregation, an approach that
does not normally extend to optimal V-cycle algorithms, in combination with AMLI/K-
cycle coarsening algorithms, where each coarse-grid equation is solved, in turn, using either
stationary iteration (based on Chebyshev polynomials) or Krylov acceleration [9].

In contrast to the theory presented in Sections 2 and 3, these approaches focus on restricted
classes of coarsening and interpolation operators, along with relaxation schemes that guarantee
fast convergence of the underlying two-level methods. In [53], general aggregation is considered,
with the focus on developing an a posteriori estimate of aggregate quality that can be
used in the two-level bound; for certain PDE-based problems, sharp bounds are observed.
In contrast, [50] fixes a two-level scheme based on pairwise aggregation that guarantees a
good two-level scheme when considering a graph Laplacian matrix. In [49,50], these two-level
schemes are extended to multilevel approaches through the AMLI (K-cycle) methodology,
employing an iterative solution scheme on each level of the multigrid hierarchy to ensure
sufficient error reduction for optimal performance from the cycle as a whole.

5. NUMERICAL EXAMPLES

5.1. An illustrative example

To summarize and give insight into the various bounds discussed above, we consider a model
problem, the graph Laplacian of a dense graph with n nodes, where the computations of these
bounds are made explicit. Let A = (n+ 1)I − 11T , where 1 is an n× 1 vector with all entries
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equal to unity, and I is the n× n identity matrix. That is,

A =


n −1 −1 · · · −1
−1 n −1 · · · −1

−1 −1 n
. . .

...
...

...
. . .

. . . −1
−1 −1 · · · −1 n

 .

By construction, A has eigenvector 1 with eigenvalue 1, and eigenspace {v ⊥ 1} of dimension
n− 1 with eigenvalue n+ 1. Moreover, A is an M-matrix, thus allowing application of the
classical AMG theory, although the classical AMG coarsening algorithms are challenged by
this problem since A is dense. Using the Sherman-Morrison formula, the inverse is readily
expressed as A−1 = 1

n+1 (I + 11T ).
A simple, yet effective multigrid algorithm for this matrix is defined using Richardson

relaxation and a standard variational coarse-grid correction aimed at the vector 1. Using
Gerschgorin Discs to bound the spectral radius, ρ(A), by 2n, the error-propagation operator
for the convergent Richardson relaxation is G = I − 1

2nA = n−1
2n I + 1

2n11
T ; in the context

of writing the error-propagation operator for A as I −MA, this corresponds to choosing
M = 1

2nI. Then, taking P = 1, we define the usual variational coarse-grid correction step

by its error-propagation operator, T = I − P (PTAP )
−1
PTA = I − 1

n11
T .

With this method, G has eigenvector 1 with eigenvalue 1− 1
2n and eigenspace {v ⊥ 1}

of dimension n− 1 with eigenvalue n−1
2n , while, by construction, T has eigenvector 1 with

eigenvalue 0, and eigenspace {v ⊥ 1} of dimension n− 1 with eigenvalue 1. So, GT has
eigenvector 1 with eigenvalue 0, and eigenspace {v ⊥ 1} with eigenvalue n−1

2n ; since A and
GT are both symmetric and are diagonalized by the same eigenspaces,

‖GT‖A =
n− 1

2n
<

1

2
.

The sharp bound of (3), ‖GT‖2A = 1− δ∗, gives δ∗ = 1−
(
n−1
2n

)2
. Then, as stated in

Theorem 3, an equivalent formulation of an exact bound is ‖GT‖2A = 1− δ̂ as given in (7).
Writing e = α1 + βv for v ⊥ 1 with ‖v‖ = 1 results in Te = βv. Thus, the constraint Te 6= 0
implies that β 6= 0. Computing the terms in (7) yields

δ̂ = inf
α,β:β 6=0

α2n+ β2(n+ 1)− (1− 1
2n )

2
α2n− (n−1)2(n+1)

(2n)2
β2

(n+ 1)β2

= inf
α,β:β 6=0


(

1− (1− 1
2n )

2
)
α2n

(n+ 1)β2
+ 1−

(
n− 1

2n

)2
 .

Since (1− 1
2n )

2
< 1, the minimum is clearly attained with α = 0, giving δ̂ = 1−

(
n−1
2n

)2
, as

expected.
A multitude of bounds are possible within the framework of split bounds, starting with the

splitting in (10) and optimal constants (11) and (12). Two particularly interesting bounds

occur with the optimal strong, β̂s, and weak, β̂w, approximation properties, analogous to
the bounds in (18) and (20), taking g(e) = ‖e‖2AD−1A for the strong bound (cf. (16)) and
g(Te) = ‖Te‖2AD−1A for the weak bound (cf. (17)). For this matrix, the weak bound is
immediately a sharp bound, namely,

β̂w = sup
e:Te6=0

‖Te‖2A
‖Te‖2

AD−1A

=
n

n+ 1
,
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and, more generally,
‖Te‖2A

‖Te‖2
AD−1A

= n
n+1 for all e such that Te 6= 0. Thus, α̂w = n

n+1 δ̂, and the

weak bound is sharp. For the strong bound, bounding β̂s is again straightforward:

β̂s = sup
e6=0

‖Te‖2A
‖e‖2

AD−1A

= sup
α,β:α2+β2 6=0

(
(n+ 1)β2

α2 + (n+1)2

n β2

)
=

n

n+ 1
,

since the supremum is clearly achieved when α = 0, β 6= 0. Bounding α̂s is slightly more
complex, due only to the need for more algebraic manipulation, with

α̂s = inf
e6=0

‖e‖2A − ‖Ge‖2A
‖e‖2

AD−1A

= inf
α,β:α2+β2 6=0

α2n
(

1− (1− 2
n )

2
)

+ β2(n+ 1)
(

1− (n−1)2

(2n)2

)
α2 + (n+1)2

n β2


= min

(
n

(
1−

(
1− 2

n

)2
)
,

n

n+ 1

(
1− (n− 1)

2

(2n)
2

))

=
n

n+ 1

(
1− (n− 1)

2

(2n)
2

)
.

Thus, α̂s/β̂s = δ̂, and the strong bound is also sharp; as noted above, this occurs because the

two constants, α̂s and β̂s, are extremized by the same vector. Direct calculation shows that
the above values for β̂w and β̂s match those given by the more intuitive calculations in (24)
and (25).

Moving from these bounds, which are based on explicitly accounting for the variational
coarse-grid correction process, to one for which the coarse-grid correction is fixed a priori has
a serious loss-of-sharpness as a consequence. The optimal weak approximation constant, β̂w, is
bounded by τ̂w, given in (29). In this setting, ec is a single variable; without loss of generality,
we take it to be the last entry in e, en. With e = α1 + βv for unit vector v such that v ⊥ 1,
this gives en = α+ βvn, with v2

n ≤ (n−1)/n. Thus,

τ̂w = sup
e6=0

‖e− Pec‖2D
‖e‖2A

= sup
α,β:α2+β2 6=0

n
(

(α− en)
2
n+ β2

)
α2n+ β2(n+ 1)

= sup
β 6=0

n
(

(βvn)
2
n+ β2

)
β2(n+ 1)

= sup
vn

n(v2
nn+ 1)

n+ 1
=

n2

n+ 1
.

We note that the value of τ̂w is larger than that of β̂w by a factor of n, yielding a significant
loss of sharpness.

The final bound of τ̂w (and, consequently, of β̂w) is given in Theorem 5. In the current setting,
the matrix A partitions easily with Aff = (n+ 1)I − 1n−11

T
n−1, where 1n−1 is the vector of all

ones of length n− 1, Afc = 1n−1, and Acc = n, a scalar value. Using P = 1 gives Wfc = 1n−1,
while Dff = nI. Thus, λmin(D−1

ff Aff ) = 2/n (the eigenvalue associated with eigenvector 1n−1).

To compute γÂ, we use the definition of the CBS constant in (30) and that of Â in (33); writing
vf = α1n−1 + βvn−1 for vn−1 ⊥ 1n−1, ‖vn−1‖ = 1, and vc = ω (a scalar), this gives

γÂ = sup
vf 6=0,vc 6=0

vTf Âfcvc(
vf Âffvf

) 1
2
(
vcÂccvc

) 1
2

= sup
α,β:α2+β2 6=0

(n− 1)α
√
n(2α2(n− 1) + β2(n+ 1))

1/2
=

√
n− 1

2n
.

Thus, we arrive at the bound

τ̂w ≤
n

2

1

1− n−1
2n

=
n2

n+ 1
.
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We note that this is, in fact, a sharp bound for the true value of τ̂w found above. In this
example, the loss-of-sharpness in the weak bound occurs from the transition from β̂w to τ̂w;
further approximation of the bound using the CBS constant does not make the value worse.

Similar calculations can be done for the bounds of the strong approximation constant, β̂s.
Thus, we first find the non-variational bound, τ̂s, as

τ̂s = sup
e6=0

‖e− Pec‖2A
‖e‖2

AD−1A

= sup
α,β:α2+β2 6=0

(α− en)
2
n+ β2(n+ 1)

α2 + β2 (n+1)2

n

= sup
vn

v2
nn+ (n+ 1)

(n+1)2

n

=
2n2

(n+ 1)
2

Thus, we see that τ̂s is a relatively sharp bound for β̂s, even though τ̂w is a poor bound for
β̂w. Extending this to the CBS-based bound in (34), we find that

λmin(D−1
ff Aff +A−1

ffAfcD
−1
cc A

T
fc) =

n+ 3

2n
,

so that this term is bounded independently of n, in contrast to the weak case above, and that

γ
ÂD−1A

=

√
n− 1

n(n+ 3)
.

These give the bound

τ̂s ≤
2n

n+ 3

n(n+ 3)

(n+ 1)
2 =

2n2

(n+ 1)
2 .

We note that this gives a sharp bound for the true value of τ̂s, just as was the case with the
weak bounds. Again, the only loss of sharpness in this bound is that between τ̂s and β̂s.

5.2. Anisotropy and high-order approximations

Two well-known challenges to basic algebraic multigrid methods and, consequently, interesting
test cases for the bounds discussed above, are anisotropic diffusion problems and the use of
high-order finite-element methods [54]. Therefore, we investigate the theoretical convergence
bounds in these settings in order to further highlight the differences in sharpness in the bounds.

Consider the model diffusion problem

−∇ · κ∇u = f in Ω = [0, 1]2,

with homogeneous Dirichlet boundary conditions. Here, we take κ = ΘKΘT , where K =[
1 0
0 ε

]
and Θ =

[
cos θ − sin θ
sin θ cos θ

]
, thus describing rotated, anisotropic diffusion.

We consider a finite-element discretization of the problem using triangular, p-order Lagrange
elements, and we focus on two numerical experiments:

varying p: An unstructured triangulation with ε = 1 (isotropic) is constructed. The finite
element order is varied from p = 1, . . . , 4.

varying ε: A structured triangulation with p = 1 (linear elements) is constructed. The
anisotropy is rotated by θ = π/4 and the strength is varied from ε = 1.0, . . . , 0.01.

We study the weak convergence bounds in the previous sections (and, so, omit the
subscripted w in the constants that follow). In particular, we consider the sharp estimate
on convergence, 1− δ∗, from (3), the estimate 1− α̂

β̂
based on the separated assumptions from

(10), the AMGe-based bound, 1− α̂/τ̂ , from (29), and the CBS bound, 1− α̂/τ̄ , where τ̄ is
the bound on τ̂w in (32). We compare these theoretical convergence bounds on ‖GT‖2A with
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the observed convergence of

ρ2 = lim
k→∞

‖ek+1‖2A
‖ek‖2A

.

In practice, we measure ‖ek+1‖2A/‖ek‖2A for some finite k at which asymptotic convergence is
observed. In the tests below, k = 100 is used, although asymptotic behavior is observed much
earlier. Moreover, since convergence bounds are often deceiving as the bound approaches 1.0,
we also report the expected number of iterations to reduce the initial error by ten orders of
magnitude, namely,

iterations ≈ 10

log10 ρbound
,

where ρbound represents the convergence bound on ‖GT‖A. In addition, we use the classical
strength measure with a threshold of 0.0, along with the standard splitting and interpolation
defined in [4].

From Figures 1 and 2, the sharpness of the convergence bounds is exposed. The sharp
bound, 1− δ∗, matches the observed convergence closely (the separation is only due to the non-
symmetry of GT and, hence, the difference between the operator norm and spectral radius).
Likewise, by separating the convergence assumptions into the weak approximation assumption
and the weak smoothing assumption, the resulting bound, 1− α̂/β̂, is less accurate. This is
expected, since both the approximation assumption and the smoothing assumption in the case
of high-order elements and for anisotropy are weak using the standard smoother (weighted
Jacobi) and interpolation (Ruge-Stüben). Moreover, as ε→ 0 and p increases, thus losing
the natural elliptic character on which the basic interpolation and coarsening decisions are
based, the gap between these bounds increases. That is, the sharpness of the separated bounds
deteriorates as the problem becomes less elliptic, or as A becomes less like an M-matrix. Finally,
we see that the bounds based on τ̂ are highly inaccurate in each case and, again, as the problem
increases in complexity, the sharpness also diminishes. Likewise, in the bounds based on τ̄ in
(32), the λmin(D−1

ff Aff ) term is bounded far away from 0, while the CBS constant plays a
more dominant role in the bound, which is magnified as the problem increases in complexity.
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Figure 1. Convergence and effective iterations for various convergence bounds.

6. CONCLUSIONS

Convergence bounds play an important role in algebraic multigrid methods. Bounds are not
only useful in practice as a diagnostic tool, but they also serve as a critical element in the
design of new methods. This paper presented a unified approach to understanding theoretical
convergence bounds, from the early theory as geometric methods transformed toward algebraic,
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Figure 2. Convergence and effective iterations for various convergence bounds.

to more recent developments in areas such as element-based AMG (AMGe) and compatible
relaxation (CR). Central to the theoretical analysis and methods development over the years,
and as a consequence to our discussion in this paper, is the dichotomy between sharpness of the
bound and computability. That is, we observed the transition of sharp convergence estimates
that yield very little practical value in the design of new methods to bounds that play a key
role in defining a multigrid hierarchy, yet result in poor predictors of actual performance.

Consequently, through our theoretical presentation, a larger issue emerges: soft upper bounds
on convergence do not always adequately guide the design of new methods. Indeed, many AMG
variants and many approaches to convergence theory exists. However, most theoretical analyses
take the form of upper bounds on convergence, which, as we have observed, may not adequately
predict performance.
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