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ROBUST SOLUTION OF SINGULARLY PERTURBED PROBLEMS
USING MULTIGRID METHODS*

SCOTT MACLACHLANT AND NIALL MADDEN#

Abstract. We consider the problem of solving linear systems of equations that arise in the
numerical solution of singularly perturbed ordinary and partial differential equations of reaction-
diffusion type. Standard discretization techniques are not suitable for such problems and, so, specially
tailored methods are required, usually involving adapted or fitted meshes that resolve important
features such as boundary and/or interior layers. In this study, we consider classical finite difference
schemes on the layer adapted meshes of Shishkin and Bakhvalov. We show that standard direct
solvers exhibit poor scaling behavior, with respect to the perturbation parameter, when solving the
resulting linear systems. We propose and prove optimality of a new block-structured preconditioning
approach that is robust for small values of the perturbation parameter, and compares favorably with
standard robust multigrid preconditioners for these linear systems. We also derive stopping criteria
which ensure that the potential accuracy of the layer-resolving meshes is achieved.
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1. Introduction. This study addresses the problem of solving linear systems
that arise when computing numerical solutions to certain linear singularly perturbed
boundary value problems in one and two dimensions. These differential equations are
characterized by a small positive parameter, usually denoted as e, multiplying the
highest derivative. The perturbation is “singular” in the sense that, as ¢ — 0, the
problem becomes ill-posed since the order of the differential equation is reduced, but
the number of boundary conditions remains the same. (For a more formal definition,
see [28, Chap. 1].)

The simplest example of a singularly perturbed problem is

(1.1) — &% + a(x)u' () + b(x)u = f(x) on (0,1), u(0)=0,u(l)=0.

When b = 0 this is known as a convection-diffusion problem, whereas if a = 0 and
b # 0, it is of reaction-diffusion type. Such problems, and their higher-dimensional
analogues, are common in mathematical models. Convection-diffusion problems are
widespread in many formulations of fluid-flow problems (e.g., in linearized Navier—
Stokes equations, and transport problems), and simulation of semiconductor devices;
see [40] and [34] for a more exhaustive list. Coupled systems of reaction-diffusion
equations are standard in many biological applications, simulation of chemical re-

*Submitted to the journal’s Methods and Algorithms for Scientific Computing section August 31,
2012; accepted for publication (in revised form) July 30, 2013; published electronically September 26,
2013. This research was supported in part by the Institute for Mathematics and its Applications
with funds provided by the National Science Foundation.

http://www.siam.org/journals/sisc/35-5/88977.html

fDepartment of Mathematics, Tufts University, 503 Boston Avenue, Medford, MA 02155
(scott.maclachlan@tufts.edu). This author’s work was partially supported by the National Science
Foundation under grant DMS-0811022.

¥School of Mathematics, Statistics and Applied Mathematics, National University of Ireland,
Galway, Ireland (Niall. Madden@NUIGalway.ie). This author’s work was supported by the Science
Foundation of Ireland under Grants 08/RFP/CMS1205 and Mathematics Initiative 07/MI/007.

A2225



A2226 SCOTT MACLACHLAN AND NIALL MADDEN

actions, and in hydrodynamic stability. In each case, the solution to the singularly
perturbed problem is characterized by the presence of boundary or interior layers:
narrow regions of the domain where the solution changes rapidly.

The numerical solution of these problems is of significant mathematical interest.
Classical numerical schemes that are suitable when € is O(1) are often inappropriate
as € — 0, unless the number of degrees of freedom in one dimension, N, satisfies a
relation such as N = O(e~!): without this, they may fail to resolve layers—usually
the region of most interest; the order of convergence may be diminished for small €, a
phenomenon sometimes referred to as locking [3]; in the case of convection-diffusion
problems, the method may become unstable and fail to yield any useful information.

Much of the difficulty in applying numerical methods to problems such as (1.1)
stems from the fact that the derivatives of these solutions depend on negative powers
of the perturbation parameter. Since estimates for the errors in numerical solution
generated by classical schemes depend on bounds for these derivatives, they are not
parameter robust meaning that they do not hold for arbitrarily small values of the
perturbation parameter.

The development of algorithms that are robust with respect to the perturbation
parameter, and resolve any layers present, is a very active field of endeavor. See, for
example, [18,28,33,40,44], and the many references therein. Such so-called param-
eter robust (also known as uniformly convergent or “c-uniform”) methods guarantee
that the computational effort required to obtain a certain accuracy is the same, for
example, when ¢ = 1076 as when ¢ = 1072, The majority of these papers consider
the application of standard schemes, such as finite difference and finite element meth-
ods, on specially constructed (a priori or a posteriori) fitted meshes, most often the
piecewise uniform meshes introduced by Miller, O’Riordan, and Shishkin [33] or the
graded meshes devised by Bakhvalov [4], described below in section 2.1.1.

These algorithms produce linear systems that must be solved, but it is notable
that there are relatively few studies concerning their numerical solution. This is
significant because, particularly for problems in more than one dimension, standard
solvers are unlikely to be useful; the development of fast robust solvers is important
and challenging. Moreover, most studies usually assume that the computational effort
for solving the linear systems is independent of e; few have considered the issue of
solving the linear systems with efficiency that is robust with respect to €. We argue
that this should not be taken for granted. First, the performance of direct solvers
degrades badly with dimension, requiring O(N?3) memory and operations for two-
dimensional problems on N x N meshes, with a higher penalty for problems in three
(or more) dimensions. Moreover, it is usually assumed that the performance of direct
solvers depend only on the matrix structure, and not its entries. We show in section 4.1
that this assumption does not hold for singularly perturbed PDEs and, for small ¢,
the performance degrades due to the presence of subnormal numbers. Therefore,
direct methods are not parameter robust. Finally, the performance and analysis of
most iterative schemes, particularly those involving robust preconditioners, is highly
dependent on both the scheme and the underlying differential equation.

Therefore, it is surprising that there is so little in the literature on development
of solvers for discretization schemes designed for singularly perturbed problems. For
convection-diffusion problems, several studies exist, including [42], which considers
the conditioning of the resulting discretizations on certain meshes and the effects of
diagonal scaling; Farrell and Shishkin give a short analysis of a Gauss—Seidel method
for a convection-diffusion problem in [19]; while, in [2], results of experiments with
ILU-based preconditioners are reported. Multigrid methods for convection-diffusion



ROBUST SOLUTION OF SPPS USING MULTIGRID METHODS A2227

problems on Shishkin meshes are discussed in [20, 21], where a scalable multigrid
scheme is introduced.

For reaction-diffusion problems, most of the multigrid literature focuses on the
case of a singularly perturbed problem discretized on a uniform or quasi-uniform
mesh. For example, in [36], it is shown that a standard multigrid method applied to
the two- and three-dimensional analogues of (1.1) on a quasi-uniform mesh converges
with bound independent of mesh size or ¢; only a small remark is made about lack
of accuracy within the boundary layers. A hierarchical basis approach is discussed
in [47]; however, the restriction in this work that the mesh aspect ratios be uniformly
bounded is not satisfied by the tensor products of fitted meshes considered here. In
contrast, there is extensive literature on the combination of multigrid methods with
adaptive refinement algorithms, ranging from fundamental principles discussed in [7]
to recent work on achieving efficiency in massively parallel environments [5]; clearly
such approaches yield efficient solution algorithms for the problems considered here.
Our interests, however, are in the cases where we have enough a priori knowledge to
avoid the costs of grid adaptation, but still require efficient solvers on highly nonuni-
form fitted meshes. Overall, direct methods remain the methods of choice for singu-
larly perturbed reaction-diffusion problems even though, as we show in section 4.1,
they cannot be considered parameter robust. Instead, in order to achieve both scal-
ability and robustness, we apply both existing and novel iterative approaches, based
on multigrid principles, to these problems.

While we focus here on the case of singularly perturbed problems, we note that
our approaches could also be applied to other problems where there is a substan-
tial mismatch between the scaling of terms in the discrete equations over different
parts of the domain. One such case, of key current interest, arises in the simulation
of time-harmonic wave propagation. In the development of discretizations for either
the Helmholtz equation or Maxwell’s equations, special attention is always paid to
the treatment of discrete approximations of the Sommerfeld radiation condition for
outgoing waves. In many cases, in order to attain meaningful solutions over a phys-
ical domain of interest, a much larger volume needs to be modeled, implementing
some form of absorbing boundary layer to prevent unphysical reflections of outgoing
waves at the edges of the discretized domain. While this may be achieved simply
by introducing attenuative terms within the layer [46,50], a more common approach
is to couple discretized attenuative terms with a significant increase in grid spac-
ing [14,16,35,54]. While some work has been done on the development of efficient
multigrid approaches for these grid structures [39,54], the methods proposed here may
lead to simpler algorithms with improved efficiency for these grids.

1.1. Outline. The paper is organized as follows. Following a short description
of notation in section 1.2, in section 1.3 we describe the hardware and libraries used to
generate the numerous tables we provide. We introduce our model problems and ex-
amples in section 1.4. In section 2, we introduce the standard finite difference schemes
for one- and two-dimensional problems, and introduce two standard parameter robust
finite difference methods: one based on the piecewise uniform meshes of Shishkin, and
the other on the graded meshes of Bakhvalov. In section 3, we review a geometric
multigrid method for solving the one-dimensional problem, and propose a new pre-
conditioner for this problem motivated by the graded meshes. Section 4 focuses on
linear solvers for the two-dimensional problem, outlining the poor scaling seen in di-
rect solvers and geometric multigrid, as well as optimal general-purpose solvers based
on the algebraic and black-box multigrid methodologies. A new boundary-layer pre-
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conditioning approach is proposed and analyzed in section 4.5, while stopping criteria
are discussed in section 4.6, followed by the results of numerical experiments in sec-
tion 4.7. A brief discussion of generalizations to higher-dimensional problems appears
in section 5, with conclusions and some comments on other extensions of this work in
section 6.

1.2. Notation. We denote by N the number of intervals in one dimension of a
mesh, and by ¢ and C generic positive constants that are independent of € and N.
Since we are mainly concerned with discretization by finite difference methods, we

use || - ||so to denote the discrete maximum norm on a given mesh:
max_|u(z;)l on the one-dimensional mesh w?,
TiCw
u = . .
lulloo max |u(zi,y;)| on the two-dimensional mesh w™*V.
(I1,y])€WNXN
The continuous analogue on the domain 2 is denoted || - ||,00. Other norms used
are the discrete ¢5 norm, || - |2, and the A-norm for symmetric and positive-definite
. 1/2
matrices, 4, ||V|[a = (VTAV) ’? for any vector, V. We reserve the use of || - || for

denoting a generic norm, which may be any of the above.

We will use two parameters to measure the singularly perturbed nature of a
discrete problem. Define 6 = (¢N/[3)? to indicate if a problem is singularly perturbed
relative to a mesh with N points, when 6y < 1. For the purposes of the theory
developed in section 4.5, we use the term boundary-fitted mesh to mean a mesh that is
uniform in the interior of the domain, but condenses near the boundary. This uniform
mesh width away from boundaries is denoted hj, and we define 6, = (¢/(h1f3))? to
indicate the diagonal dominance of the matrix over the interior degrees of freedom.
We note that, just as for dy, 05, < 1 when a problem is singularly perturbed relative
to the mesh.

1.3. Computer implementation and timings. All numerical results in this
paper are computed using code (both C and Fortran) compiled with full optimization,
executed on a Beowulf cluster using a single core of a node with an AMD Opteron
2427, 2200 MHz processor with 32Gb of RAM. The main driver routines are written in
C to compute the fitted meshes and assemble the matrices, while the CHOLMOD [11],
BoxMG [15], and our own AMG libraries are linked to provide linear solvers. Both
BoxMG and AMG provide their own PCG wrappers. The boundary-layer precondi-
tioners in one and two dimensions are implemented (separately) in C within their own
PCG wrappers.

1.4. Model problems and examples. In this paper, we consider reaction-
diffusion problems in one and two dimensions. The general form of the one-dimensional
problem is

(1.2a) Lou = —e*u” + b(z)u = f(x) on Q=(0,1),
subject to the boundary conditions
(1.2b) u(0) = 0,u(1) = 0.

We shall assume that ¢ € (0,1] and that there exists 8 such that 0 < 3?2 < b(x)
for all z € Q. It is easy to show that the operator L. satisfies a maximum principle
(see, e.g., [38]), and that the problem possesses a unique solution. If ¢ < 1/8, then
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(a) Solution to (1.3) with ¢ = 102 (b) Solution to (1.5), as given in (1.5), with
e=10"72

Fic. 1.1. Ezamples of solutions to one- and two-dimensional singularly perturbed reaction-

diffusion problems.

the problem is singularly perturbed, and we expect its solution to exhibit boundary
layers, with rapid changes in u(z), near x = 0 and = = 1.
As an example, consider the problem

(1.3) — &% +u=e"on (0,1), u(0)=u(l)=0.
When e < 1, the solution can be expressed as

671/5(6171/5 _ 1) 4 67(171)/5(61/5 _ e) N e”
(1 —e2)(1 — e-2/5) e

u(x) =

One can consider the expressions exp(—x/¢e) and exp(—(1 — x)/e) as representing the
layer components. A typical solution exhibiting these layers is shown in Figure 1.1(a).
Our model two-dimensional problem is

(1.4) —e*Au+b(x,y)u= f(xr,y) onQ:=(0,1)2 u(z,y) = g(x,y) on 0L,

where, again, we assume that there is a positive 3 such that 0 < 2 < b(w,y) for
all (x,y) € Q. Subject to sufficient regularity and compatibility of b, f, and g, this
problem has a unique solution; we refer readers to, e.g., [25] for technical details.
When ¢ is small, the solution may have boundary and corner layers.

As an example of a two-dimensional problem, we consider a variant on a standard
test problem (see, e.g., [12]). Although, in general, one would expect solutions to (1.4)
to have four boundary and four corner layers, for simplicity of exposition, we have
constructed one that has only two boundary layers, near the edges x = 0 and y = 0,
and a corner layer near (0,0). We take b(x,y) = 1 and choose f and ¢ so that

(1.5) u = 23(1 +y?) + sin(n2?) + cos(my/2) + (1 + 2 + y) (6721/6 + e~ W/e),

This solution, in the case e = 1072, is shown in Figure 1.1(b).

2. Parameter robust methods. The robust solution of singularly perturbed
problems can be achieved using fitted operator schemes (i.e., specially designed meth-
ods, but used, say, on a uniform mesh) or fitted mesh methods—standard schemes
employed on specially designed meshes. The latter approach has received the most
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attention of late, not least because fitted meshes are easier to generalize to high-
dimensional problems. These fitted mesh methods are categorized as either a priori
or a posteriori (equivalently, “fitted” or “adaptive”). An a priori method is con-
structed based on a careful analysis of the asymptotic properties of the solution and
its derivative; most published work considers such schemes. Alternatively, adaptive
schemes may be generated based on a posteriori analysis; see, for example, [9, 26].
In this paper, we consider only fitted mesh methods. However, those meshes gener-
ated by adaptive schemes tend to be very similar to the Bakhvalov meshes we discuss
below and, as such, we expect that similar techniques could be used for the meshes
generated by adaptive schemes.

2.1. Finite difference scheme for one-dimensional problems. Given an ar-
bitrary one-dimensional grid w® = {0 =25 < z; < --- < xy =1}, withh, = x;—x;1
for « = 1,... N, the natural second-order finite difference discretization of problem
(1.2) provides a potentially unsymmetric discretization of a Hermitian operator. Here,
we consider the symmetrized finite difference method for the problem (1.2),

2 (Ui+1 —U Ui—-Ui
(2.1) hit1 hi

) + sz(ﬂfl)Uz = illf(ﬂil) for i = 1,.. .N — 1,
U;=0 forie{0,N},

where h; = (hit1+hi)/2. In matrix form, we write the symmetrically scaled equations,
with boundaries eliminated, as AU = F.

If the mesh w” is uniform then, in both theory and practice, one must make the
unreasonable assumption that N is O(¢~!) in order to obtain a convergent, layer-
resolving method. Intuitively, it seems likely that a robust scheme could be generated
if h; is O(e), but only in the region of the layers. This is indeed the case, but
the construction of such meshes must be very careful if one is to rigorously prove
robustness. We consider two examples of such meshes below: a simple piecewise
uniform mesh, and a more accurate graded mesh.

2.1.1. Fitted meshes for one-dimensional problems. The most popular
boundary-fitted mesh for singularly perturbed problems to be found in the mathe-
matical literature is certainly the piecewise uniform mesh of Miller, O’Riordan, and
Shishkin [33]. For a problem such as (1.2), it may be formed as follows: assuming the
number of mesh intervals N is divisible by 4, define the mesh transition point to be

.1 _e
(2.2) TS:HHD{Z,QBIHN},

and divide [0,1] into subintervals [0,7¢], [rg,1 — 7¢] and [1 — 7¢,1]. A piecewise
uniform mesh is constructed by subdividing [r¢,1 — 7¢] into N/2 equidistant mesh
intervals, and subdividing each of [0,7¢] and [1 — 7¢, 1] into N/4 equidistant mesh
intervals. See Figure 2.1(a) for the two-dimensional analogue of this mesh.

This mesh was first proposed in [45], and an accessible analysis of the uniform con-
vergence of the finite difference method (2.1) applied to the linear reaction-diffusion
problem (1.2) is given in [33, Chap. 6]. That analysis uses ideas involving decom-
position of the solution into regular and layer parts and exploits the fact that the
continuous and discrete operators satisfy maximum principles. A unified treatment
based on discrete Green’s functions is given in [28], from which it quickly follows that
there is a constant C' which is independent of both N and e such that that the solution
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(a) Shishkin mesh (b) Bakhvalov mesh

FIG. 2.1. Fitted meshes for problem (1.5) when N =16, ¢ = 2 x 1072.

to the finite difference scheme (2.1) satisfies

(2.3) |lu—Ulloo = max |u(z;)—U;] <CN~21In® N.

i=0,1,...,.N
Since C does not depend on ¢, this qualifies as a parameter robust estimate. It is not
immediately obvious from (2.3) that the numerical solution also resolves the boundary
layers. However, one can also show (see, e.g., 28, Thm. 6.12]) that

s _ 7 < —27.2
le = Ulle,oo = max fu(z) —U(z)] < CN""In" N,

where U is the piecewise linear interpolant to U.

In the case where £ is O(1), the scheme (2.1) applied on a uniform mesh should
yield a numerical solution with error that is bounded by terms of O(N~2). The
logarithmic factor that spoils (2.3) slightly is the price one pays for the simplicity of
employing a piecewise uniform mesh. To regain full second-order convergence, one
could use the more sophisticated nonuniform boundary-fitted mesh of Bakhvalov [4].
Like the Shishkin mesh, it is uniform over the interior of the domain (a fact which
simplifies our analysis later in section 4.5), but is graded within the boundary layer;
a sketch of such a mesh in two dimensions is shown in Figure 2.1(b). For full details
on the generation of the mesh, see [28].

For the Bakhvalov mesh, it can be proved [28] that there is a constant C' inde-
pendent of ¢ and N such that

|u—Ulloo < ON™2,

and, furthermore, as with the Shishkin mesh, the piecewise linear interpolant to the
Bakhvalov solution is second-order convergent. While there is a substantial literature
devoted to Shishkin meshes, we present numerical results here for Bakhvalov meshes,
due to their improved accuracy.

2.2. Fitted methods for two-dimensional problems. For the two-dimensional
problem (1.4), we employ the natural extension of the method (2.1): a standard finite
difference scheme on a tensor-product grid. Let w) and w)’ be arbitrary meshes,
each with N intervals on [0,1]. Set w™*N = {(x;,y;)}};—, to be the Cartesian prod-

uct of w¥ and wév. Taking h; = x; — xi—1, kj = yj — yj—1, hi = (Tig1 — xi—1)/2,
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TABLE 2.1
Mazimum pointwise errors for problem (1.5) solved by a finite difference method on a Bakhvalov
mesh.

e? N =27 N =28 N =29 N =210 N =211 N =212
1 9.762 x 1075 | 2.441 x 1072 | 6.103 x 106 | 1.526 x 1076 | 3.814 x 107 | 9.447 x 10~8
102 || 9.907 x 1075 | 2.479 x 1075 | 6.196 x 1076 | 1.549 x 1076 | 3.873 x 107 | 9.685 x 10~8
104 || 2.858 x 1075 | 7.170 x 1076 | 1.794 x 1076 | 4.486 x 10~7 | 1.122 x 10~ 7 | 2.802 x 10~8
1076 || 2.864 x 1075 | 7.188 x 1076 | 1.803 x 1076 | 4.511 x 107 | 1.128 x 10~ 7 | 2.818 x 10~8
10~8 || 2.880 x 1075 | 7.241 x 10-? 1.814 x 10-? 4.537 x 1077 [ 1.135 x 1077 | 2.840 x 10~8
10710 || 2.881 x 1075 | 7.245 x 1076 | 1.815 x 1076 | 4.543 x 107 | 1.136 x 10~ 7 | 2.841 x 10~8
10712 || 2.881 x 1075 | 7.245 x 1076 | 1.815 x 1076 | 4.543 x 107 | 1.137 x 10~ 7 | 2.850 x 10~8

and k; = (yj4+1 — yj—1)/2, we define the symmetrized 5-point second-order central
difference operator:

hi
kjt1
k /1 1 - (1 1 k
AN =2 —<k4<—+ )+hl<—+ )) :
hi "\hi  hina ki ki hit1
hi
kj
The resulting numerical scheme is
(2.4) o -
( —2AN 4 hikjb(xi, yj))Ui)j = hikjf(ii,yj), i=1,....N—1,5=1,...N — 1,
Ui,j:g(xiayj)a iE{O,N}, ]E{OaN}

Again, we write the linear system as AU = F.

As in one dimension, this scheme will not generate satisfactory numerical solutions
if employed on a uniform mesh; cf. [18, Chap. 10]. Using a tensor-product Shishkin
mesh, such as that shown in Figure 2.1(a), the error is bounded by O(N~21n? N) [12].
This bound is sharp, and the logarithmic factor is obvious in numerical results [12,
Table 1].

2.2.1. A Bakhvalov mesh for a two-dimensional problem. Take w = w?

to be the one-dimensional graded Bakhvalov mesh described in section 2.1.1, adjusted
to account for the fact that there is only one layer in each coordinate direction. Then,
taking the Cartesian product mesh, w™ >V, generates the two-dimensional Bakhvalov
mesh, shown in Figure 2.1(b) (contrasted with the two-dimensional Shishkin mesh in
Figure 2.1(a)).

Kellogg, Linss, and Stynes [24] prove the e-uniform error estimate: there is a
constant C' independent of € and N such that

(2.5) |u—Ulloo <CN™2

Table 2.1 shows the errors obtained when this method is applied to problem (1.5).
Observe that, for fixed IV, the error is uniformly bounded as ¢ — 0. This demonstrates
that (2.5) is indeed sharp. It also highlights the need to construct solvers that can
match the optimal accuracy provided by Bakhvalov meshes.

3. Solving the one-dimensional system. From a practical viewpoint, there is
no benefit to be gained in terms of computational time or memory requirements from
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considering iterative approaches to solving discretizations of one-dimensional prob-
lems such as (1.1) by a standard 3-point scheme. The tridiagonal structure of the
discretization matrices ensures that sparse direct solvers are optimal, and specialized
approaches, such as cyclic reduction or the Thomas algorithm, are well known in the
literature. It is, nonetheless, worth considering iterative approaches for these matrices
to motivate the development of iterative approaches for two- (or multi-) dimensional
problems. In particular, the one-dimensional boundary-layer preconditioner devel-
oped in section 3.2 develops the key ideas needed for its two-dimensional analogue in
section 4.5.

3.1. Geometric multigrid. Multigrid methods are widely regarded as being
among the most efficient iterative approaches for solving discretizations of elliptic
PDEs, such as those considered here. In many cases, they are optimally efficient in
the sense that the cost grows linearly with the number of degrees of freedom, and
they are known to be highly parallelizable. The key to their efficiency lies in the
combination of two processes, relaxation and coarse-grid correction, that effectively
damp complementary components of the error in any approximation to the solution of
the discrete system. For uniformly elliptic operators discretized on uniform meshes,
simple analysis shows that standard relaxation approaches effectively damp errors
that are oscillatory on the scale of the grid, while smooth error components can be
resolved through relaxation on a hierarchy of coarser meshes. See [8,49] for full
details. In the context of singularly perturbed problems and nonuniform grids, more
careful treatment must be given to the coarse-grid correction process to prove optimal
efficiency, even for one-dimensional problems [6,53]. In practice, however, only small
changes are needed in the multigrid algorithm. In this paper, we consider iterations
and preconditioners based on the multigrid V-cycle; thus, a single iteration of the
multigrid cycle can be written in recursive form as follows.

Arcoritim 1. UM = MGU©) | F, N).

Apply relaxation to AU = F with initial guess U, producing U".
Compute F. = R(F — AU(T)), for restriction matrix R.

Compute U, = MG(0, F., N/2).

Compute U©) = U(") + PU,, for interpolation matrix P.

Apply relaxation to AU = F with initial guess U, producing U

RARE Rl A

Thus the algorithm takes, as input, an initial guess, U(?), and right-hand Slde F,
of length N — 1 (in one dimension). On any level, relaxatlon is applied based on the
matrix, A, which is taken to be the discretization of the given differential equation
with N —1 degrees of freedom after elimination of boundary conditions. A coarse-grid
right-hand side is computed by restricting the fine-grid residual, and the algorithm is
applied recursively to compute a coarse-grid representation of the error (which is the
solution to A.U. = F.), with a zero initial guess for U.. The computed correction,
U., is interpolated to the fine grid and added to the approximation, U, from after
the initial relaxation sweep, and a second relaxation sweep is performed.

For one-dimensional problems, we use “red-black” Gauss—Seidel relaxation, where,
in step 1 of Algorithm 1, the odd-indexed nodes are first processed (relative to 0-
indexing in C), followed by the even-indexed nodes. The opposite ordering is used
in step 5 to ensure symmetry. To create the hierarchy of meshes, we begin with a
chosen fine mesh with N intervals (uniformly spaced or fitted), and create the first
coarse mesh with N/2 intervals by aggregating intervals pairwise (or, equivalently, by
discarding every other node in the fine mesh). This process is repeated recursively
until a grid with fewer than 5 nodes is reached. We assume the initial N is chosen so
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TABLE 3.1
CPU times for geometric multigrid preconditioned CG to achieve theoretically optimal error
reduction on one-dimensional Bakhvalov meshes, aggregated over 500 runs. Corresponding iteration
counts for a single run are given in parentheses.

g2 N=29 | N=210 | N=211 | N=212 | N=213 | N=214
T 0.24 (5) | 0.89 (6) | 1.75 (7) | 253 (7) | 810 (7) | 16.57 (7)
102 0.46 (6) | 0.88 (6) | 2.00 (7) | 4.06 (7) | 8.22(7) | 18.91 (8)
10—4 0.44 (6) | 1.07(7) | 2.05(7) | 3.80 (7) | 9.42 (8) | 18.92 (8)
106 0.54 (7) | 1.08 (7) | 2.03(7) | 4.58 (8) | 9.25 (8) | 21.21 (9)
108 0.51 (7) | 0.82(7) | 2.27(8) | 4.62 (8) | 9.39 (8) | 21.17 (9)
10719 || 0.53 (7) | 1.08 (7) | 2.27 (8) | 4.64 (8) | 10.46 (9) | 21.06 (9)
10712 || 0.58 (7) | 1.08 (7) | 2.30 (8) | 4.62 (8) | 10.40 (9) | 21.20 (9)

that this pairwise aggregation never fails. On each mesh, the matrix A is formed as
n (2.1). The interpolation operator, P, between two such meshes is defined by linear
interpolation to neighboring nodes, with the interpolation weights suitably adjusted
for the unequal spacing of nodes. The restriction operator, R, is chosen to be the
transpose of P, leading to a weighted averaging of residuals between neighboring
nodes, emphasizing the closer neighbor on an unequally spaced mesh.

This approach offers excellent performance and scalability on both uniformly
spaced and smoothly varying meshes, yielding errors at the level of discretization
error in In(N) iterations. For meshes with sharp contrasts in grid spacing, such as
in the case of Shishkin meshes, acceleration by use of the preconditioned conjugate
gradient iteration is an effective strategy, as in [52]. In this case, the V-cycle given by
Algorithm 1 defines a preconditioning matrix, M, that yields a preconditioned system,
MAU = MF, where the spectrum of M A has a tight cluster of eigenvalues around
unity, with only a few outlying eigenvalues caused by the sharp transitions. Table 3.1
shows the aggregated solve times and (unaggregated) iteration counts for geometric
multigrid preconditioned CG applied to Bakhvalov meshes, solving the discretized lin-
ear systems 500 times in succession, in order to achieve nontrivial timings. While the
smooth variation in mesh sizes here does not preclude the use of the stationary itera-
tion, we use PCG both for better comparison to the boundary-layer preconditioning
approach proposed next and to enable use of stopping criteria similar to those dis-
cussed for the two-dimensional problems in section 4.6. We note that the solve times
in Table 3.1 show the near-linear scaling in N expected of multigrid, as well as very
slow growth with . Both of these observations are also demonstrated in the iteration
counts, showing slight growth in the iteration counts as ¢ decreases and as IV increases.

3.2. A one-dimensional boundary-layer preconditioning approach. In
this section, we develop an algorithm that, in contrast to geometric multigrid, takes
advantage of the singularly perturbed nature of these problems. In section 4.5, we
develop the two-dimensional analogue and prove its optimality.

When §y < 1, the fitted meshes for one-dimensional problems described in sec-
tion 2.1.1 condense in the region of the two boundary layers and are uniform in the
interior. From the linear algebraic point of view, the matrix corresponding to a dis-
cretization on such a mesh naturally partitions into three pieces: the left boundary
layer, the interior (not including the transition points), and the right boundary layer.
This gives a partitioned matrix of the form

Arr, A 0
(3.1) A= | A A Ar |,
0 Arr Arr
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where we use the natural subscripts L, I, and R to denote the three regions. Notably,
in the symmetrically scaled system, we have the relations that Az; = AT, and Ar; =
A?R, and we see that each of these matrices has only one nonzero entry, giving the
coefficient that relates the last point in the layer (the transition point) to the first
point in the interior. Defining the uniform interior mesh width to be Ay, these entries
are all —e2/h;.

Considering Ay, we notice that this matrix has diagonal entries given by 2¢2/h;+
hrb(x;), for the row corresponding to node z;, while the off-diagonal coefficients are

—&2/hr. In the singularly perturbed case, when §;, = (6/(h15))2 < 1, the diagonal
of Ay strongly dominates all other entries in the rows and columns corresponding
to interior (I) points. In this case, it is intuitive to approximate these rows and
columns by just the dominant diagonal values given by the reaction term, hrb(z;).
Theorem 3.1 states that this approximation is accurate, in the spectral sense, when
op < 1.

THEOREM 3.1. Let hy denote the (uniform) interior mesh spacing in the standard
3-point finite difference discretization of —e*u”(x) + b(z)u(z) on a boundary-fitted
mesh, where b(z) > B2 for all x € [0,1], with symmetrized discretization matriz A.

Order the rows and columns of A according to the boundary layer structure in (3.1).
Define

Arr 0 0
Ap = 0 Dir 0 ;
0 0 ARr

where the partitioning matches that of A in (3.1), and the entries of diagonal matriz
Drr are given by hib(xz;) for the row/column corresponding to node ;. Then

(1205 VTApV < VTAV < (1 466,) VT ApV

for all vectors V.

Proof. The proof uses similar techniques to those described in detail in the proof
of Theorem 4.1. For full details, see [32]. O

COROLLARY 3.2. Under the assumptions of Theorem 3.1, if My, and Mgrp are
spectrally equivalent to A;; and Agp, respectively, meaning that there are constants
co and ¢y such that

VM, V, <VTA,, V, <aVEM,,V, for al V,
and COVRTMRRVR S VRTARRVR S ClVgMRRVR f07‘ all VR,

then the matriz

0 0 Mgg
satisfies
min(1 — 204, co(1 — 26,)) VT Ay V < VTAV < max (1 + 665, c1(1 4 20,)) VT 4,V

for all V.
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TABLE 3.2
Computed values of 8, = 82/(h%,82) for Bakhvalov meshes on [0, 1] with two boundary layers
and 8 = 0.99.

e? N =29 N =210 N =211 N =212 N =213 N =21
1 2.65 x 10° 1.06 x 108 4.24 x 108 1.70 x 107 6.78 x 107 2.71 x 108
102 2.65 x 103 1.06 x 10% 4.24 x 10* 1.70 x 105 6.78 x 10° 2.71 x 108
104 1.21 x 10t 4.83 x 10! 1.93 x 102 7.73 x 102 3.09 x 103 1.24 x 10%
10—6 728 x 1072 | 2.91 x 10~ | 1.17 x 10° 4.66 x 100 1.86 x 10t 7.46 x 10!
10—8 6.71 x 10~% | 268 x 1073 | 1.07 x 1072 | 429 x 1072 | 1.72 x 10~ | 6.87 x 10!
10~10 || 6.63x 1076 | 2.65 x 1075 | 1.06 x 10~% | 4.24 x 10~% | 1.70 x 10~3 | 6.79 x 10~3
10712 || 6.62x 1078 | 2.65 x10~7 | 1.06 x 1076 | 4.24 x 10~6 | 1.70 x 10~° | 6.78 x 105

TABLE 3.3
CPU times for boundary layer preconditioned CG to achieve theoretically optimal error re-
duction on one-dimensional Bakhvalov meshes, aggregated over 500 runs. Corresponding iteration
counts for a single run are given in parentheses.

g2 N=29 | N=210 | N=211 | N=212 | N =213 | Ny =214
10~ 0.35 (8)
10-8 0.24 (7) | 0.53 (7) | 1.34 (8) | 3.04 (9)
10710 || 0.26 (7) | 0.66 (7) | 1.28 (8) | 2.61 (8) | 6.10 (9) | 12.0 (9)
10712 || 0.33(7) | 0.55 (7) | 1.33(8) | 2.58 (8) | 5.97 (9) | 12.2 (9)

Corollary 3.2 is particularly relevant to the case where My and Mgrp are the
inverses of effective multigrid preconditioners for A;; and App, respectively. If the
stationary multigrid cycle represented by I — M LlAL ;, has spectral radius o < 1,
then

(1= )V MV <VEAL VL <+ )V MV

for all V. If the same bounds hold for the right boundary layer, then the bound in
Corollary 3.2 becomes

(1—a)(1—26,)VTA,V <VTAV <max (1+ 66, (14 a)(1+25,))VT A,V

for all V. Since we typically expect = 0.1 and J;, < 1, a better rule of thumb would
be

(1—a)(1 =20, VTA,V <VTAV < (1 +a)(1+26,)VT A,V

for all V. This suggests that, when J;, < 1, the convergence of a preconditioner
consisting of one multigrid V-cycle applied to each of the boundary-layer regions plus
diagonal scaling of the interior region should be very similar to that of multigrid ap-
plied directly to the boundary-layer regions alone. Table 3.2 shows the values of §j,
realized on the one-dimensional Bakhvalov meshes; following Theorem 3.1 and Corol-
lary 3.2, we present results for the cases where §;, < 0.1, with CPU times aggregated
over 500 runs, along with (unaggregated) iteration counts, in Table 3.3.

Comparing times between Tables 3.1 and 3.3, we see uniform improvements by
factors of just under 2 for the boundary-layer preconditioning approach over stan-
dard geometric multigrid preconditioning. This is, in general, consistent with our
cost expectation, since the boundary-layer approach is applying a regular geometric
multigrid cycle (adapted only to account for the implied boundary condition at the
transition points) to one-half of the grid, and a much cheaper diagonal scaling op-
eration to the other half. We also see that the iteration counts in these tables are
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essentially identical, with the boundary-layer preconditioner occasionally taking one
more iteration to fulfill the stopping criterion in cases corresponding to larger dp.

4. Solving the two-dimensional system. In contrast to the tridiagonal ma-
trices that arise with the one-dimensional problem, numerical solution of the two-
dimensional discretizations poses more of a challenge. Despite the well-known com-
plexity growth for matrices with these structures, the topic of efficient and robust
solution algorithms for these problems is largely ignored in the literature of singular
perturbation problems: we know only of the studies mentioned in the introduction.
Most papers which report numerical results don’t mention the solver used. Of the
few that do, such as [29], a direct solver is employed. Thus, we begin with an ex-
planation of why sparse direct solvers are unsuitable from two points of view, before
investigating efficient iterative methods.

4.1. Direct solvers. As a “typical” serial, highly optimized sparse direct solver,
we consider here CHOLMOD (supernodal sparse Cholesky factorization and update/down-
date) Version 1.7.1 to solve the sparse symmetric linear systems; see [11,13]. In Ta-
ble 4.1, we show the time in seconds, averaged over three runs, required to solve the
linear systems on Bakhvalov meshes that yield results given in Table 2.1. For a given
e, we see growth in these times that, for large NN, scales as N2 (increasing by factors
of roughly eight when N is doubled), as expected given the known O(N?) complexity
of the nested dissection algorithm for these grids [22] and the O(N?) lower bound
for this complexity [23]. For fixed N, however, we observe that, rather remarkably,
the amount of time required to solve the linear system depends quite badly on the
perturbation parameter. This is in spite of the fact that, for a given N, the ma-
trices for different ¢ have exactly the same size and structure; the only difference is
the scaling of some entries due to the difference in both ¢ and the local mesh width.
Similar results have been observed with other direct solvers, including MA57 [17], on
different processors and architectures, and with different meshes, including uniform
and Shishkin meshes. As we now explain, the degradation in the performance of the
direct solvers is not related to their implementation but, rather, the specific nature
of the discretized singularly perturbed problem.

Writing the linear system for the finite difference solution to (2.4) as AU = F,
while neglecting boundary conditions, gives A4 as an (N — 1)? x (N — 1)2, banded,
symmetric, and positive-definite matrix with bandwidth of N — 1. For problems
with small off-diagonal entries, relative to the diagonal in each row, fill-in introduced
during factorization results in many small values in the LU factors. Such values decay
exponentially as factorization proceeds introducing successive fill-ins. If the matrix
bandwidth is small, then this poses no problem for floating-point calculations. If, on
the other hand, N is large, then floating point underflows may occur.

TABLE 4.1
Cholesky (CHOLMOD) solve times for linear systems generated by a finite difference method
applied on a Bakhvalov mesh.

g? N=27T| N=2%8 | N=29 | N=210 | N=2ll | N =212
T 0.07 0.39 2.65 18.29 195.87 1630.57
10—2 0.06 0.38 2.66 18.27 196.18 1678.79
10—4 0.06 0.38 2.66 18.39 196.23 1689.43
106 0.07 0.97 11.83 89.03 860.62 7515.59
108 0.15 1.25 10.62 71.40 478.32 2676.85
10—10 0.19 1.16 8.34 46.22 343.66 1521.52
10— 12 0.18 1.10 6.72 36.11 257.12 1166.78
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TABLE 4.2
Number of nonzero entries (top) and subnormal numbers (bottom) in Cholesky factors generated
by CHOLMOD.

g2 N =27 N =28 N =2° N =210 N =211 N =212

T 350,112 | 1,833,313 | 9,425,559 | 45,671,436 | 183,759,251 | 831,532,333
0 0 0 0 0 0

10—2 350,112 | 1,833,813 | 9,425,559 | 45,671,436 | 183,759,251 | 831,532,333
0 0 0 0 0 0

10—4 350,112 | 1,833,813 | 9,425,559 | 45,671,436 | 183,759,251 | 831,532,333
0 0 0 0 0 0

106 350,112 | 1,828,215 | 9,293,727 | 44,499,256 | 179,511,201 | 808,690,367
0 4,338 22,596 108,387 573,033 2,852,019

108 347,351 | 1,717,341 | 8,266,871 | 37,946,547 | 147,162,291 | 625,420,613
1,146 8,488 56,295 316,104 1,121,348 4,956,624

10-10 || 335,322 | 1,614,213 | 7,535,505 | 33,695,760 | 130,437,185 | 544,870,886
1,915 10,008 77,691 283,348 1,111,292 4,422,916

10~12 || 322,935 | 1,534,747 | 7,019,889 | 31,076,314 | 120,736,814 | 504,478,967
2,176 11,467 58,065 305,428 991,728 3,803,770

In IEEE standard double precision (cf. [37]), numbers are typically represented
with 64 bits as +£X x 2Y 71923 where 52 bits are used to store the significand, X, 11
bits are used to store the exponent, Y, and the remaining bit stores the sign of X.
For “normal” numbers, with 0 <Y < 2047, X is assumed to be a binary decimal with
leading digit 1 (an implied 53¢ bit). Thus, the smallest normal number occurs for
Y =1, X =0, giving 271922 &~ 10739, When Y = 0, the implied bit in X is taken to
be a leading 0 and the exponent is fixed at —1022, allowing representation of nonzero
numbers as small as is 27°2x 271022 x5 5 1073?4; anything smaller than this is rounded
to zero (when X = 0 and Y = 0). The use of such “subnormal” numbers allows for
gradual reduction in the precision of stored numbers; however, most processors do
not provide hardware support for arithmetic with subnormal numbers and, instead,
a compiler must rely on a software implementation, which is significantly slower [27].
The variation in timings seen with ¢ in Table 4.1 are due to the introduction of
subnormal numbers in the fill-in generated by Cholesky.

To demonstrate this effect, in Table 4.2, we give the number of nonzero entries
in the Cholesky factors produced by CHOLMOD for a range of values of N and
e, corresponding to those shown in Table 4.1, as well as the number of subnormal
entries. For small € and large N, we observe a significant increase in the number
of subnormal numbers arising in the Cholesky factors, as well as a decrease in the
number of nonzero numbers, due to underflow of subnormal entries. Although they
are relatively few compared to the number of nonzero entries, they are sufficient to
greatly increase the computation time. Such difficulties are likely to be exacerbated
further for problems in three (or more) dimensions, where larger bandwidths occur.

It is worth noting that this behavior can be overcome with compiler directives.
For the GCC family of compilers, the ~-funsafe-math-optimizations option turns
on certain optimizations that violate the IEEE floating point standard, including the
treatment of subnormal numbers. With this option enabled, we see general decreases
in the factorization and solve times as € decreases and the number of nonzero entries
retained in the factors drops, with no observable degradation in the solution accuracy.
However, we now see large (up to 60%) increases in these times for the smallest values
of € that are not consistent with the number of nonzeros in the factors. This suggests
that simply ignoring subnormal entries in the factors may still not be enough to ensure
a favorable scaling of direct solvers with e, especially as doing so relies on compiler
and architecture dependent implementations of variations to the IEEE standard.
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TABLE 4.3
Iteration counts for geometric multigrid preconditioned CG to achieve theoretically optimal
error reduction on Bakhvalov meshes.

g2 N=27T| N=28 | N=29 | N =210
T 11 11 12 12
102 14 16 18 19
10— 60 96 140 178
106 76 152 300 557
108 81 170 348 712
1010 88 179 364 748
10~ 12 92 186 387 811

4.2. Geometric multigrid. The success of simple geometric multigrid with
pointwise relaxation as a good preconditioner for the one-dimensional problem, with
only mild dependence on N and €, is not recreated in two dimensions, due to the
nature of the tensor product of fitted meshes. As noted in [54,55], the key parameter
in determining the effectiveness of pointwise relaxation in geometric multigrid is the
mesh aspect ratio; when the ratio of the largest to smallest edges of a mesh cell
is much larger than unity, geometric multigrid convergence suffers, even when used
as a preconditioner. Table 4.3 shows the number of iterations needed for geometric
multigrid preconditioned CG to reduce the maximum norm of the error in the iterative
solution to that of the direct solution of the linear system.

Two well-known antidotes to this degradation are to consider the use of mesh-
adapted coarsening approaches or the use of linewise (coupled) relaxation techniques
[8,49]. In the former category, semicoarsening techniques are commonly used when
the bad aspect ratios result from the use of tensor-product grids of vastly different
mesh widths (as, for example, might be the case for a two-dimensional problem with a
one-dimensional boundary layer). These techniques can be adapted to tensor products
of graded or fitted meshes [54], but require much more involved development of the
semicoarsening approach. Instead, in section 4.3, we consider an algebraic multigrid
method that automatically adapts multigrid coarsening to the fitted mesh structure.
In contrast, alternating-direction line relaxation techniques can be used to address
the challenges posed by the tensor product of fitted meshes, with bad aspect ratios
in two orientations. Within this class of approaches, we use the black box multigrid
(BoxMG) method of Dendy [1,15], coupling alternating-direction line relaxation with
variational coarsening, discussed in section 4.4.

There are three natural advantages to the use of algebraic multigrid (AMG) and
BoxMG. First, they both employ variational coarsening strategies based on Galerkin
projection, so that variable reaction coefficients are naturally projected onto coarse
meshes. Second, the same solvers can be easily applied to other discretizations, such
as bilinear finite element discretizations on fitted meshes (see, e.g, [29] for an error
analysis for a two-dimensional reaction diffusion problem on a Shishkin mesh). Finally,
they are both readily available in software packages that can easily be incorporated
into simulation codes beyond those used in the test cases presented in section 4.7. The
downside of using these solvers is that they do not represent tuned software that takes
full advantage of the structure of the differential operators, discretization, and fitted
meshes considered here. Thus, small improvements in overall time to solution could
be realized by more specialized software, but at the expense of applicability and ease
of use. In contrast, in section 4.5, we present an algorithm that is tuned specifically for
the fitted meshes considered here, but which is still applicable to both finite difference
and finite element discretizations of singularly perturbed reaction-diffusion equations.
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4.3. Algebraic multigrid. An alternate approach to using geometric multigrid
is to adjust the interpolation operators to account for the sharp mesh transitions,
thereby accurately approximating the associated error modes in the coarse-grid cor-
rection phase. A standard approach to developing operator-dependent interpolation
schemes is the AMG method, which supplements the multigrid V-cycle given in Algo-
rithm 1 with a preliminary setup stage in which the coarse meshes and interpolation,
restriction, and coarse-grid operators are computed based on the given fine-grid op-
erator.

Here, we use a standard AMG approach, as described in [8,43,48]. From the given
fine-grid operator, the setup stage chooses a first coarse mesh, then interpolation,
P, is defined, with restriction fixed as R = PT, and the coarse-grid operator is
given by the Galerkin triple product A. = PTAP. This process repeats recursively
until a suitably small mesh is reached, where a direct solver can be cheaply applied.
Beyond the setup stage, only a small change is made in the solve phase detailed in
Algorithm 1, where the size of the coarse-grid problem is now determined by the
number of coarse-grid points selected, changing the notation, but not the substance,
of the recursive step. For relaxation, we use an ordered Gauss—Seidel sweep that, in
step 1 of Algorithm 1, loops lexicographically over the points selected for the coarse
mesh first, then over those that are not selected for the coarse mesh (known as C/F
relaxation). In step 5 of Algorithm 1, the opposite ordering is used, to preserve the
symmetry of the preconditioner.

The coarse-grid selection and interpolation algorithms of [43] are used here; for
details, see [8,43]. Because the singularly perturbed nature of the problems consid-
ered here leads to matrices that have some rows that are strongly diagonally domi-
nant, we adopt a slight variation to the standard approach, whereby rows that are
strongly diagonally dominant (taken to be when the sum of the absolute values of
the off-diagonals is less than 1/2 of the diagonal entry) are treated through fine-grid
relaxation alone.

4.4. Black box multigrid. In contrast to AMG, the BoxMG algorithm [1,15]
focuses on maintaining the regular, tensor-product grid structure of the fine mesh, and
choosing more robust relaxation techniques, in combination with a similar operator-
dependent definition of interpolation, to achieve robustness in the multigrid algorithm.
The algorithmic choice to maintain structured grids on all levels of the multigrid
hierarchy avoids the expensive graph processing and indirect addressing of AMG; as
a result, BoxMG often achieves much faster total times to solution for problems where
both AMG and BoxMG can be readily applied, about six times faster for some two-
dimensional problems [10], and ten to fifteen times faster for some three-dimensional
problems [31].

The key to maintaining robustness in BoxMG for two-dimensional problems is the
use of alternating-direction line relaxation. The rectangular grid is decomposed twice,
into alternating lines in both the z- and y-directions. In a single sweep of relaxation
(step 1 of Algorithm 1), residuals are calculated first for alternating lines parallel to
the z-axis, starting from the second row of the grid, and an update is calculated for
each of these lines to simultaneously zero the residual at all points along these lines,
then the same procedure is applied to alternating lines parallel to the z-axis, starting
from the first row of the grid, then these two stages are repeated for alternating lines
parallel to the y-axis. The opposite ordering is used in step 5 of Algorithm 1 to ensure
symmetry. Interpolation is determined based on averaging of the operator coefficients
along the structured mesh, achieving robustness without the indirect addressing of
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AMG. The full specification of BoxMG interpolation is reviewed in [30], including a
discussion of its relationship to AMG interpolation.

4.5. A two-dimensional boundary-layer preconditioning approach. For
the two-dimensional problem with dy < 1, we extend the preconditioning technique
from section 3.2 to handle tensor products of fitted meshes, by partitioning the two-
dimensional mesh into four pieces: the high-resolution corner, two edges with resolved
meshes in one dimension (along the z- and y-axes), and the interior region. In the cor-
ner, connections in both coordinate directions are significant, requiring the full power
of a multigrid method. In the edges, the problems are effectively one dimensional, and
tridiagonal solvers can be used within an effective preconditioner. In the interior, as
in one dimension, diagonal scaling is effective. Thus, the two-dimensional boundary-
layer preconditioner can be expressed by partitioning the degrees of freedom in U and,
consequently, the rows and columns of A as

Acc ACE 0
(4-1) A= AEC AEE AEI )
0 Ap Aqg

where the subscripts indicate the block structure of corners, C, edge layers, F, and
interior points, /. The preconditioner, A, is defined in the same partitioning by

(4.2) Ap=1 0 Ty O
0 0 Dy

Here, matrix D;; has diagonal entries given by the scaled reaction coefficient. The
matrix T, has three nonzero entries per row. In rows corresponding to nodes in the
edge layer along the z-axis (where the mesh in the a-direction is uniformly spaced
with width h;), the diagonal entry is hy(1/k; +1/kj1)e? +hrk;b(z;,y;). The two off-
diagonal entries correspond to neighbors along the direction with the smallest mesh
width, so their values are —(h;/k;)e? and —(h;/k; ,)e®. The entries of T, in rows
corresponding to nodes in the edge layer along the y-axis are similar. Thus, Ty
could be itself partitioned into two parts, one corresponding to the edge layer along
the x-axis, and one corresponding to the edge layer along the y-axis. Depending
on the ordering of the degrees of freedom (in x then y, or in y then ), one of these
blocks will be tridiagonal, and one will be block tridiagonal with diagonal blocks. The
neglected entries in A;; and A, or Ag, are essentially the same as those treated in
the one-dimensional case, but scaled by another factor of ~A; from the symmetrization,
giving —e¢, relative to the diagonal values h2b(z;, y;). We bound these using simple
linear-algebraic arguments, similar to those used to prove Theorem 3.1 [32]. The
neglected entries in Ay, Anp, and Ap are slightly more complicated, due to the
potentially uneven mesh spacing in the boundary layers, but similar linear-algebraic
arguments bound their contribution.

THEOREM 4.1. Let hy denote the interior mesh spacing in the standard 5-point
finite difference discretization of —e?Au(x,y) + b(z,y)u(z,y) on a boundary-fitted
mesh, where b(z,y) > % for all (x,y) € [0,1]> and boundary conditions such that
there are only two boundary layers, along the x- and y-azes (the south and west faces,
respectively), with symmetrized discretization matriz A. Order the rows and columns
of A according to the boundary-layer structure in (4.1) and define A in the same
ordering as in (4.2), where the entries in the diagonal matriz D;; are given by the
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reaction coefficients, hb(z;,y;), for the row/column corresponding to node (z;,vy;)
and the off-diagonal coefficients of Ay — Trp are of the form —&2k;/hy (for edges
along the z-azis) or —e2hj/hy (for edges along the y-azis), with twice the magnitude
of these values on the diagonal (so that Ay —Try is a zero row-sum operator except
for the first and last rows). Then,

(1-36,)VTARV <VTAV < (1 4+ 90,) VT ALV

for all vectors V.

Proof. Writing generic vector V. =[ Vo Vg V7 | (noting that here Vi is the
component of V associated with the refined corner of the mesh, and should not be
confused with the notation of sections 3.1 and 4.3 where V. would denote the coarse-
grid analogue of V') we see that

VIAV = VE AV + 2VE Ac Vi + VE AppVie + 2VE AR,V + VALV,

using the symmetry of A. We seek to bound this above and below by a scalar (de-
pending only on ;) times the quantity

VIALV =VE AoV + VETppVe + VED,, V.

Bounding V;I' AV, is straightforward, since A;; = D;; + L;;, where L;; is the
symmetrized uniform-grid Laplacian matrix with diagonal entry 42 and off-diagonal
entries —2. Thus, by Gersgorin’s theorem,

VI Dy Vi < VAL Ve <V (Dyp+ (8)1) Vi < (14 801)V/ Dy Vy

for any V;, since V'V, < 1/(8%h%)VI D, V.

Considering VA, Vy is slightly more complicated because of the tridiagonal
structure of Ay, — Ty, we can, however, consider the spectral equivalence by an-
alyzing a generic line in the edges of the mesh. To do this, first note that A, is
reducible into two blocks, one containing connections within the layer along the z-
axis, and one containing connections within the layer along the y-axis. Considering
one of these pieces, along the z-axis, we decompose the stencil in (2.4) into two pieces,
writing

h
— I 82
kj+1
ki o (2K, 1 1 5 | - ki o
) R Ry A - kihb(zs,y;) —-2
hla <h1 + 1<kj+kj+1>)6 + kjhrb(xi, y;) hIE
h
k;
h
kj+1 0
1 1 _ ki 2k ks
=10 hr(—+ e+ kjhrb(ms,y;) O+ | =212 22 L2 |
I(kj kj+1> shiblei,y;) hla hla hla
h
o 0
k;

where the first term on the right-hand side represents the terms kept in 7'y, and
the second term represents Ay, — Tpp. From this decomposition, we immediately
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see that VI TLpVy < VI ALV for any Vg, since the remainder term is positive
definite. To find the upper bound, note that the entries in Ay, — Ty, depend
only on the position in the y-direction, through I%j, and not on the position in the
z-direction. Thus, defining the diagonal matrix M, with dimension given by the
number of points within the boundary layer and entries given by (k;/h;)e?, for the
row/column associated with the point j nodes in from the boundary, we can write

[ 2M —-M
-M 2M -—-M
-M 2M -M
(Agp —Tpp)e = . . . 5
-M 2M -M
—-M 2M |

assuming an ordering of points first in lines parallel to the y-axis, then in lines parallel
to the z-axis, where the subscript x is used on Ay, — Ty to indicate that we
consider only the edge layer along the z-axis. The matrix (Apy — Tgp)z has block
dimension equal to the number of points on the grid that are not in the boundary
layer, and the quantity (V)X (App — Trg)z(VE), can easily be expressed by writing
(Ve),=[Vi Vo ... ] giving

(VE)E(AEE —Tgp)e(VE), =2 Z VeTMVé -2 Z VeTMVéJrla
’ ’

where the first sum extends over all £, and the second over all but the last /. Bounding
the terms in the second sum, using the Cauchy—Schwarz inequality, gives

1
VY £ a1 = 00 )
this, in turn, bounds

|(Ve)L (App — Tpg)e(Ve),| <2) VEMV,+2) [VEMV,,| <4> VMV,
Y4 Y4 ¥4

For one of these terms, however, the diagonal entries in M, Ej /he?, are bounded
above by opk;hrb(z;,y;) for any . Thus,

VI MV, < 6,V DY,

for all V; for any ¢, where the diagonal matrices D, are taken to have entries k;hb(z;,,
y;), where index iy corresponds to the line indexed by ¢. Taken together, with the
analogous bounds for the edge layer along the y-axis, this gives

Vi (Agp — Tgp)Ve < 46,VE DgpVy

for any Vg, where Dgp is the diagonal matrix with entries k;h b(z;,y;) for nodes
(4,7) in the edge layer along the z-axis and analogous values for nodes in the edge
layer along the y-axis. Since VI DV < VATV for any Vi, which follows from
the fact that the difference T, — D is positive definite, this gives

VaTppVe < Vi AppVeg < VETppVe +46,Ve DppVe < (1+46,)VaE TV,
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We next look to bound the mixed terms, 2VZA A,V and 2VE A, V;. Consider-
ing the first of these, we again employ the Cauchy—Schwarz inequality, writing

V& AcpVel < |Dad* AceVi|, - |DdVe

for any Vo and Vg, where Do is the diagonal matrix with entry h;k;b(z;,y;) in
the row/column corresponding to node (7, j). Since An = Do + Lo for positive-
definite Laplacian matrix Loc, VA DoV < VEApo Ve and

T 1/2
V& AcpVil < HDCC ACEVEH (Ve AecVe) 7.
To bound the remaining term, notice that there is at most one nonzero entry per
row in A~y and, consequently, in Dé/éACE and Ap-DgbAqg. The nonzero en-

tries in A ECDE}JAC g occur on the diagonals of the rows/columns corresponding to
nodes that are adjacent to the highly resolved corner, and are given by ((k;/hr)e?)?/
(hikjb(x;,y;)) for a node (i + 1,5) in the edge layer along the z-axis (so that node
(,7) is in the corner region), with a similar expression for a node in the edge layer
along the y-axis. Since x;,1 — x; = hr, h; > hy/2, giving

_ , 5
(ks /ha)e)” [haksblei, ) < (82/h1)2h—52kj
< (¢2/h1)? h2ﬁ4 hik;b(zit1,y;) = 205 hrk;b(is1, ;)

with an analogous bound for nodes in the edge layer along the y-axis. Thus,
VEALoDobAgrVe < 203VED Vi for all Vi, and, thus, VI Apo Dot AcpVe <
202 VE Ty Vi for all V. This gives

‘VgACEVE‘ < V26, (VJZ:TEEVE)U2 (VgAcch)l/2

for all Vo and V. Since 2ab < a2 + b2, this gives

for all V& and Vg.
Finally, we look to bound 2V,Z AV, using similar techniques. The Cauchy-
Schwarz bound becomes

|VgAEIVI HDEE AEIVIH HDEEVEH
for all Vi and Vj, giving
1/2 1/2
VEApVi| < ||D5id* ApeVi - (VETeiVe)

for all Vi, and V;, since VE D ppVy < VATV for all V. Again, there is only one
entry per row of AIEDE}EAEI, on the diagonal of rows/columns adjacent to the edge
layers. For a node (i,7 + 1) adjacent to the edge layer along the z-axis, the entry
would be

2
h2p?

84/(h1kjb(xia y])) S 54 S 25,21h§b(x1, yj+1)7
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where we use the bound k; > h;/2, since y;+1 — y; = hy. This gives

VLA Vi| <262 (VD Vi)Y 2 (VETpVi)

for all Vg and V;. Consequently,
(4.4) 2|Vg ApVi| < 0V DV + 260V TepVi
for all Vg and V7.
Assembling these bounds, we have
VIAV = VE AoV +2VE AceVe + Vi ApeVe +2VE Ag Vi + VI AL V;
> Vi AccVe = 2 |VE AcpVi| + Vi TypVe = 2|V A Vi | + VI Dy V;
> VEAccVe — (WVE TV + 200 VE AccVe) + Vi TepVi
— (0nV{ DV + 200V TppVi) + Vi Dy Vy
for all V, establishing the lower bound. For the upper bound, we have
VIAV = VE Ao Ve + 2VEAcg Ve + Ve AppVe +2VE Ag Vi + VIE AV,
SVEAccVe + 2 VEApgVi| + (L+46,)VE TppVe
+ 2 |VETAEI‘/I‘ + (1 + 86h)VITDIIVI
+ (0nV{ Dy Vi + 200V TepVi) + (1 +804)V{ Dy, Vy
= (14200 VEAcc Ve + (1 + T6,)VE TV + (1 +96,)VE Dy, V;
for all V. d

Note 1. The lower bound holds for all §;, but the bound is only useful in the case
that &, < 1/3, since a lower bound of 0 < VT AV naturally holds. When &, < 1/3,
the theorem establishes spectral equivalence bounds that show that A, is an excellent
preconditioner for A as d§, — 0.

Note 2. Slight variations in these bounds are easily derived by varying the division
of the constants in (4.3) and (4.4). In particular, the upper bound can be slightly
decreased at the expense of the constant in the lower bound and vice versa. However,
since 0, < 1 is the case of interest, these variations are largely irrelevant.

COROLLARY 4.2. Under the assumptions of Theorem 4.1, if Moo is spectrally
equivalent to Aqq, meaning that

VA MocVe < VEAccVe < alVEMoo Ve for all Vg,

then the matrix

Moo 00
Ay=| 0 T, o0
0 0 D

satisfies
min(1 — 304, ¢o(1 — 26,))VT AL,V < VTAV < max(1 + 96, c1 (1 +26,)) VT A,V
for all V.
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Note 3. Corollary 4.2 is particularly relevant to the case where Mg is the
inverse of an effective multigrid preconditioner for A,.. If the stationary multigrid
cycle represented by I — Mc_éACC has spectral radius a < 1, then

(1= )VE MecVe < Vi AceVe < (1+ a)VE M Ve
for all V. Under this assumption, the bound in Corollary 4.2 becomes

min (1 — 305, (1 — a)(1 — 25h))VTAMV
< VTAV <max (1+ 96, (1+a)(1+258,))VTA,V

for all V. Since we typically expect o ~ 0.1 (cf. [8,49]) and &), < 1, a better rule of
thumb would be

(1—a)(1—=20,)VTA,V <VTAV < (1 +a)(1 +26,)VT A,V

for all V. This suggests that the convergence of a preconditioner consisting of one
multigrid V-cycle applied to the corner region, appropriately ordered tridiagonal solves
applied to the edge layers, plus diagonal scaling of the interior region should be very
similar to that of multigrid applied directly to the boundary layer regions alone. In the
case of Shishkin meshes, this means that we expect to recover the optimal scaling of
multigrid on uniform meshes, while we expect similar behavior for Bakhvalov meshes
when a robust multigrid approach is used.

In light of Corollary 4.2, in section 4.7, we present results for a boundary-layer
preconditioner that makes use of a single V-cycle of BoxMG in the corner region,
appropriately ordered tridiagonal solves to treat the edge layers, and diagonal scaling
in the interior. For a tensor product of fitted meshes with N/2 points in each layer
(including the transition points), this implies that one-quarter of the grid will be
treated with a preconditioner that has the same cost as BoxMG, while the remaining
three-quarters will be treated in a much cheaper manner. Estimating the work of
a BoxMG V-cycle as four full line relaxations on each level times a factor of four-
thirds (to account for the hierarchy of levels of sizes N?, N?/4, N?/16, etc.), this
suggests that on three-quarters of the grid, the boundary-layer preconditioner does
three-sixteenths of the work of the multigrid V-cycle. The total work estimate is,
then, 1/4 4+ (3/4)(3/16) = 25/64 times the work of a multigrid V-cycle on the full
problem. This is, clearly, an overestimate, since there are extra savings from the
lack of interpolation and restriction, and from the cost of diagonal scaling compared
to line solves, but provides a rough estimate for the improvement possible from a
preconditioner that is tuned to the full problem structure.

4.6. Stopping criteria. As is typical for iterative methods, we aim to stop the
iteration as soon as we have an iterate, U*), that approximates the “best” discrete
approximation, U, of the continuum solution, u, to a degree of accuracy that is of the
same order as the discretization error, ||u — U||, giving

lu—UP| < [lu—U|+|U-UP| < Clu-U|

for a moderate constant, C. In the case of finite difference approximations on Shishkin
and Bakhvalov meshes, we know that the discretization error bound takes the form

lu—=Ulloe < g(N)
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for g(N) = CN~21n*(N) for Shishkin, and g(N) = CN~2 for Bakhvalov, where the
constants are independent of . We note that we use the discrete maximum norm
here, as the natural norm for which error bounds are available.

Naturally, the discrete approximation error, E*) = U — U®) | is unknown during
the iteration; thus, we must measure this error indirectly. For stationary iterations,
the best indicator of this error is the residual, R**) = F — AU®) = AE®) since
AU = F. The simplest possible bound, then, would be to write E®) = A-1R(K)
giving

U = U®] 0 < A" oo | R o

Practical bounds on [|[A™}| « arise from M-matrix theory; Theorem 2.7 in [40] states
that

1 [Vlloo
47 e € e
where V is a majorizing vector with (AV), > 0 for all k. For the discretization
matrices considered here, the choice of V' as the vector of all ones is natural, giving
ming (AV); as the Gersgorin bound on the smallest eigenvalue of A; this is bounded
from below by 82h2 ;| where hyy is the minimal mesh spacing on the grid. Numerical
experiments show this bound to be sharp for small e. With this bound, we can then
guarantee a discrete approximation error comparable to the discretization error by
asking for [|[R™||, < 82h2, g(N), ensuring |U — U®)| o, < g(N). For small ¢, how-
ever, hyin scales as hyin « €In(N)/(NB) for Shishkin meshes, and as hyin « /(N 3)
for Bakhvalov meshes, requiring ||[R*¥)|| o, < Ce?(In® N)/N? to achieve discretization
accuracy on Shishkin meshes, and ||[R™™) ||, < Ce?/N? to achieve discretization accu-
racy on Bakhvalov meshes. For small € and moderate N, these values will be much less
than machine precision, implying that it is difficult to compute ||R* || accurately
enough to guarantee convergence.

To overcome this limitation of stationary iterations, we turn to the precondi-
tioned conjugate gradients algorithm and look to make use of the standard stopping
criterion that bounds the inner product of R® with the preconditioned residual,
Z®) = MR™  where M represents the preconditioning matrix applied. When M is
a good preconditioner in the spectral sense that M A (or, more precisely, AY/2M A2,
where A'/? is the principal square root of A) is spectrally equivalent to the identity,
this inner product accurately estimates |[E*)|? as

(Z(k)) " RW) (E(k)) " AMAE® ~ |E®|,.

To bound ||E®) ||, by |[E®)|| 4, we make use of an intermediate bound, trading the
max-norm for a discrete fo-norm, noting that

1
—NE®, < |E® . < [|EX)
\/ﬁll 2 < |E[loe < [IEX]|2
for vectors of length n. A reasonable, although not rigorous, estimate is to assume
near equality with the lower bound, rather than the often pessimistic upper bound,
under the assumption that the discrete approximation error is nearly equidistributed
across the mesh, so that the error is not concentrated at relatively few mesh points.
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With this assumption, a more tractable bound is available, writing

c c —
1E®|oo ~ %HE(’“)IIQ < %HA V22| E®

where A~1/2 is the principal square root of the symmetric and positive-definite matrix,
A~1. This bound presents two advantages. First, | E(®)|| 4 is both naturally estimated
and minimized by the preconditioned conjugate gradient algorithm and, as such,
makes a natural stopping criterion for the iterative approach. Second, as we show
below, the natural bound on ||A~%/2||; needed to determine the stopping criterion is
much smaller than that of ||[A™!| s (and ||A7}2), yielding a stopping criterion that
is also less susceptible to problems with round-off errors.

Since A~1/2 is the principle square root of A~!, we have ||A71/2||2 = ||[A~!|2, as
the eigenvalues of A~! are the squares of those of A~/2. Thus, we can estimate the
needed norm by applying Gersgorin’s theorem to A to estimate its smallest eigenvalue,
deriving the same bound on ||[A~!|2 as was given for ||A7!||, above. This implies
that [|A=1/2||y < 1/(Bhmin) for the two-dimensional problems. Thus, we have

1
EW |~ ~Z|[E® ||, < S A2, ER|| 4 < <
IE5]] \/ﬁll l2 < 2| B |4 < N Bhom

| E®)]| 4.

Similar bounds can be derived for the one-dimensional problems for both ||A™!||s
and |A=1/2|| 4, with changes that the matrices are of dimension n ~ N instead of N2
and a scaling of Anyin3? for the minimal eigenvalue estimate.

Given a bound of this form, the stopping criterion for ||[E®)||4 to guarantee
[E®) || < g(N) (up to the assumption relating || E()||o, and ||[E*)|5) is given by

HE(k)HA < CﬁLiLmi“

g(N);
with this, we have
lu = U™ oo < Cg(N),

ensuring optimality of the approximate discrete solution, U*).

What this analysis doesn’t treat is the size of the constants, C' and ¢, or their
variation in N and . While these constants are uniformly bounded independently of
N and €, numerical experiments in two dimensions show that when ¢ is large, stricter
convergence bounds are needed to obtain the best possible accuracy (that is, to be
almost identical to that of a direct solver). Thus, for the results presented in this paper
for two-dimensional problems, we use a graduated stopping tolerance of 1073 times
the above bounds when ¢ = 1, 1072 when ¢ = 107!, and 10~! when ¢ = 10~2. For
smaller values of €, we take the constant, ¢ = 1, with no further scaling. In all results,
we take  as an input parameter, matching what is used for the grid generation, and
use a computed value of hy,. Finally, we note that although the required bounds on
| E®)| 4 through this analysis are dependent on both N and &, the multigrid-based
methods used here lead to per-iteration reduction factors bounded below unity in each
iteration, independently of N and €. Thus, the number of iterations for convergence
is bounded, at worst, by logarithmic factors of N and &; in practice, iteration counts
grow quite slowly with these terms.
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TABLE 4.4
CPU times for AMG preconditioned CG to achieve theoretically optimal error reduction on
Bakhvalov meshes, averaged over 3 runs. Corresponding iteration counts for a single run are given
in parentheses.

e? N=27" | N=28 | N=2° | N=210 | N =02l N =212
10° 0.07 (6) ) ) | 36.09 (9) | 166.10 (10)
10=2 || 0.07 (6) ) ) | 38.43 (10) | 165.77 (10)
104 0.05 (5) ) ) | 33.77(9) | 147.10 (9)
1076 || 0.04 (5) | 0.22 1.13 (6) | 5.91 (7) | 30.01 (8) | 143.08 (9)

) ) )
) ) )
) ) )

10-8 0.04 (5 24.15 (8) | 113.79 (9)
10~10 || 0.04 (5 29.08 (11) | 142.97 (13)
10~12 || 0.05 (6 11) | 142.93 (13)

4.7. Numerical results. We present here results for the test problem (1.5) on
Bakhvalov meshes; results for Shishkin meshes are nearly identical and so omitted.
We do not report errors for the solutions computed here. Instead, we fix convergence
tolerances as discussed above (with a small constant factor for BoxMG, detailed below)
such that the error in the iterative solutions generated by geometric multigrid, AMG,
BoxMG, and, for suitably small §,, the boundary-layer preconditioners, matches that
of the direct solver (as reported, for example, in Table 2.1 for the Bakhvalov mesh in
two dimensions) to three significant digits.

Table 4.4 reports the times for the AMG solution of these linear systems, averaged
over 3 runs, and the number of iterations required for a single run; since the iteration
counts are the same for each run (as a zero initial guess and fixed right-hand side are
used for each value of N and ¢), no averaging is needed in these results. Comparing
this with Table 4.1, we see that the AMG solution times are generally comparable to
the best times for CHOLMOD for small N. For larger N, however, the near-optimal
scaling of AMG coupled with the clearly suboptimal scaling of CHOLMOD results
in much better performance when comparing AMG to the best-case solve times of
CHOLMOD, and substantial improvements when CHOLMOD is slowed by subnormal
arithmetic, as discussed in section 4.1.

Hidden in the AMG iteration times is some noteworthy variation in the number of
PCG iterations needed for each problem. Considering the iteration counts in Table 4.4,
we notice that, for fixed e, there is a slight increase in the number of iterations needed
to achieve the stopping tolerance with N, roughly proportional to log, N. This is
naturally predicted by the assumption of a fixed error reduction per iteration of AMG
preconditioned CG, given that the stopping criteria decrease with N. Scaling with
€ is less clear, where we see an initial decrease in iteration counts as ¢ decreases,
followed by an increase as ¢ reaches 1075 and 107°. For fitted meshes, decreases in
€ match increases in the worst-case mesh aspect ratio, which are typically correlated
with convergence of AMG. This variation in € can, to some extent, be ameliorated by
varying the value of the AMG parameter defining the relative magnitude of strong
connections in each row. For worse mesh aspect ratios, larger values of the parameter
(up to 1.0, where only the largest magnitude connections are taken to be strong) are
needed to stabilize AMG convergence, while only a fixed value (0.25) has been used
here.

As seen in other cases, BoxMG clearly outperforms AMG on these problems, with
averaged solution times reported in Table 4.5. Comparing this with Table 4.4, we see
that CPU times range from about 3 times faster for small grids to about 40% faster for
large grids. The iteration counts, also shown in Table 4.5, again show log, IV scaling
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TABLE 4.5

CPU times for BoxMG preconditioned CG to achieve theoretically optimal error reduction on

Bakhvalov meshes, averaged over 3 runs. Corresponding iteration counts for a single run are given
in parentheses.

e? N=2" | N=28 | N=2° | N=210 | N=2U N =212
100 0.02 (8) | 0.13 (9) | 0.77 (10) | 4.44 (10) | 22.38 (11) | 110.39 (11)
102 0.03 (8) | 0.13 (9) | 0.75 (10) | 4.83 (11) | 22.51 (11) | 119.41 (12)
10— 0.02 (7) | 0.12 (8) | 0.68 (9) | 4.45 (10) | 24.35 (12) | 119.42 (12)
10-6 0.02 (6) | 0.10 (7) | 0.62 (8) 4.05 (9) | 20.69 (10) | 101.48 (10)
10-8 0.02 (6) | 0.11 (7) | 0.62 (8) 4.05 (9) 18.86 (9) | 101.48 (10)
10-10 || 0.02 (6) | 0.10 (7) | 0.63 (8) 4.06 (9) 18.92 (9) | 101.60 (10)
10~12 || 0.02 (6) | 0.10 (7) | 0.62 (8) 4.06 (9) 18.96 (9) | 101.82 (10)
TABLE 4.6
Computed values of 6, = €2/(h2) for Bakhvalov meshes on [0,1]? with a single boundary layer
and 8 = 0.99.
e? N=27 N =28 N =29 N =210 N =2l N =212
1 1.65 x 104 6.62 x 104 2.65 x 10° 1.06 x 106 4.24 % 106 1.69 x 107
10—2 1.24 x 102 4.99 x 102 2.00 x 103 7.98 x 103 3.19 x 104 1.28 x 10°
10— 5.12 x 10~ | 2.05 x 10° 8.19 x 10° 3.27 x 10t 1.31 x 102 5.24 x 102
10-6 427 %1073 | 1.71x 1072 | 6.83x 1072 | 2.73 x 10~ | 1.09 x 10° 4.37 x 109
10-8 415 %1075 | 1.66 x 104 | 6.65 x 10~% | 2.66 x 1073 | 1.06 x 1072 | 4.25 x 10~ 2
10710 || 4.14 x 1077 | 1.66 x 1076 | 6.62 x 1076 | 2.65x 1075 | 1.06 x 10~% | 4.24 x 104
10712 || 4.14 x 1079 | 1.66 x 1078 | 6.62 x 1073 | 2.65x 107 | 1.06 x 1076 | 4.24 x 106

as problem size increases, but notably less variation in . This is likely due to the
effectiveness of the alternating-direction line relaxation used within BoxMG, although
there is no existing theoretical verification of this scaling. Once again, the times are
notably shorter (and better scaling) than those for the direct solver in Table 4.1, as
well as showing no sensitivity to subnormal numbers (as one would expect, since a
direct solver is only applied on the coarsest of grids). We note that, to achieve this
performance, we use a slightly stricter stopping tolerance for BoxMG than we do for
AMG or BLPCG, decreasing those described above by an experimentally determined
factor of 10. Such small variations are expected, as the component bounds employed
are true to within constant factors that have been neglected.

The boundary-layer preconditioner discussed in section 4.5 is expected to yield
even faster times, but only when 6, < 1. Table 4.6 shows the values of J;, for various
choices of N and ¢; as expected, for fixed ¢, 0y, increases with increasing N (since h;y
decreases) while, for fixed N, §;, decreases with decreasing €. Note, however, that the
decrease is not linear in €2, as hy is dependent on ¢.

In Table 4.7, we only report results for cases where d;, < 0.1, consistent with the
spectral equivalence bounds in Theorem 4.1 and Corollary 4.2. We note that, when
0 < 0.01, there is no notable difference between the errors in the iterative solutions
generated by boundary-layer preconditioned CG (BLPCG) with the stopping criterion
as given above from those generated by the direct solver. For 0.01 < §;, < 0.1, the
errors generated by BLPCG are somewhat larger, with observed relative increases of
up to about 15%. These values could be decreased by a tighter stopping tolerance,
but this would lead to oversolving in the cases where Jy, is smaller.

Comparing Table 4.7 with Tables 4.4 and 4.5, we see that, when the BLPCG
approach is effective, it offers a substantial further reduction in the time to solution
on large grids, by slightly more than a factor of 3 over BoxMG, and by a larger factor
over AMG. This is slightly better than predicted by the rough cost estimate given in
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TABLE 4.7
CPU times for preconditioned CG with the boundary-layer preconditioner to achieve (near)
theoretically optimal error reduction on Bakhvalov meshes, averaged over 3 runs. Corresponding
iteration counts for a single run are given in parentheses.

e? N=2" | N=28 | N=2° | N=210 | N=2l | N=2!2
10=% || 0.01 (6) | 0.05 (6) | 0.26 (8)
1078 || 0.01(6) | 0.04 (6) | 0.23 (7) | 1.24 (8) | 6.63 (8) | 28.01 (8)
10710 || 0.00 (5) | 0.04 (6) | 0.23 (7) | 1.24 (8) | 6.63 (8) | 28.20 (8)
10712 )] 0.00 (5) | 0.04 (6) | 0.22 (7) | 1.24 (8) | 6.62(8) | 28.15 (8)

section 4.5, but not surprisingly so, especially as BLPCG typically converges in fewer
iterations than BoxMG. The iteration counts in Table 4.7 are steady and show only
small dependency on e.

5. Extensions to three-dimensional problems. While we do not directly
treat either the theory or practice of three-dimensional problems in this paper, we
note that the techniques proposed here for two dimensions all naturally extend to
three. Both AMG and BoxMG can be directly applied to the 7-point stencils of finite
difference discretizations in three dimensions, and past comparisons show BoxMG
to be about ten to fifteen times faster than AMG for some diffusion problems [31].
In three dimensions, BoxMG makes use of plane-based relaxation where, because of
the nonoptimal scaling of direct solvers for two-dimensional problems, relaxation is
composed of a single two-dimensional V-cycle along each plane of grid points in each
direction of the mesh.

Similarly, a three-dimensional analogue of the boundary-layer preconditioner is
also natural. Considering a problem with one boundary layer in each direction and
a tensor product of meshes with N/2 points in the boundary layer and N/2 evenly
spaced points in the interior, there is one highly resolved corner with N?3/8 points,
to which we would apply a standard three-dimensional BoxMG V-cycle, with cost
roughly 1/8 of that of the V-cycle on all N3 points. Along each of the z-, y-, and z-
axes, away from the corner, there are layers that are highly resolved in two directions,
but not the third. For example, along the xz-axis away from the origin, there is high
resolution in the y- and z-directions, but not in the z-direction. Each of these regions
has N3/8 points in it, and can be effectively treated by a single plane solve, instead of
the six plane solves (in three alternating directions, both before and after coarse-grid
correction) used in the standard BoxMG V-cycle. Thus, the cost of treating these
regions at each iteration is (3/8)(1/6)(7/8), where the factor of 7/8 comes from the
treatment of only the finest grid, and not grids of N3, N3/8, N?/64, etc., as in the
multigrid V-cycle. Next, along each face in the xy-, zz-, and yz-planes, there is a
layer that is highly resolved in one direction (orthogonal to the plane), but not along
the plane. In these regions, line solves are sufficient. In the remaining N3/8 points in
the interior, diagonal scaling is sufficient, but we will estimate the cost of line solves
here, too, for simplicity. Thus, for N3/2 points, we make use of a single line solve
(oriented in the direction of the mesh refinement) or point solve, with cost 1/4 of the
relaxation in a plane solve, which has relative complexity of 4/3, and of which there
are six in a three-dimensional BoxMG V-cycle, with relative complexity of 8/7. This
gives a cost of (1/2)(1/4)(3/4)(1/6)(7/8) for the treatment of these regions, relative
to the cost of a full multigrid V-cycle. Adding these costs gives

1/8+(3/8)(1/6)(7/8) + (1/2)(1/4)(3/4)(1/6)(7/8) = 99/512
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of the cost of a full three-dimensional BoxMG V-cycle. While the nonuniform coars-
ening used by AMG should naturally coarsen in ways consistent with this proposed
boundary-layer preconditioner, the expectation that BoxMG by itself outperforms
AMG implies that the boundary-layer preconditioner should be the fastest approach.
We also note that the expected speedup in three dimensions is by a larger factor than
that given in two dimensions (which, in turn, outperforms one dimension).

6. Conclusions. This paper focuses on the solution of the linear systems of
equations that arise from finite difference discretizations of singularly perturbed re-
action-diffusion equations on fitted meshes. We show that the commonly used direct
solvers scale poorly with both the mesh size (as is well known) and the perturba-
tion parameter (due to slow performance of IEEE floating-point arithmetic in this
regime). In contrast, robust multigrid methods offer nearly parameter-uniform ef-
ficiency in solving these linear systems, and the carefully derived stopping criteria
ensure accurate, and efficient, approximations to the discrete solution. Existing soft-
ware implementing algebraic and black-box multigrid approaches are demonstrated to
offer nearly scalable performance. A new boundary-layer preconditioner is also pro-
posed and is shown, both theoretically and numerically, to offer near-optimal scaling
at still lower cost. Overall, we see speedups of factors of 40 or greater for problems
with small perturbation parameters.

The approaches proposed here can clearly be extended to a number of other situa-
tions. Bilinear finite element discretizations on fitted meshes generate similar stencils
to those considered here and, as such, it is expected that simple extensions of these
approaches can be applied in this case. Other layer-adapted meshes, such as hybrid
Bakhvalov—Shishkin meshes (e.g., [41]), and variants due to Vulanovi¢ (e.g., [51]),
create similar structures; in these cases, very similar approaches should also yield
near-optimal scaling solution algorithms for the resulting linear systems. The devel-
oped theory for the boundary-layer preconditioner, in particular, is directly applicable
to finite difference discretizations on any fitted mesh that yields uniform mesh width
away from the boundary and corner layers, while the stopping criterion derived de-
pends only on the minimum mesh width and existing theoretical error estimates for
the discretization.
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