ROBUST SOLUTION OF SINGULARLY PERTURBED PROBLEMS USING MULTIGRID
METHODS; ANALYSIS AND NUMERICAL RESULTS IN ONE AND TWO DIMENSIONS*
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Abstract. We consider the problem of solving linear systems of equations that arise in the numerical solution of singularly
perturbed ordinary and partial differential equations of reaction-diffusion type. Standard discretization techniques are not
suitable for such problems and, so, specially tailored methods are required, usually involving adapted or fitted meshes that
resolve important features such as boundary and/or interior layers. In this study, we consider classical finite difference schemes
on the layer adapted meshes of Shishkin and Bakhvalov. We show that standard direct solvers exhibit poor scaling behaviour
when solving the resulting linear systems. We investigate the use of standard robust multigrid preconditioners for these linear
systems, and we propose and prove optimality of a new block-structured preconditioning approach.
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1. Introduction. This study addresses the problem of solving linear systems that arise when computing
numerical solutions to certain linear singularly perturbed boundary value problems in one and two dimensions.
These differential equations are characterised by a small positive parameter, usually denoted as ¢, multiplying
the highest derivative. The perturbation is “singular” in the sense that, as ¢ — 0, the problem becomes ill-
posed since the order of the differential equation is reduced but number of boundary conditions remains the
same. (For a more formal definition, see [29, Chap. 1].)

The simplest example of a singularly perturbed problem is

—&?u” + a(x)u' (z) + b(z)u = f(z) on (0,1), u(0) = 0,u(l) = 0. (1.1)

When b = 0 this is known as a convection-diffusion problem, whereas if a = 0 and b # 0, it is of reaction-
diffusion type. Such problems, and their higher-dimensional analogues, are common in mathematical models.
Convection-diffusion problems are widespread in many formulations of fluid-flow problems (e.g., in linearised
Navier-Stokes equations, and transport problems), and simulation of semi-conductor devices: see [41] and [34]
for a more exhaustive list. Coupled systems of reaction-diffusion equations are standard in many biological
applications, simulation of chemical reactions, and in hydrodynamic stability. In each case, the solution to
the singularly perturbed problem is characterised by the presence of boundary or interior layers: narrow
regions of the domain where the solution changes rapidly.

The numerical solution of these problems is of significant mathematical interest. Classical numerical
schemes that are suitable when ¢ is O(1) are often inappropriate as ¢ — 0, unless the number of degrees
of freedom in one dimension, N, satisfies a relation such as N = O(e~!): without this, they may fail the
resolve layers—usually the region of most interest; the order of convergence may be diminished for small ¢, a
phenomenon some times referred to as locking [3]; in the case of convection-diffusion problems, the method
may become unstable and fail to yield any useful information.

Much of the difficulty in applying numerical methods to problems such as (1.1) stems from the fact that
the derivatives of these solutions depend on negative powers of the perturbation parameter. Since estimates
for the errors in numerical solution generated by classical schemes depend on bounds for these derivatives,
they are not parameter robust meaning that they do not hold for arbitrarily small values of the perturbation
parameter.

The development of algorithms that are robust with respect to the perturbation parameter, and resolve
any layers present, is a very active field of endeavour. See, for example, [18, 29, 33, 41, 45|, and the many
references there-in. Such so-called parameter robust (also known as uniformly convergent or “c-uniform”)
methods guarantee that the computational effort required to obtain a certain accuracy is the same, for

*This research was supported in part by the Institute for Mathematics and its Applications with funds provided by the
National Science Foundation. The research of SM was partially supported by the National Science Foundation under grant
DMS-0811022. The research of NM was supported by the Science Foundation of Ireland under Grants No. 08/RFP/CMS1205
and Mathematics Initiative 07/MI/007.

TDepartment of Mathematics, Tufts University, 503 Boston Avenue, Medford, MA 02155. Email: scott.maclachlan@tufts.edu

¥School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland. Email:
Niall. Madden@NUIGalway.ie



2 S. MacLachlan and N. Madden

example, when ¢ = 107% as when ¢ = 1072. The majority of these papers consider the application of
standard schemes, such as finite difference and finite element methods, on specially constructed (a priori or a
posteriori) fitted meshes, most often the piecewise uniform meshes introduced by Shishkin [33] or the graded
meshes devised by Bakhvalov [4], described below in Section 2.2.

These algorithms produce linear systems that must be solved, but it is notable that there are relatively
few studies concerning their numerical solution.This is significant because, particularly for problems in more
than one dimension, standard solvers are unlikely to be useful; the development of fast robust solvers is
important and challenging. Moreover, most studies usually assume that the computational effort for solving
the linear systems is independent of ¢; few have considered the issue of solving the linear systems with
efficiency that is robust with respect to e. We argue that this should not be taken for granted. Firstly, direct
solvers—whose performance should depend only on the matrix structure, and not its entries—are of limited
use for problems in more that one dimension. Furthermore, as outlined below in Section 3, such solvers can
be surprisingly inefficient for singularly perturbed partial differential equations. Finally, the performance and
analysis of most iterative schemes, particularly those involving robust preconditioners, is highly dependent
on both the scheme and the underlying differential equation.

Therefore, it is surprising that there is so little in the literature on development of solvers for discretization
schemes designed for singularly perturbed problems. For convection-diffusion problems, several studies exist,
including [40], which considers the conditioning of the resulting discretizations on certain meshes and the
effects of diagonal scaling; Farrell and Shishkin give a short analysis of a Gauss-Seidel method for a convection
diffusion problem in [19]; while, in [2], results of experiments with ILU-based preconditioners are reported.
Multigrid methods for convection diffusion problems on Shishkin meshes are discussed in [21, 20], where a
scalable multigrid scheme is introduced.

For reaction-diffusion problems, most of the multigrid literature focuses on the case of a singularly
perturbed problem discretized on a uniform or quasi-uniform mesh. For example, in [36], it is shown that a
standard multigrid method applied to the two- and three-dimensional analogues of (1.1) on a quasi-uniform
mesh converges with bound independent of mesh size or €; only a small remark is made about lack of accuracy
within the boundary layers. A hierarchical basis approach is discussed in [47]; however, the restriction in
this work that the mesh aspect ratios be uniformly bounded is not satisfied by the tensor-products of fitted
meshes considered here. In contrast, there is extensive literature on the combination of multigrid methods
with adaptive refinement algorithms, ranging from fundamental principles discussed in [7] to recent work
on achieving efficiency in massively parallel environments [5]; clearly such approaches yield efficient solution
algorithms for the problems considered here. Our interests, however, are in the cases where we have enough a
priori knowledge to avoid the costs of grid adaptation, but still require efficient solvers on highly non-uniform
fitted meshes.

While we focus here on the case of singularly perturbed problems, we note that our approaches could
also be applied to other problems where there is a substantial mismatch between the scaling of terms in the
discrete equations over different parts of the domain. One such case, of key current interest, arises in the
simulation of time-harmonic wave propagation. In the development of discretizations for either the Helmholtz
equation or Maxwell’s equations, special attention is always paid to the treatment of discrete approximations
of the Sommerfeld radiation condition for outgoing waves. In many cases, in order to attain meaningful
solutions over a physical domain of interest, a much larger volume needs to be modeled, implementing some
form of absorbing boundary layer to prevent unphysical reflections of outgoing waves at the edges of the
discretized domain. While this may be achieved simply by introducing attenuative terms within the layer
[50, 46], a more common approach is to couple discretized attenuative terms with a significant increase in
grid spacing [14, 16, 35, 24, 54]. While some work has been done on the development of efficient multigrid
approaches for these grid structures [54, 39], the methods proposed here may lead to simpler algorithms with
improved efficiency for these grids.

1.1. Model problems and examples. In this paper, we consider reaction-diffusion problems in one
and two dimensions. The general form of the one-dimensional problem is:

Lou:= —*u” + b(x)u = f(x), onQ=(0,1), (1.2a)
subject to the boundary conditions

u(0) = 0,u(1) = 0. (1.2b)
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We shall assume that ¢ € (0,1] and that there exists 8 such that 0 < 3% < b(x) for all z € Q. It is easy to
show that the operator L. satisfies a maximum principle (see, e.g., [38]), and that the problem possesses a
unique solution. If ¢ <« 1/, then the problem is singularly perturbed, and we expect its solution to exhibit
boundary layers, with rapid changes in u(z), near x = 0 and x = 1.

As an example, consider the problem

— &%/ +u=e¢e"on (0,1), u(0)=u(l)=0. (1.3)
When ¢ < 1, the solution can be expressed as

e—x/s(el—l/e _ 1) + e—(l—x)/a(el/a _ 6) e

u(x) = (1—e2)(1— e 2/%) + 1— g2

One can consider the expressions exp(—x/e) and exp(—(1 — z)/e) as representing the layer components. A
typical solution exhibiting these layers is shown in Figure 1.1(a).
Our model two-dimensional problem is

— 2 Au+b(x,y)u = f(z,y) on Q:=(0,1)2 u(z,y) = g(x,y) on 09, (1.4)

where, again, we assume that there is a positive 3 such that 0 < 82 < b(x,y) for all (x,y) € Q. Subject to
sufficient regularity and compatibility of b, f and g, this problem has a unique solution: we refer readers to,
e.g., [25] for technical details. When ¢ is small, the solution may have boundary and corner layers.

As an example of a two-dimensional problem, we consider a variant on a standard test problem (see, e.g.,
[12]). Although, in general, one would expect solutions to (1.4) to have four boundary and four corner layers,
for simplicity of exposition, we have constructed one that has only two boundary layers, near the edges x = 0
and y = 0, and a corner layer near (0,0). We take b(x,y) = 1, choose f and g so that

u = 2*(1 4+ y?) + sin(r2?) + cos(my/2) + (1 + = +y) (6721"/8 + e~ /e, (1.5)
This solution, in the case e = 1072, is shown in Figure 1.1(b).
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(a) Solution to (1.3) with ¢ = 1072 (b) Solution to (1.5) with ¢ = 1072

Fic. 1.1. Ezxamples of solutions to one- and two-dimensional singularly perturbed reaction-diffusion problems

1.2. Outline. In Section 2, we introduce the standard finite difference schemes for one- and two-
dimensional problems, demonstrating that they are not parameter robust if employed on a uniform mesh.
This motivates the introduction of two standard parameter robust finite difference methods: one based on
the piecewise uniform meshes of Shishkin, and the other on the graded meshes of Bakhvalov. In Section 3,
we show that standard direct solvers perform poorly for these discretizations, with the CPU time required
depending badly on €. This motivates the introduction of iterative methods in Section 4, beginning with
multigrid methods and a boundary-layer preconditioning approach for one-dimensional problems. We then
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discuss multigrid methods for two-dimensional problems, focusing on the Algebraic Multigrid (AMG) and
Black Box Multigrid (BoxMG) methods, before proposing a two-dimensional boundary-layer precondition-
ing approach in Section 4.2.4. Stopping criteria for these iterative methods are discussed in Section 4.3,
followed by the results of numerical experiments in Section 5. A brief discussion of generalisations to higher-
dimensional problems appears in Section 6, with conclusions and some comments on other extensions of this
work in Section 7.

1.2.1. Notation. We denote by N the number of intervals in one dimension of a mesh, and by ¢ and C
generic positive constants that are independent of € and N. Since we are mainly concerned with discretization

by finite difference methods, we use || - ||oc to denote the discrete maximum norm on a given mesh:
max_|u(z;)] on the one-dimensional mesh w?,
z;EwN
[ulloo = L
max |u(zi,y;)|  on the two-dimensional mesh w™¥ >V,

(xi,yj)EwNXN

The continuous analogue on the domain ( is denoted || - ||q,00- Other norms used are the discrete ¢, norm,

| - []2, and the A-norm for symmetric and positive-definite matrices, A, ||[V[[4 = (VT AV) Y2 for any vector,
V. We reserve the use of || - || for denoting a generic norm, which may be any of the above.

We will use two parameters to measure the singularly perturbed nature of a discrete problem. Define
dn = (eN/B)? to indicate if a problem is singularly perturbed relative to a mesh with N points, when éx < 1.
For the purposes of the theory developed in Section 4, we use the term boundary-fitted mesh to mean a mesh
that is uniform in the interior of the domain, but condenses near the boundary. This uniform mesh-width
away from boundaries is denoted hy, and we define &, = (¢/(h;3))? to indicate the diagonal dominance of
the matrix over the interior degrees of freedom.

2. Parameter robust methods. The robust solution of singularly perturbed problems can be achieved
using fitted operator schemes (i.e., specially designed methods, but used, say, on a uniform mesh) or fitted
mesh methods—standard schemes employed on specially designed meshes. The latter approach has received
most attention of late, not least because they are easier to generalise to high-dimensional problems. These
fitted mesh methods are categorised as either a priori or a posteriori (equivalently, “fitted” or “adaptive”).
An a priori method is constructed based on a careful analysis of the asymptotic properties of the solution and
its derivative; most published work considers such schemes. Alternatively, adaptive schemes may be generated
based on a posteriori analysis: see, for example, [27, 9]. In this paper, we consider only fitted mesh methods.
However, those meshes generated by adaptive schemes tend to be very similar to the Bakhvalov meshes we
discuss below and, as such, we expect that similar techniques could be used for the meshes generated by
adaptive schemes.

2.1. Finite difference scheme for one dimensional problems. Given an arbitrary one-dimensional
grid w = {0 =2y <2, <+ <2y =1}, with h; = 2; — x;_; for i = 1,... N, the natural second-order
finite-difference discretization of problem (1.2) is given by

e? (Ui+1 U Ui—-U~-

h hita hi

; ) +b(z)U; = f(x;), fori=1,...N—1,

U=0 forie{0,N},

where h; = (hiy1 + h;)/2. As this provides a potentially unsymmetric discretization of a Hermitian operator
(since h; # h;11 on an arbitrary mesh), a natural approach is to symmetrise this operator, both for consistency
with the continuum equations and for the many advantages of dealing with symmetric and positive-definite
linear systems. The symmetrised finite-difference method for the problem (1.2) is given by multiplying by a
diagonal matrix with entries h;, giving

2 <U¢+1 *Uz‘ Ui*Ui—l
_6 J—
hit1 h;

> =+ Ezb(xZ)Uz = ﬁzf(xz), fOI‘ 1= 17 ..N — 1, (21)
U;=0 forie{0,N}.

In matrix form, we write the symmetrically scaled equations, with boundaries eliminated, as AU = F'.
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If the mesh w? is uniform then, in both theory and practise, one must make the unreasonable assumption
that N is O(e~!) in order to obtain a convergent, layer-resolving method. In Section 2.3 below, we give an
example of numerical results obtained on a uniform mesh, demonstrating this point. Intuitively, it seems
likely that a robust scheme could be generated if h; is O(e), but only in the region of the layers. This is indeed
the case, but the construction of such meshes must be very careful if one is to rigorously prove robustness.
We consider two examples of such meshes below: a simple piecewise uniform mesh, and a more accurate
graded mesh.

2.2. Fitted meshes for one dimensional problems.

2.2.1. Shishkin meshes. The most popular boundary-fitted mesh for singularly perturbed problems
to be found in the mathematical literature is certainly the piecewise uniform mesh of Shishkin [33]. For a
problem such as (1.2), it may be formed as follows: assuming the number of mesh intervals N is divisible by
4, define the mesh transition point to be

2° I NY, (2.2)
B
and divide [0, 1] into subintervals [0, 7¢], [Tg,1 — 7g] and [1 — 7g, 1]. A piecewise-uniform mesh is constructed
by subdividing [rg, 1 — 7] into N/2 equidistant mesh intervals, and subdividing each of [0, 7¢] and [1 — 7¢, 1]
into N/4 equidistant mesh intervals, as shown in Figure 2.1. The construction can also be described in terms
of a mesh generating function.

DEFINITION 2.1. A function ¢ : [0,1] — [0,1] is a mesh generating function for the mesh wV =
{zg,21,-..,xn} if & = Y(i/N). Following [29], a suitable Shishkin mesh for (1.2) can be formed by taking
the transition point 7¢ as defined in (2.2), and then

1
Tg = min{i,

4tTg t< 1
1 3 .
W(t) = 2(1—7-5)(15—1)—&-27-3(1—75) $<t<3,
4(1—75)(1—t)+475(t—2) t>3.
N/4 N/2 N/4
‘||||||||||||||||||||||||||||‘
‘||||||||||||||||||||||||||||‘

F1c. 2.1. A Shishkin mesh for a reaction-diffusion problem

This mesh was first proposed in [44], and an accessible analysis of the uniform convergence of the finite
difference method (2.1) applied to the linear reaction-diffusion problem (1.2) is given in [33, Chap. 6]. That
analysis uses ideas involving decomposition of the solution into regular and layer parts and exploits the
fact that the continuous and discrete operators satisfy maximum principles. A unified treatment based on
discrete Green’s functions is given in [29], from which it quickly follows that there is a constant C' which is
independent of both N and e such that that the solution to the finite difference scheme (2.1) satisfies

|lu—Ullee = max |u(z;) —U;] < CN~2In* N. (2.3)
i=0,1,...,.N
Since C' does not depend on ¢, this qualifies as a parameter robust estimate. It is not immediately obvious

from (2.3) that the numerical solution also resolves the boundary layers. However, one can also show (see,
g., [29, Thm. 6.12]) that

7 _ 7 < —27 2
le = Ullg,co = max fu(z) —Ulz)] < CN"ZIn" N,

where U is the piecewise linear interpolant to U.
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2.2.2. Bakhvalov meshes. In the case where ¢ is O(1), the scheme (2.1) applied on a uniform mesh
should yield a numerical solution with error that is bounded by terms of O(N~2). The logarithmic factor
that spoils (2.3) slightly is the price one pays for the simplicity of employing a piecewise uniform mesh. To
regain full second-order convergence, one could use the more sophisticated nonuniform boundary-fitted mesh
of Bakhvalov [4]. Like the Shishkin mesh, it is uniform over the interior of the domain (a fact which simplifies
our analysis later in Section 4.1.3), but is graded within the boundary layer. The mesh generating function,

P, is

) =-Zma- b for ¢ € [0, 74),
) = B q
¥l <t>= X(7g) + 9/ (rp)(t — 75)  fort € [r5,1/2],
(1 —1t) for t € (1/2,1],

where the Bakhvalov mesh transition point 75 is chosen so that 1 € C1[0,1]. This is done by solving the
(simple) nonlinear problem (1 — 275)¢'(75) =1 — 2x(7g): for example the iteration

=0, X(Tit1) =
converges rapidly (see [29, p. 7]). The mesh parameters ¢ and o are user-chosen and control, respectively, the
proportion of mesh points in the layer regions, and the grading of the mesh within the layer. A diagram of

such a mesh is shown in Figure 2.2, and the mesh generating functions for both the Shishkin and Bakhvalov
meshes are shown in Figure 2.3.

FiG. 2.2. A Bakhvalov mesh for a reaction-diffusion problem

—— Shishkin P
0.9H = = = Bakhvalo .

0.8 4

0.5 4

0.4r 1

0.2r 4

0.1 ’ 4

-———

FIG. 2.3. Mesh generating functions for Shishkin and Bakhvalov meshes with N = 27 and e = 1072. The parameters for
the Bakhvalov mesh are ¢ =1/2 and o =2
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For the Bakhvalov mesh just described, it can be proved [29] that there is a constant C' independent of
€ and N such that

lu—Ulloo < CON72,

and, furthermore, as with the Shishkin mesh, the piecewise linear interpolant to the Bakhvalov solution is
second-order convergent.

2.3. Fitted methods for two dimensional problems. For the two dimensional problem (1.4), we
employ the natural extension of the method (2.1): a standard finite difference scheme on a tensor-product
grid. Let wl and w)’ be arbitrary meshes, each with N intervals on [0,1]. Set w™*N = {(xi,yj)}f-\szo to
E)e the Cartesian product of wév and w;/v. Taking h; = x; — -1, kj = yj — Yj—1, h; = (41 —®i—1)/2, and
ki = (yj+1 — y;-1)/2, we define the symmetrised 5-point second-order central difference operator:

h;
_ kjt1
-1 1 -1 1 k
AN = | 2 —(k —+ +hi(— ) ]
hz ’ (hz hi+1 )7 k] kj+1 hi—i—l
hi
k;

The resulting numerical scheme is:

(= AN + hik;b(xi,y;)) Uiy = hik; f (2, ;)
Ui,’ :g(xiayj)v

i=1,....N—-1,j=1,...N — 1,
. . (2.4)
i€ {0,N}, je{0,N}.
Again, we write the linear system as AU = F.

As in one dimension, this scheme will not generate satisfactory numerical solutions if employed on
a uniform mesh. Consider Table 2.1 below, which gives the maximum pointwise errors in the numerical
solution to (1.5) for various values of N and ¢ on a uniform mesh. When ¢ is O(1), the method is second
order accurate as expected. However, when ¢ is small, the reported error increases as N increases. This is
because, if N <« 1/e, the boundary layers are not resolved. However, as N increases one obtains more mesh
points close to, or within, the layers. Since these are the regions where the problem is most difficult to solve,
the observed error increases. The most interesting row in Table 2.1 occurs for e = 1076, where we see an
initial increase in the maximum errors as N increases, until we reach the point where N = O(e71). As we
increase N from here, the pointwise error decreases, falling off as N 2.

g2 N =27 N =28 N =2° N =2% N =2 N =2!2
1 9.762 x 107° | 2.441 x 107° | 6.103 x 1075 | 1.526 x 107 | 3.814 x 10~ 7 | 9.447 x 10~®
1072 || 1.098 x 1072 | 2.750 x 10™* | 6.878 x 107> | 1.720 x 107° | 4.299 x 1076 | 1.075 x 10~°
107% || 1133 x 107! | 3.147 x 1072 | 8.094 x 1073 | 2.053 x 1073 | 5.142 x 10~* | 1.286 x 10~*
1076 || 3.149 x 1072 | 1.126 x 107! | 2.315 x 107" | 1.607 x 107" | 4.715 x 1072 | 1.298 x 102
1078 |1 3.301 x 107* | 1.313 x 107 | 5.212 x 107% | 2.052 x 1072 | 7.702 x 1072 | 2.054 x 10~
10719 |1 3.302 x 1076 | 1.316 x 1075 | 5.253 x 1077 | 2.099 x 10~* | 8.382 x 10~* | 3.343 x 103
10712 || 3.302 x 1078 | 1.316 x 1077 | 5.253 x 1077 | 2.099 x 10¢ | 8.393 x 107¢ | 3.356 x 10°
TABLE 2.1

Mazimum pointwise errors for problem (1.5) solved by a finite difference method on a uniform mesh

2.3.1. A Shishkin mesh for a two dimensional problem. We shall now construct fitted meshes
which can be used to generate uniformly convergent numerical solutions. Because the test problem (1.4)
features one layer in each coordinate direction, we modify slightly the construction of the Shishkin mesh
of Section 2.2.1 for the one-dimensional problem. Similar to (2.2), we choose the transition point 74 =
min{1/2,2(¢/f)In N}, and take both w) and w) to be piecewise uniform meshes with N/2 intervals on each
of [0,7g] and [rg,1]. The resulting Cartesian product mesh is shown in Figure 2.4(a).



The error estimate for the one dimensional problem can be extended to the two dimensional case. In
particular, in [12], the following parameter robust error estimate is proved: there is a constant C' independent

of N and ¢ such that

In Table 2.2, we report the maximum pointwise errors when (1.4) is solved on the Shishkin mesh just described.
When ¢ is large, the mesh is uniform and, so, the results are identical to those reported in Table 2.1. For
fixed IV, we notice that the error initially increases as € decreases; this corresponds to the mesh transitioning
from being uniform to being piecewise uniform. As predicted by the theory, although the rate of convergence
initially falls from O(N—2) for e = 1 to O(N 2 In? N) for smaller ¢, the accuracy with respect to N is

otherwise guaranteed.
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|u—Ullso < CN~2In? N.

e? N =27 N =28 N =29 N =210 N =2l N =212
1 9.762 x 1075 | 2.441 x 1075 | 6.103 x 1076 | 1.526 x 1076 | 3.814 x 10~7 | 9.447 x 108
1072 || 1.098 x 1073 | 2.750 x 10~* | 6.878 x 107% | 1.720 x 1072 | 4.299 x 10~ | 1.075 x 10~
107% || 4.996 x 1073 | 1.648 x 1073 | 5.227 x 10~* | 1.614 x 10~* | 4.883 x 1075 | 1.453 x 10~°
106 5.105 x 1073 | 1.684 x 1073 | 5.354 x 10~* | 1.654 x 10~* | 5.008 x 10~° | 1.490 x 10~°
10~8 5.116 x 1073 | 1.692 x 1073 | 5.370 x 10~* | 1.658 x 10~* | 5.023 x 10~° | 1.495 x 10~°
10710 || 5.116 x 1073 | 1.692 x 1073 | 5.372 x 10~* | 1.660 x 10~* | 5.025 x 1075 | 1.495 x 10~°
10712 || 5.116 x 1073 | 1.692 x 1073 | 5.372 x 10~* | 1.660 x 10~* | 5.025 x 1075 | 1.496 x 10~°
TABLE 2.2

2.3.2. A Bakhvalov for a two dimensional problem. Taking w? = wév to be the one dimensional
graded mesh described Section 2.2.2, adjusted to account for the fact that there is only one layer in each co-
ordinate direction, and taking the Cartesian product mesh, w

Mazimum pointwise errors for problem (1.5) solved on a Shishkin mesh

mesh, shown in Figure 2.4(b).

NXN

, generates the two-dimensional Bakhvalov
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Kellogg et al. [26] prove the e-uniform error estimate: there is a constant C' independent of € and N such

that

(a) Shishkin mesh

(b) Bakhvalov mesh

FIiG. 2.4. Fitted meshes for problem (1.5) when N =16, e = 2 x 1072

lu—Ulloo < ON2.

(2.6)



Robust solution of SPPs using multigrid methods 9

This bound is seen to be sharp in the results of numerical experiments for Problem (1.5) reported in Table 2.3
below. The errors are clearly uniform in e, and the method is fully second-order: the spoiling logarithmic
factor associated with the Shishkin mesh is absent and, so, the errors are smaller than those reported in Ta-

ble 2.2.

e? N =27 N =28 N =29 N =210 N =21 N =212
1 9.762 x 1075 | 2.441 x 1075 | 6.103 x 1076 | 1.526 x 1076 | 3.814 x 10~7 | 9.447 x 10~8
1072 || 9.907 x 1075 | 2.479 x 107° | 6.196 x 1076 | 1.549 x 1076 | 3.873 x 10~7 | 9.685 x 108
104 || 2.858 x 1075 | 7.170 x 1076 | 1.794 x 1076 | 4.486 x 10~7 | 1.122 x 10~7 | 2.802 x 10~8
106 2.864 x 1075 | 7.188 x 1076 | 1.803 x 1076 | 4.511 x 1077 | 1.128 x 10~7 | 2.818 x 10~8
108 2.880 x 1075 | 7.241 x 1076 | 1.814 x 1076 | 4.537 x 1077 | 1.135 x 10~7 | 2.840 x 10~8
10710 || 2.881 x 1075 | 7.245 x 1076 | 1.815 x 1076 | 4.543 x 1077 | 1.136 x 10~7 | 2.841 x 10~8
10712 || 2.881 x 1075 | 7.245 x 1076 | 1.815 x 1076 | 4.543 x 10~7 | 1.137 x 10~7 | 2.850 x 10~8

TABLE 2.3

Mazimum pointwise errors for problem (1.5) solved by a finite difference method on a Bakhvalov mesh

3. Solving a 2D problem with a Direct Solver. Solving the one-dimensional problem is straight-
forward with a direct solver, as the resulting tridiagonal matrices can be factored with no fill-in. Thus, here,
we consider the challenges of applying direct solvers to the two-dimensional problem.

Our programmes that generate the results throughout this paper were coded in C and executed on a
Beowulf cluster using a single core of a node with an AMD Opteron 2427, 2200 MHz processor with 32Gb
of RAM. In this and the previous section, we use CHOLMOD (supernodal sparse Cholesky factorization and
update/downdate) Version 1.7.1 to solve the sparse symmetric linear systems; see [11, 13]. In Table 3.1,
we show the time in seconds, averaged over three runs, required to solve the linear systems on Bakhvalov
meshes that yield results given in Table 2.3. For a given ¢, we see growth in these times that, for large
N, scales as N? (increasing by factors of roughly eight when N is doubled), as expected given the known
O(N3) complexity of the nested dissection algorithm for these grids [22] and the O(N?) lower bound for this
complexity [23]. For fixed N, however, we observe that, rather remarkably, the amount of time required to
solve the linear system depends quite badly on the perturbation parameter. This is in spite of the fact that,
for a given N, the matrices for different € have exactly the same size and structure; the only difference is
the scaling of some entries due to the difference in both ¢ and the local mesh width. Similar results have
been observed with other direct solvers, including MA57 [17], on different processors and architectures, and
with different meshes, including uniform and Shishkin meshes. As we now explain, the degradation in the
performance of the direct solvers is not related to their implementation but, rather, the specific nature of the
discretized singularly perturbed problem.

g? N=2"| N=22 | N=29 | N=210| N=211 ] N =212
1 0.08 0.41 2.80 19.32 203.25 1736.27
1072 0.07 0.39 2.80 19.36 203.62 1735.94
1074 0.07 0.40 2.82 19.50 203.71 1737.89
10=6 0.07 1.00 12.11 93.06 891.72 7716.35
10—8 0.16 1.34 11.29 76.75 495.31 2787.91
10~10 0.19 1.24 8.82 49.42 353.53 1581.63
10~12 0.19 1.16 7.10 38.49 264.58 1211.50

TABLE 3.1

Cholesky (CHOLMOD) solve times for linear systems generated by a finite difference method applied on a Bakhvalov mesh

Writing the linear system for the finite difference solution to (2.4) as AU = F', while neglecting boundary
conditions, gives A as an (N —1)% x (N —1)?2, banded, symmetric and positive-definite matrix with bandwidth
of N—1. It should be easily solved using a Cholesky factorisation, A = LT L, though the factors will experience
fill-in within the band. When considering the rows/columns of these matrices in which the off-diagonal entries
are much smaller than the diagonals (i.e., those where the mesh spacing h; > ¢), the successive fill-ins are
decaying in magnitude, scaling as (¢2/h2)* for the k" band of fill. If the bandwidth is small, then this poses
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no problem for floating-point calculation. If, on the other hand, N is large, then floating-point underflows
may occur.

In TEEE standard double precision, numbers are typically represented with 64 bits as £X X
where 52 bits are used to store the significand, X, 11 bits are used to store the exponent, Y, and the
remaining bit stores the sign of X. If 0 < Y < 2047 (a “normal” number), then X is assumed to be a binary
decimal with a leading 1 (an implied 53" bit); the smallest number that can be represented this way is,
then, when Y = 1 and X = 0, giving 271022 ~ 1073%, When Y = 0, the implied bit in X is taken to be
a leading 0 and the exponent is fixed at —1022, allowing representation of nonzero numbers as small as is
2752 % 271022 » 5 % 10732* when the binary decimal in X has only a single one, in its last entry; anything
smaller than this is rounded to zero (when X = 0 and Y = 0). The use of such “subnormal” numbers allows
for gradual reduction in the precision of stored numbers. For a full discussion of IEEE double precision see,
for example, [37]. Most processors, however, do not provide hardware support for arithmetic with subnormal
numbers and, instead, a compiler must rely on a software implementation, which is significantly slower [28].
The variation in timings seen with € in Table 3.1 are due to the introduction of subnormal numbers in the
fill-in generated by Cholesky.

To demonstrate this effect, in Table 3.2, we give the number of nonzero entries in the Cholesky factors
produced by CHOLMOD for a range of values of N and ¢, corresponding to those shown in Table 3.1, as well
as the number of subnormal entries. For ¢ < 1072, there are no subnormal numbers, and the scaling in N is,
notably, worse than O(N?). For smaller €, the number of subnormals increases and the number of nonzero
numbers decreases. (This latter observation is important since these “new” zeros result from underflow
involving subnormals and, so, are expensive to compute.) Although they are relatively few compared to the
number of nonzero entries, they are sufficient to greatly increase the computation time.

2Y—1O23

e? N =27 N =28 N =29 N =210 N =2l N =212

1 350,112 | 1,833,813 | 9,425,559 | 45,671,436 | 183,759,251 | 831,532,333
0 0 0 0 0 0

1072 350,112 | 1,833,813 | 9,425,559 | 45,671,436 | 183,759,251 | 831,532,333
0 0 0 0 0 0

10~4 350,112 | 1,833,813 | 9,425,559 | 45,671,436 | 183,759,251 | 831,532,333
0 0 0 0 0 0

107% || 350,112 | 1,828,215 | 9,293,727 | 44,499,256 | 179,511,201 | 808,690,367
0 4,338 22,596 108,387 573,033 2,852,019

10~% || 347,351 | 1,717,341 | 8,266,871 | 37,946,547 | 147,162,291 | 625,420,613
1,146 8,488 56,295 316,104 1,121,348 4,956,624

10710 || 335,322 | 1,614,213 | 7,535,505 | 33,695,760 | 130,437,185 | 544,870,886
1,915 10,008 77,691 283,348 1,111,292 4,422 916

10712 || 322,935 | 1,534,747 | 7,019,889 | 31,076,314 | 120,736,814 | 504,478,967
2,176 11,467 58,065 305,428 991,728 3,803,770

TABLE 3.2

Number of nonzero entries (top) and subnormal numbers (bottom) in Cholesky factors generated by CHOLMOD.

This phenomenon is a natural feature of discretizations of multidimensional problems. For problems in
1D, on the other hand, the efficiency of direct solvers should be independent of ¢ for standard discretizations,
because of the typical tridiagonal structure of the resulting matrices. Since there is no zero band in the
original matrices, there can be no fill-in of the factors and, so, no subnormal numbers will be computed.
However, the difficulties highlighted above are likely to be exacerbated further for problems in three or more
dimensions where larger bandwidths occur.

It is worth noting that this behaviour can be overcome with compiler directives. For the GCC family of
compilers, the ~-funsafe-math-optimizations option turns on certain optimizations that violate the IEEE
floating point standard, including the treatment of subnormal numbers. With this option enabled, we see
general decreases in the factorization and solve times as ¢ decreases and the number of nonzero entries
retained in the factors drops, with no observable degradation in the solution accuracy. However, we now see
large (up to 60%) increases in these times for the smallest values of € that are not consistent with the number
of nonzeros in the factors. This suggests that simply ignoring subnormal entries in the factors may still not
be enough to ensure a favorable scaling of direct solvers with e, especially as doing so relies on compiler and
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architecture dependent implementations of variations to the IEEE standard.
4. Iterative Methods.

4.1. Solving the one-dimensional system. From a practical viewpoint, there is no benefit to be
gained in terms of computational time or memory requirements from considering iterative approaches to
solving discretizations of one-dimensional problems such as (1.1) by a standard 3-point scheme. The tridi-
agonal structure of the discretization matrices ensures that sparse direct solvers are optimal, and specialized
approaches, such as cyclic reduction or the Thomas algorithm, are well-known in the literature. It is,
nonetheless, worth considering iterative approaches for these matrices to inform the development of itera-
tive approaches for two- (or multi-) dimensional problems. In particular, the theory for the boundary-layer
preconditioner developed in Section 4.1.3 develops the key ideas needed for the two-dimensional analysis in
Section 4.2.4.

4.1.1. Geometric Multigrid. Multigrid methods are widely regarded as being among the most effi-
cient iterative approaches for solving discretizations of elliptic PDEs, such as those considered here. The
key to their efficiency lies in the combination of two processes, relaxation and coarse-grid correction, that
effectively damp complementary components of the error in any approximation to the solution of the discrete
system. For uniformly elliptic operators discretized on uniform meshes, simple analysis shows that standard
relaxation approaches, such as the Jacobi or Gauss-Seidel iterations, effectively damp errors that are oscil-
latory on the scale of the grid, while coarse-grid correction effectively resolves the smooth components. In
this setting, coarse-grid correction typically involves discretizing the problem on a hierarchy of successively
coarser meshes and combining relaxation on all levels of this hierarchy with simple geometric operations to
transfer residuals from finer grids to coarser ones and interpolate corrections from coarser grids to finer ones.
See [8, 49] for full details.

In the context of singularly perturbed problems and non-uniform grids, more careful treatment must be
given to the coarse-grid correction process to obtain optimal efficiency, even for one-dimensional problems.
While the partitioning of errors into “smooth” and “oscillatory” components is still intuitive, much more
technical theory is needed to prove optimality [53, 6]. In practice, however, only small changes are needed
in the multigrid algorithm. In this paper, we consider iterations and preconditioners based on the multigrid
V-cycle; thus, a single iteration of the multigrid cycle can be written in recursive form as

Algorithm 1: UM = MGU©), F, N).

Apply relaxation to AU = F with initial guess U, producing U,
Compute F., = R(F — AU™), for restriction matrix, R.

Compute U. = MG(0, F., N/2).

Compute U = U(") 4 PU,, for interpolation matrix, P.

Apply relaxation to AU = F with initial guess U(), producing UM,

Gl oo

Thus the algorithm takes, as input, an initial guess, U(?), and right-hand side, F, of length N —1 (in one
dimensmn). On any level, relaxation is applied based on the matrlx, A, which is taken to be the discretization
of the given differential equation with N — 1 degrees of freedom after elimination of boundary conditions.
A coarse-grid right-hand side is computed by restricting the fine-grid residual, and the algorithm is applied
recursively to compute a coarse-grid representation of the error (which is the solution to A.U. = F.), with
a zero initial guess for U.. The computed correction, U,, is interpolated to the fine grid and added to the
approximation, U("), from after the initial relaxation sweep, and a second relaxation sweep is performed.

For one-dimensional problems, we use “red-black” Gauss-Seidel relaxation, where, in Step 1 of Algorithm
1, the odd-indexed nodes are first processed (relative to 0-indexing in C), followed by the even-indexed nodes.
The opposite ordering is used in Step 5 to ensure symmetry. To create the hierarchy of meshes, we begin
with a chosen fine mesh with N intervals (uniformly spaced or fitted), and create the first coarse mesh with
N/2 intervals by aggregating intervals pairwise (or, equivalently, by discarding every other node in the fine
mesh). This process is repeated recursively until a grid with fewer than 5 nodes is reached. We assume the
initial N is chosen so that this pairwise aggregation never fails. On each mesh, the matrix A is created by
symmetrising the unequally spaced finite-difference approximation, as described above. The interpolation
operator, P, between two such meshes is defined by linear interpolation to neighbouring nodes, with the
interpolation weights suitably adjusted for the unequal spacing of nodes. The restriction operator, R, is
chosen to be the transpose of P, leading to a weighted averaging of residuals between neighbouring nodes,
emphasizing the closer neighbour on an unequally spaced mesh.
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This geometric multigrid approach offers excellent performance and scalability on both uniformly spaced
and smoothly varying meshes, yielding errors at the level of discretization error in In(N) iterations. However,
on meshes with sharp contrasts in grid spacing, such as in the case of Shishkin meshes, the performance
of the stationary iteration suffers greatly, as relaxation is slow to reduce certain error modes that change
rapidly near the changes in grid spacing, and these modes are slowly corrected by coarse-grid correction.
Such modes are, however, provably few in number [52] and, so, accelerating the multigrid convergence by use
of the preconditioned conjugate gradient iteration is an effective strategy. In this case, the V-cycle given by
Algorithm 1 defines a preconditioning matrix, M, that yields a preconditioned system, M AU = M F where
the spectrum of M A has a tight cluster of eigenvalues around unity, with only a few outlying eigenvalues
caused by the sharp transitions.

4.1.2. Algebraic Multigrid. An alternate approach to using geometric multigrid as a preconditioner
for conjugate gradient is to adjust the interpolation operators to account for the sharp mesh transitions,
thereby accurately approximating the associated error modes in the coarse-grid correction phase. A standard
approach to developing operator-dependent interpolation schemes is the algebraic multigrid (AMG) method,
which supplements the multigrid V-cycle given in Algorithm 1 with a preliminary setup stage in which the
coarse meshes and interpolation, restriction, and coarse-grid operators are computed based on the given
fine-grid operator.

In general, AMG is a much more flexible algorithm than is needed to develop multigrid approaches for
the tridiagonal matrices that arise in one dimension. From the given fine-grid operator, a first coarse mesh is
chosen, then interpolation, P, is defined, with restriction fixed as R = P7, the coarse-grid operator is given
by the Galerkin triple product A, = PTAP. This process repeats recursively until a suitably small mesh
is reached, where a direct solver can be cheaply applied. At each level, a coarse mesh is chosen based on
augmenting a maximal independent subset of the graph of the matrix at that level, with the augmentation
chosen to ensure suitably quality of interpolation. For the symmetric tridiagonal matrices considered here,
this process generates the same coarse grids as are chosen geometrically, selecting every other node in the
mesh, which is equivalent to aggregating the finer mesh pairwise. With this coarsening pattern, interpolation
to each fine-mesh node from its two coarse-mesh neighbours is defined by diagonal scaling of the off-diagonal
connections in A. Thus, for fine-mesh node ¢, (PU.); = (—a;,i—1(Uec)i—1 — @i,i+1(Uc)it1)/ai:, where entries
a;; are those in row ¢ and column j of A, and all indices are relative to the fine-mesh numbering. With
this choice of P and the resulting Galerkin definition of A, = PT AP, it is straightforward to show that the
AMG V-cycle recreates the cyclic reduction direct solver for the tridiagonal system. Thus, AMG for these
problems converges in a single iteration, for any stopping tolerance above the floating point limits.

4.1.3. A one-dimensional boundary-layer preconditioning approach. While use of AMG, or
similar methods based on cyclic reduction, provides a natural solution algorithm for the tridiagonal matrices
arising from the one-dimensional problem, these approaches do not take advantage of the singularly perturbed
nature of the problem, and the tridiagonal structure is not preserved for problems in higher dimensions. Thus,
in this section, we develop an algorithm that takes advantage of the singularly perturbed nature and allows
generalization to higher dimensions. In Section 4.2.4, we develop the two-dimensional analogue and prove its
optimality.

When 6y < 1, the fitted meshes for one-dimensional problems described in Section 2.2 condense in the
region of the two boundary layers and are uniform in the interior. From the linear algebraic point-of-view,
the matrix corresponding to a discretization on such a mesh naturally partitions into three pieces: the left
boundary layer, the interior (not including the transition points), and the right boundary layer. This gives
a partitioned matrix of the form

Arr A 0
A= A Arr Arr , (41)
0 Agrr Agrr

where we use the natural subscripts L, I, and R to denote the three regions. Notably, in the symmetrically
scaled system, we have the relations that A;; = AT, and Ar; = A%y, and we see that each of these matrices
has only one non-zero entry, giving the coefficient that relates the last point in the layer (the transition point)
to the first point in the interior. Defining the uniform interior mesh width to be hj, these entries are all
—52/h[.
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Considering Ajy, we notice that this matrix has diagonal entries given by 2¢%/h; + hb(z;), for the row
corresponding to node z;, while the off-diagonal coeflicients are —e2/hr. In the singularly perturbed case,

when §, = (5 /(hr 5))2 < 1, the diagonal of A;; strongly dominates all other entries in the rows and columns
corresponding to interior (I) points. In this case, it is intuitive to approximate these rows and columns
by just the dominant diagonal values given by the reaction term, h;b(x;). Theorem 4.1 shows that this
approximation is accurate, in the spectral sense, when J;, < 1.

THEOREM 4.1. Let hy denote the (uniform) interior mesh-spacing in the standard 3-point finite difference
discretization of —e?u(z) + b(z)u(x) on a boundary-fitted mesh, where b(x) > B2 for all x € [0,1], with
symmetrised discretization matriz A. Order the rows and columns of A according to the boundary layer
structure in (4.1). Define

Arg 0 0
Ap = 0 D O ,
0 0 ARrp

where the partitioning matches that of A in (4.1), and the entries of diagonal matriz D are given by hrb(x;)
for the row/column corresponding to node x;. Then

(1—20,)VTApV <VTAV < (14 60,) VT ApV,

for all vectors V.
Proof. Writing a generic vector V = [ Vi Vi Vg ]T, we see that

VIAV = VAV, +2VE AL Vi + VAV + 2VE AR Ve + VE AR p Vi,

using the symmetry of A. Bounding V' A,;V; is straightforward, since A;; = D;; + L;;, where L;; is the
symmetrised uniform-grid Laplacian matrix, with diagonal entry 2¢2/h; and off-diagonal entries —&2/h;.
Thus, by Gersgorin’s theorem,

Vi Dy Vy VAV <V (Dyp + (A€ /) 1) Vi < (1+46,) VY Dy Vi

for any V;, since V'V, < 1/(8%h;)VE D, V.

Bounding the cross terms, V' A, ;V; and V& Ap,V;, is slightly more difficult, owing to the need to bound
these in terms of VLTALLVL, VITDHVI, and VgARRVR. Here, we focus on bounds for VLTALIVI; the bounds
for VI Ap,V; are derived by the same argument.

To bound VI A, ;V;, we write A;;, = D, + Ly, where D, ; is the diagonal matrix with entry h;b(z;)
in the row/column corresponding to node j, h; is the average of the widths of the two cells adjacent to node
j, and L, is the symmetrised (positive-definite) Laplacian operator in the left boundary layer. Then, by
the Cauchy-Schwarz inequality,

VEALvi| <D A - [PV

for any V7, and V7. Now, since V' D, V; < VI AV, for all Vi,
—1/2 1/2
VI ALvi| < ||Di ALy, (VAL ve) 2.

for any Vi, and V7.

To bound the remaining term, (V' A;;, Dy A, V;) "2 hote that there is only one non-zero entry in each
of A;; and A, so that there is only one non-zero entry in A,; Dy A, ;, given by (e2/h;)?/(h;b(z;)), where
x; is the last node in the left boundary layer. Since this node is adjacent to an interior mesh cell with width
hr, hr/2 < hj, and the entry in A;; D;} A, satisfies

2
< (52/h1)2h2754hlb(99j+1) = 207 hrb(wj41),
I

& /02 (b)) < & /053
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where ;1 is the first node in the interior region. Thus, V7' A;; D;} A, ,V; < 262V{F' D,,V; for all Vi, giving

VAL Vi| < V20, (VD Vi) 2 (VAL V)2,

for all V;, and V;. Since 2ab < a? + b2 for any real a, b, we have
2|VEAL V| <6V Dy V426,V ALLV,
for all V;, and V. From this, and the corresponding bound that
2|Vig AptVi| < 00V Dy Vi + 200 Vi Apg Vi,

for all Vi and V7, the stated bound follows. O

Note 1: While the lower bound holds for all 5, the bound is only useful in the case that §, < 1/2, since
a lower bound of 0 < VT AV naturally holds. When d;, < 1/2, the theorem establishes spectral equivalence
bounds that show that A, is an excellent preconditioner for A as ¢, — 0.

Note 2: A slight improvement of the upper bound, from a constant of 1466, to 145§, can be found by
combining the bounds of the two cross terms. However, since 6, < 1 is the case of interest, this improvement
is largely irrelevant.

COROLLARY 4.2. Under the assumptions of Theorem 4.1, if My, and Mgrgr are spectrally equivalent to
A, and Agp, respectively, meaning that there are constants ¢ and ¢ such that

coVEM Vi <VEAL LV, <eVEM,V; for all V,,
and coVAE MppVe < VE ArpVi < eiVE MprVy for all Vi,

then the matriz

satisfies
min(1 — 28y, ¢,(1 — 26,))VT Ay, V < VT AV < max (14 664, c1(1 +26,)) VT Ay, V

for all' V.

Note 3: Corollary 4.2 is particularly relevant to the case where M1 and Mprpg are the inverses of effective
multigrid preconditioners for A;; and App, respectively. If the stationary multigrid cycle represented by
I — M} A, has spectral radius @ < 1, then

(L—a)Vp My Ve SVE ALV < (L+a)VE My, Vg
for all V7. If the same bounds hold for the right boundary layer, then the bound in Corollary 4.2 becomes
(1—a)(1—26,)VTA,V < VTAV <max (1+ 66, (1 + a)(1+258,))VTA,V
for all V. Since we typically expect o ~ 0.1 and J;, < 1, a better rule of thumb would be
(1—a)(1—20,)VTA,V <VTAV < (1 +a)(1+26,)VTA,V

for all V. This suggests that the convergence of a preconditioner consisting of one multigrid V-cycle applied
to each of the boundary layer regions plus diagonal scaling of the interior region should be very similar to
that of multigrid applied directly to the boundary layer regions alone. In the case of Shishkin meshes, this
means that we expect to recover the optimal scaling of multigrid on uniform meshes, while we expect similar
behaviour for Bakhvalov meshes, due to the smooth grid stretching.
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4.2. Solving the two-dimensional system. In contrast to the one-dimensional problem, there is
the potential for true practical benefit in the development of optimally efficient multigrid-based solvers
for two-dimensional problems on tensor-product fitted meshes, to address the complexity issues of direct
methods discussed in Section 3. It is well known that simple multigrid approaches are optimal or near-
optimal for uniformly elliptic problems on uniform tensor-product meshes. In this section, we discuss the
twin challenges of efficiently dealing with tensor products of highly nonuniform fitted meshes and singularly
perturbed problems on these meshes.

4.2.1. Geometric Multigrid. The success of simple geometric multigrid with pointwise relaxation
as a good preconditioner for the one-dimensional problem, with only mild dependence on N and ¢, is not
recreated in two dimensions, due to the nature of the tensor product of fitted meshes. As noted in [55, 54],
the key parameter in determining the effectiveness of pointwise relaxation in geometric multigrid is the mesh
aspect ratio; when the ratio of the largest to smallest edges of a mesh cell is much larger than unity, multigrid
convergence suffers. In contrast to the one-dimensional case, however, the space of slow-to-converge modes
is much larger in two dimensions, leading to poor behaviour also as a preconditioner for conjugate gradients,
as the performance of pointwise relaxation degrades with € and the number of slow-to-converge modes grows
with N. Table 4.1 shows the number of iterations needed for geometric multigrid preconditioned CG to
reduce the maximum norm of the error in the iterative solution to that of the direct solution of the linear
system. Two well-known antidotes to this degradation are to consider the use of mesh-adapted coarsening
approaches or the use of line-wise (coupled) relaxation techniques [8, 49].

g? N=2"| N=28 | N=29| N =210
1 11 11 12 12
10~2 14 16 18 19
1074 60 96 140 178
10=6 76 152 300 557
10—8 81 170 348 712
1010 88 179 364 748
10712 92 186 387 811

TABLE 4.1

Iteration counts for geometric multigrid preconditioned CG to achieve theoretically optimal error reduction on Bakhvalov
meshes.

In the former category, semicoarsening techniques are commonly used when the bad aspects ratios result
from the use of tensor-product grids of vastly different meshwidths (as, for example, might be the case for
two-dimensional problem with a one-dimensional boundary layer). These techniques can also be adapted
to tensor-products of graded or fitted meshes [54], but require much more involved development of the
semicoarsening approach. In Section 4.2.2, we discuss the application of algebraic multigrid (AMG) to the
two-dimensional problem, which results in coarse grids adapted to the fitted mesh structure, suitable for use
with pointwise relaxation.

By contrast, the use of line relaxation techniques can allow the continued use of regular geometric
coarsening in both directions, at the cost of a more expensive (but still optimally scaling, due to the optimal
scaling in cost of tridiagonal solves) relaxation technique. Because the tensor product of fitted meshes involves
cells with bad aspect ratios in two orientations (some with their long edges aligned with the z-axis and some
with their long edges aligned with the y-axis), alternating-direction line relaxation is necessary to adequately
damp all types of oscillatory error. In order to gain added robustness, we use the Black Box Multigrid
method of Dendy [1, 15], coupling alternating-direction line relaxation with variational coarsening, discussed
in Section 4.2.3.

The choice to focus on AMG and BoxMG as solution strategies is based on two criteria. First, they both
employ variational coarsening strategies based on Galerkin projection. Thus, variable reaction coefficients are
naturally projected onto coarse meshes, and the same solvers can be easily applied to other discretizations,
such as bilinear finite-element discretizations on fitted meshes (see, e.g, [30] for an error analysis for a two-
dimensional reaction diffusion problem on a Shishkin mesh). Secondly, they are both readily available in
software packages that can easily be incorporated into simulation codes beyond those used in the test cases
presented in Section 5. The downside of using these solvers is that they do not represent tuned software that
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takes full advantage of the structure of the differential operators, discretization, and fitted meshes considered
here. Thus, small improvements in overall time-to-solution could be realized by more specialized software,
but at the expense of applicability and ease of use. In contrast, in Section 4.2.4, we present an algorithm
that is tuned specifically for the fitted meshes considered here, but which is still applicable to both finite
difference and finite element discretizations of singularly perturbed reaction-diffusion equations.

4.2.2. Algebraic Multigrid. For two-dimensional problems, the coarse-grid selection stage of AMG
plays an important role and, notably, does not reduce to a special case as in 1D. With general selections of
coarse grids, the definition of interpolation operators is, also, important and non-trivial. We briefly review
these aspects here; for a fuller treatment, consult [8, 43, 48]. While these details are important for the AMG
setup phase, we note that only a small change is made in the solve phase detailed in Algorithm 1, where the
size of the coarse-grid problem is now determined by the number of coarse-grid points selected, changing the
notation, but not the substance, of the recursive step. For relaxation, we use an ordered Gauss-Seidel sweep
that, in Step 1 of Algorithm 1, loops lexicographically over the points selected for the coarse mesh first, then
over those that are not selected for the coarse mesh. In Step 5 of Algorithm 1, the opposite ordering is used,
to preserve the symmetry of the preconditioner.

The coarse-grid selection algorithm of [43] is used here. First, a reduced matrix is computed by thresh-
olding the off-diagonal values relative to the largest off-diagonal in each row. In experiments reported on
in Section 5, a standard M-matrix based criterion is used, where “strong” connections are defined as those
negative off-diagonal entries whose magnitude is at least 0.25 times that of the largest negative off-diagonal
entry. From this, a maximal independent subset of the graph of the reduced matrix is computed as the first
pass at determining the set of coarse-grid points. In a second pass, this set is augmented, adding a locally
minimal number of points to the coarse-grid set to ensure that the AMG interpolation operator, detailed
below, is well-defined. This process ensures that the coarse-grid set is much smaller than the original fine
mesh, yet is still large enough to ensure good correction is possible to a range of errors that are slow to be
reduced by relaxation.

Once the coarse-grid set has been chosen, interpolation is determined based on the principles that the
errors that are slow to be reduced by relaxation also yield small residuals, and that these errors can be
accurately interpolated from nodes with a strong connection. Interpolation of a correction from a coarse-grid
node to its fine-grid counterpart is done directly, with unit weight. For each fine-grid node, i, the non-zero
entries in row ¢ of the matrix are sorted into those that are strong connections in the coarse-grid set, C;,
which must be non-empty by the initial choice of a maximal independent subset for the coarse-grid set,
strong connections in the fine-grid set, F;, and weak connections, W;. Based on this decomposition, and the
assumption that an error, E, to be interpolated give small residuals, (AE); = 0, we base interpolation on the
decomposition that

a;i b = — Z aiEy — Z ai;j By — Z aiEp.

keC; JEF; Lew;

Strong connections in C; are natural to use in interpolation, but we seek to compensate the weights of direct
interpolation, —a;x/a;;, to account for connections to other points. Weak connections are assumed to play
little role in interpolation and, so, their contributions to this decomposition are lumped onto the diagonal,
writing Fy ~ FE;. Strong connections to F; are treated by indirect interpolation. For each j € F;, we
approximate E; ~ >, o wj,Ey, where the weights wj, = ajr/ ), cc, @jm are chosen to approximate £
by an average of the values in C;, weighted towards those points in C; to which j is strongly connected. The
second pass of the coarsening scheme ensures that Zmeci ajm # 0 for all j € F;, by adding points to the
coarse-grid set for any i, pair for which this doesn’t already hold. With these choices, the interpolation
weights in P are given by

—ag— Y _Gij %k
JEF; Z Ajm
(PU)i= Y mee: AN
keC; Qi + Z Qg
Lew;
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for a general coarse-grid correction U,. With these weights, we use the variational definitions, giving R = PT,
and A, = PT AP, to recursively define all levels of the multigrid hierarchy.

4.2.3. Black Box Multigrid. In contrast to AMG, the Black Box Multigrid (BoxMG) algorithm [1, 15]
focuses on maintaining the regular, tensor-product grid structure of the fine mesh, and choosing more robust
relaxation techniques, in combination with a similar operator-dependent definition of interpolation, to achieve
robustness in the multigrid algorithm. The algorithmic choice to maintain structured grids on all levels of
the multigrid hierarchy avoids the expensive graph processing and indirect addressing of AMG; as a result,
BoxMG typically achieves much faster total times to solution for problems where both AMG and BoxMG
can be readily applied, about six times faster for some two-dimensional problems [10], and ten to fifteen times
faster for some three-dimensional problems [32].

The key to maintaining robustness in BoxMG for two-dimensional problems is the use of alternating-
direction line relaxation. The rectangular grid is decomposed twice, into alternating lines in both the a-
and y-directions. In a single sweep of relaxation (Step 1 of Algorithm 1), residuals are calculated first for
alternating lines parallel to the z-axis, starting from the second row of the grid, and an update is calculated
for each of these lines to simultaneously zero the residual at all points along these lines, then the same
procedure is applied to alternating lines parallel to the z-axis, starting from the first row of the grid, then
these two stages are repeated for alternating lines parallel to the y-axis. The opposite ordering is used in
Step 5 of Algorithm 1 to ensure symmetry.

The coarse-grid correction phase of BoxMG is simpler than that of AMG, due to the choice of regularly
structured coarse grids, but still uses an operator-induced interpolation scheme and variational coarsening.
Because of the regular structures, a simple symbolic calculation shows that the non-zero pattern of the
matrix on all grids is confined to the usual nine-point stencil, so long as the fine-grid matrix is, including
when the fine-grid matrix has the usual five-point stencil. For any point that is on the coarse mesh, its value
is interpolated to the fine mesh with unit weight. For fine-grid points along the lines in which the coarse
grid is embedded, the fine-grid stencil is collapsed orthogonal to this line to yield a one-dimensional three-
point stencil that yields interpolation as in the one-dimensional case of AMG. For fine-grid points that are
in the interior of coarse-grid cells, the assumption of interpolation of a zero residual is again used; however,
since interpolation coefficients have already been defined for all neighbouring grid-points, these weights are
used directly to define interpolation to the interior points. The full specification of BoxMG interpolation is
reviewed in [31], including a discussion of its relationship to AMG interpolation.

4.2.4. A two-dimensional boundary-layer preconditioning approach. For the two-dimensional
problem with 0y < 1, we extend the preconditioning technique from Section 4.1.3 to handle tensor-products
of fitted meshes, by partitioning the 2D mesh into four pieces: the high-resolution corner, two edges with
resolved meshes in one dimension (along the z- and y-axes), and the interior region. In the corner, connec-
tions in both coordinate directions are significant, requiring the full power of a multigrid method. In the
edges, the problems are effectively one-dimensional, and tridiagonal solvers can be used within an effective
preconditioner. In the interior, as in one dimension, diagonal scaling is effective. Thus, the two-dimensional
boundary-layer preconditioner can be expressed by partitioning the degrees of freedom in U and, consequently,
the rows and columns of A as

Acc ACE 0
A= AEC AEE AEI ) (4-2)
0 AIE AH

where the subscripts indicate the block structure of corners, C, edge layers, FE, and interior points, I. The
preconditioner, A, is defined in the same partitioning by

Ace 0 0
Ap=1| 0 Ty, 0 |, (4.3)
0 0 D,

where the matrix D;; has diagonal entries given by the scaled reaction coefficient, and the matrix Ty
has three nonzero entries per row: in the diagonal position, and in the two off-diagonals corresponding to
neighbours along the direction with the smallest meshwidth. Thus, T 5 could be itself partitioned into two
parts, one corresponding to the edge layer along the z-axis, and one corresponding to the edge layer along
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the y-axis. Depending on the ordering of the degrees of freedom (in x then y, or in y then x), one of these
blocks will be tridiagonal, and one will be block-tridiagonal with diagonal blocks. The neglected entries in
A;; and A;p or Ag; are essentially the same as those treated in the one-dimensional case, but scaled by
another factor of h; from the symmetrisation, giving —e, relative to the diagonal values h?b(z;,y;). Thus, a
similar argument will be used to bound their contribution. The neglected entries in Ay, Aqg, and Ag- are
slightly more complicated, due to the potentially uneven mesh spacing in the boundary layers, but a similar
argument bounds their contribution.

THEOREM 4.3. Let hy denote the interior mesh-spacing in the standard 5-point finite-difference dis-
cretization of —e?Au(x,y)+b(x,y)u(z,y) on a boundary-fitted mesh, where b(z,y) > B2 for all (z,y) € [0, 1]
and boundary conditions such that there are only two boundary layers, along the x- and y-azes (the South
and West faces, respectively), with symmetrised discretization matriz A. Order the rows and columns of A
according to the boundary layer structure in (4.2) and define Ay, in the same ordering as in (4.3), where
the entries in the diagonal matriz D;; are given by the reaction coefficients, h3b(z;,y;), for the row/column
corresponding to node (x;,y;) and the off-diagonal coefficients of Agp — Ty are of the form —e2k;/hy (for
edges along the x-azis) or —E2Bj /h1 (for edges along the y-azis), with twice the magnitude of these values on
the diagonal (so the Agp — Try s a zero row-sum operator except for the first and last rows). Then,

(1=35,)VTALV < VTAV < (1 +95,) VT ALY,

for all vectors V.

Proof. Writing generic vector V = [ Ve Ve Vi ] (noting that here V¢ is the component of V' asso-
ciated with the refined corner of the mesh, and should not be confused with the notation of Sections 4.1.1
and 4.1.2 where V. would denote the coarse-grid analogue of V) we see that

VIAV = VEA Ve + 2VE A g Ve + VE AppVe + 2VE AL,V + VE ALV,

using the symmetry of A. We seek to bound this above and below by a scalar (depending only on d;,) times
the quantity

VIALV =VEAL Ve + VETppVe + VE D V.

Bounding V' A;;V; is straight-forward, since A;; = D;;+L;; where L;; is the symmetrised uniform-grid
Laplacian matrix with diagonal entry 4e? and off-diagonal entries —e2. Thus, by Ger§gorin’s theorem,

VI'D, vy <Vi8A v <V (D + BV < (1+ 86n) Vi DV,

for any V;, since VIV, < 1/(82h3)VE D, V;.

Considering VA5V is slightly more complicated because of the tridiagonal structure of App — T p;
however, we can consider the spectral equivalence by analyzing a generic line in the edges of the mesh. To
do this, first note that Agp is reducible into two blocks, one containing connections within the layer along
the z-axis, and one containing connections within the layer along the y-axis. Considering one of these pieces,
along the z-axis, we decompose the stencil in (2.4) into two pieces, writing

h
— ! 52
;:; o e F
M2 2hg hi(— 2 L khobli.d N2
h}a (hl + I(kj+kj+1) e” + kjhrb(i, j) h}a
i,
k;
h
Tk " 0
1 _ a _
1 = . K 2k ; ki
=0 hr(— e? + k;hb(i,5) 0 _N2 N2 N2
I(kj ij) ihb(i, j) + h1€ h}s hle
hi o
——¢ 0

k;
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where the first term on the right-hand side represents the terms kept in T 5, and the second term represents
App — Tpp. From this decomposition, we immediately see that VAT pVy < VE ARV for any Vi, since
the remainder term is positive definite. To find the upper bound, note that the entries in Ay, — Ty depend
only on the position in the y-direction, through k;, and not on the position in the z-direction. Thus, defining
the diagonal matrix M, with dimension given by the number of points within the boundary layer and entries
given by (k;j/hr)e?, for the row/column associated with the point j nodes in from the boundary, we can write

[ 2M —-M
-M 2M -M
-M 2M -M
(App —Tpp)s = . . . )
-M 2M -M
-M 2M |

assuming an ordering of points first in lines parallel to the y-axis, then in lines parallel to the z-axis, where the
subscript « is used on A —T 5 to indicate that we consider only the edge layer along the z-axis. The matrix
(App — Tgg)s has block dimension equal to the number of points on the grid that are not in the boundary
layer, and the quantity (Vi)2 (App—Tgg)=(VE), can easily be expressed by writing (Vg), = [ Vi Vo ... |,
giving

(VE) (Agp —Tgr)e(VE), = 22 VZTMVZ - 22 VZTMVéJrh
¢ ¢

where the first sum extends over all £, and the second over all but the last . Bounding the terms in the
second sum, using Cauchy-Schwarz, gives

VMVl < ||M2V|||M2V | < 5 (VMY + VE MV, s

1
2
this, in turn, bounds
’(VE) (App — Tpp)e(Ve),| < QZVZTMVZ +QZ|VZTMVZ+1‘ < 42‘/@ MV,.
‘ ¢ [

For one of these terms, however, the diagonal entries in M, (k;)/hse? are bounded above by d,k;hrb(xi,y;)
for any 7. Thus,

VI MV, < 6,V D,V

for all V; for any ¢, where the diagonal matrices D, are taken to have entries I%jhlb(xiz,yj) where index 7,
corresponds to the line indexed by ¢. Taken together, with the analogous bounds for the edge layer along the
y-axis, this gives

Vi (App — Tpp)Vi < 46, Vi DppV,

for any Vi, where Dy, is the diagonal matrix with entries k;hrb(x;,y;) for nodes (4, 7) in the edge layer along
the z-axis and analogous values for nodes in the edge layer along the y-axis. Since VI DppVy < VETppVe
for any Vg, which follows from the fact that the difference Ty, — Dy is positive definite, this gives

Vi TppVe < Vi AppVe < Vi TppVe + 400V DppVi < (1+46,)Va TppVp.

We next look to bound the mixed terms, 2VZ A pVy and 2V A, V;. Considering the first of these, we
again employ the Cauchy-Schwarz inequality, writing

‘VC ACEVE| < HDCC ACEVEH HDl/QVCH
for any Vo and Vg, where D, is the diagonal matrix with entry hikjb(xi,yj) in the row/column corre-
sponding to node (i, j). Since Ao = Do + Lee for positive-definite Laplacian matrix Lo, VE Do Ve <

VEAoo Ve, and

|VC ACEVE‘ < HDCC ACEVEH : (VgAcch)l/2~
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To bound the remaining term, notice that there is at most one non-zero entry per row in A, and, conse-
quently, in Dé/éACE and ApcDotAcp- The nonzero entries in Apo Dot Acp occur on the diagonals of
the rows/columns corresponding to nodes that are adjacent to the highly resolved corner, and are given by
((Z}j/h[)52)2 /(hik;b(zi,y;) for anode (i+1,7) in the edge layer along the z-axis (so that node (4, 5) is in the
corner region), with a similar expression for a node in the edge layer along the y-axis. Since x;11 — x; = hy,

h; > hr/2, giving
(3 /h)e2)? J (hakegb(as, ) < (€2/h)?

ks < (& /h)?

h254 hlk b(zit1,y;) = 25hh1k b(zit1,Y5),

with an analogous bound for nodes in the edge layer along the y-axis. Thus, Vi AECDE%ACEVE <
202VED ppVy for all Vi and, thus, VEApo Dot AcpVe < 202 VET,pVy for all V. This gives

VE AcgVi| < V2on (VETepVe) "> (VE AceVe)?

for all Vi and Vg. Since 2ab < a? + b2, this gives
2\VEAcpVe| < 00VE TepVe + 26,VE Ace Ve, (4.4)
for all Vo and Vg.
Finally, we look to bound 2V A V; using similar techniques. The Cauchy-Schwarz bound becomes

VEAR Y| < [ D Aeri] - [PiEve]

for all Vg and V7, giving

—1/2 1/2
VE ARVl < | Dol AV, - (VETopVe)

for all V, and V;, since VI DppVy < VATLpVy for all V. Again, there is only one entry per row of
A;pDyppAgr, on the diagonal of rows/columns adjacent to the edge layers. For a node (i, 5 + 1) adjacent to
the edge layer along the z-axis, the entry would be

e*/(hikib(zi,y;)) < < 202h2b(x4,yj41),

2
<
where we use the bound l_cj > hr/2, since yj+1 — y; = hr. This gives

VE A Vi| <262 (VD Vi)Y (VETsVi)

for all Vg and V;. Consequently,
2|V AgiVi| < Vi Dy Vi + 260V TppVi (4.5)
for all Vg and V7.
Assembling these bounds, we have
VIAV = VEAccVe + 2VEAcp Ve + VE AgpVe + 2VE Ap, Vi + VAV,
> Vi AccVe = 2 |VEAcp V| + Vi TgpVe = 2| Vi A Vi| + VI Dy V;
> VG AccVe — (00VE TeeVe + 26,VE Ao Ve) + Vi TppVe
— 60V Dy Vi + 200V TipVig) + Vi Dy Vy
= (1=200)VE AccVe + (1 = 360)Va TppVe + (1= 60)V] Dy V;
for all V', establishing the lower bound. For the upper bound, we have
VIAV = VEAccVe + 2VE AcgVie + Vi AV + 2VE A Vi + VIEA [ V;
<SVEAccVe +2|VEAcpVe| + (L+ 460V TppVie + 2 |VE A Vi| + (1+ 86,)Vi Dy, V;
<VEAceVe + (WVETgpVe + 26,VEAccVe) + (1 +48,)VE Tpp Vi
+ 6,V Dy Vi + 26, VE Tep Vi) + (14 86,) Vi Dy, V;
= (1+200)VEAccVe + (1 + 76 VETppVe + (1 +96,)VE Dy Vy
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for all V. O

Note 4: As in the 1D case, the lower bound holds for all §,, but the bound is only useful in the case
that &, < 1/3, since a lower bound of 0 < VT AV naturally holds. When §;, < 1/3, the theorem establishes
spectral equivalence bounds that show that A, is an excellent preconditioner for A as §, — 0.

Note 5: Slight variations in these bounds are easily derived by varying the division of the constants in
Equations (4.4) and (4.5). In particular, the upper bound can be slightly decreased at the expense of the
constant in the lower bound and vice-versa. However, since §, < 1 is the case of interest, these variations
are largely irrelevant.

COROLLARY 4.4. Under the assumptions of Theorem 4.3, if Mcc is spectrally equivalent to Aqq,
meaning that

cOVEMocVe < VEAVe < aVEMaoc Ve for all Vg,

then the matrix

Moo 00

Ay = 0 Tgp 0
0 0 Dy
satisfies
min(1 — 36, co(1 — 26,))VE AL,V < VT AV < max(1 + 96y, ¢1 (1 4+ 20,)) VT A,V
for all' V.

Note 6: Corollary 4.4 is particularly relevant to the case where M¢co is the inverse of an effective
multigrid preconditioner for A, . If the stationary multigrid cycle represented by I — M(;(lecc has spectral
radius a < 1, then

(1= )VEMecVe <VEAccVe < (14 a)VE Mec Ve
for all V. Under this assumption, the bound in Corollary 4.4 becomes
min (1 — 365, (1 — a)(1 —26,))VT AV < VTAV < max (1+ 96, (1 + a)(1420,)) VT AV
for all V. Since we typically expect a ~ 0.1 and d;, < 1, a better rule of thumb would be
(1—a)(1—20,)VTA,V<VTAV <(1+a)1+26,)VTA,V

for all V. This suggests that the convergence of a preconditioner consisting of one multigrid V-cycle applied
to the corner region, appropriately ordered tridiagonal solves applied to the edge layers plus diagonal scaling
of the interior region should be very similar to that of multigrid applied directly to the boundary layer regions
alone. In the case of Shishkin meshes, this means that we expect to recover the optimal scaling of multigrid on
uniform meshes, while we expect similar behaviour for Bakhvalov meshes when a robust multigrid approach
is used.

In light of Corollary 4.4, in Section 5, we present results for a boundary-layer preconditioner that makes
use of a single V-cycle of BoxMG in the corner region, appropriately ordered tridiagonal solves to treat the
edge layers, and diagonal scaling in the interior. For a tensor product of fitted meshes with N/2 points in
each layer (including the transition points), this implies that one-quarter of the grid will be treated with a
preconditioner that has the same cost as BoxMG@G, while the remaining three-quarters will be treated in a
much cheaper manner. Estimating the work of a BoxMG V-cycle as four full line relaxations on each level
times a factor of four-thirds (to account for the hierarchy of levels of sizes N2, N2/4, N2/16, etc.), this
suggests that on three-quarters of the grid, the boundary-layer preconditioner does three-sixteenths of the
work of the multigrid V-cycle. The total work estimate is, then 1/4 + (3/4)(3/16) = 25/64 times the work
of a multigrid V-cycle on the full problem. This is, clearly, an over-estimate, since there is extra savings
from the lack of interpolation and restriction, and from the cost of diagonal scaling compared to line solves,
but provides a rough estimate for the improvement possible from a preconditioner that is tuned to the full
problem structure.
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4.3. Stopping Criteria. Given a parameter-robust discretization for a singularly perturbed problem,
such as those given by the fitted Shishkin or Bakhvalov meshes, our aim is to find an approximate solution
of the discrete system that accurately approximates the true (continuum) solution. It is easy to do this if we
“oversolve” the discrete system, bounding the norm of the discrete approximation error, ||U — U |l, by some
vanishingly small quantity (such as the machine round-off precision) for an approximation, U, to the exact
solution of the discrete problem, U. This gives the natural bound that

lu = Ul < flu=Ul| + U= Ul = |lu—Ul,

whenever |[U — Ul|| < |ju — U||. When considering iterative methods, however, we generate a sequence of
increasingly better approximate solutions, denoted U®), to U, in the sense that ||U — U®) || < |U — U*=D)|,
although this norm may not match the natural bound between the continuum solution, u, and its “best”
discrete approximation, U. Since there is a non-trivial cost of generating each new iterate, it is most efficient
to stop the iteration when the norm of the discrete approximation error, |[U —U®)||, is of the same order as
the discretization error, ||u — U||, giving

lu = U < Jlu Ul + 1T - UW|| < Cllu— U,

for a moderate constant, C.
In the case of finite-difference approximations on Shishkin and Bakhvalov meshes, we know that the
discretization error bound takes the form

Hu - U”oo < g(N),

for g(N) = CN~21n?(N) for Shishkin, and g(N) = C'N~2 for Bakhvalov, where the constants are independent
of €.

Naturally, the discrete approximation error, E*) = U — U®), is unknown during the iteration; thus,
we must measure this error indirectly. For stationary iterations, the best indicator of this error is the
residual, R®) = F — AU®) = AE®) since AU = F. The simplest possible bound, then, would be to write
E®) = A=1R(®) | giving

1T = UMl < A7 Hloo [ R® oo

Practical bounds on |A™!||« arise from M-matrix theory; Theorem 2.7 in [41] states that

1 [V lloo
147 oo < ming (AV)’

where V' is majorising vector with (AV'), > 0 for all k. For the discretization matrices considered here
for the two-dimensional problem, the choice of V' as the vector of all ones is natural, giving ming(AV); as
the Gersgorin bound on the smallest eigenvalue of A; this is bounded from below by $2h2. . where hpin
is the minimal mesh spacing on the grid. Numerical experiments show this bound to be sharp for small
€. With this bound, we can then guarantee discrete approximation error comparable to the discretization
error by asking for ||R®) |, < B2h2; g(N), ensuring [|[U — U®) |, < g(N). For small &, however, Apin
scales as hmin v €1n(N)/(NB) for Shishkin meshes, and as hyin « €/(NB) for Bakhvalov meshes, requiring
|R™®)||o < Ce?(In® N)/N3 to achieve discretization accuracy on Shishkin meshes, and ||[R¥) ||, < Ce?/N3
to achieve discretization accuracy on Bakhvalov meshes. For small ¢ and moderate N, these values will be
much less than machine precision, implying that it is difficult to compute ||R®*)||o, accurately enough to
guarantee convergence.

Instead, we look to make use of the standard stopping criterion for preconditioned conjugate gradients,
that bounds the inner product of R*) with the preconditioned residual, Z*) = M R(*) where M represents
the preconditioning matrix applied. When M is a good preconditioner in the spectral sense that M A (or,
more precisely, A'/2M A2, where A'/? is the principal square root of A) is spectrally equivalent to the
identity, this inner product accurately estimates ||[E®)||% as

(Z““))TR(’” = (E““))TAMAE““) ~ BV,
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To bound ||[E®||o by |[E®)|| 4, we make use of an intermediate bound, trading the max-norm for a discrete
{o-norm, noting that

1
vn

for vectors of length n. A reasonable, although not rigorous, estimate is to assume near-equality with the lower
bound, rather than the often-pessimistic upper bound, under the assumption that the discrete approximation
error is nearly equi-distributed across the mesh, so that the error is not concentrated at relatively few mesh
points.

With this assumption, a more tractable bound is available, writing

IE® )z < [E® oo < BV,

c c _
1E®|oo ~ %HE(’“)IM < WHA V22| BV 4,

where A=1/2 is the principal square root of the symmetric and positive-definite matrix, A~*. This bound
presents two advantages. First, |[E(®)||4 is both naturally estimated and minimized by the preconditioned
conjugate gradient algorithm and, as such, makes a natural stopping criterion for the iterative approach.
Secondly, as we show below, the natural bound on ||A~'/2||; needed to determine the stopping criterion is
much smaller than that of |47}« (and [|A71||2), yielding a stopping criterion that is also less susceptible
to problems with round-off errors.

Since A~1/2 is the principle square root of A~!, we have ||A~1/2||3 = || A~ ||z, as the eigenvalues of A~!
are the squares of those of A='/2. Thus, we can estimate the needed norm by applying Gersgorin’s theorem
to A to estimate its smallest eigenvalue, deriving the same bound on ||A~}||2 as was given for ||A™}|| s above.
This implies that ||[A=Y2|ly < 1/(Bhmin) for the two-dimensional problems. Thus, we have

[E®)| 4.

1
EW |~ —[E® ||, < S A2 EW ||, < <
IE]] \/ﬁll l2 < 2l B[ < N Bhom

Similar bounds can be derived for the one-dimensional problems for both ||A~!||o and |[[A~'/2| 4, with
changes that the matrices are of dimension n ~ N instead of N? and a scaling of hmin3? for the minimal
eigenvalue estimate.

Given a bound of this form, the stopping criterion for |[E®)| 4 to guarantee ||[E®)||o, < g(N) (up to the
assumption relating ||E®)||, and |[E®*)||5) is given by

HE(k)”A < CBthin
&

g(N);
with this, we have

lu = U o < Cy(N),

ensuring optimality of the approximate discrete solution, U*). For example, given the N~2 scaling of the
discretization error on Bakhvalov meshes, in two dimensions the relevant bound is that if

|E® 4 < BN humin/c, (4.6)
then
1
= UWlloe < flu = Ulloo + |V = UM oo S ONT2 4 || EW L < (€ + N,

What this analysis doesn’t treat is the size of the constants, C' and ¢, or their variation in N and e¢.
While these constants are uniformly bounded independently of N and e, numerical experiments in 2D show
that when e is large, stricter convergence bounds are needed to obtain the best possible accuracy (that is,
to be almost identical to that of a direct solver). Thus, for the results presented in Section 5.2, we use a
graduated stopping tolerance of 10~3 times the above bounds when ¢ = 1, 1072 when ¢ = 10~! and 107!
when € = 1072, For smaller values of epsilon, we take the constant, ¢ = 1, with no further scaling. For
one-dimensional problems, the scaling is more uniform, and we use universally a factor of ¢ = 100, scaling
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the above bounds by 0.01. In all results, we take § as an input parameter, matching what is used for the
grid generation, and use a computed value of hyin.

Finally, we note that the required bounds on ||[E®*)||4 through this analysis are dependent on both N
and e. For many preconditioners, including standard approaches such as incomplete factorization or sparse
approximate inverses, this would imply that the necessary number of iterations, k, would grow like some power
of N or e~!. Here, we instead focus on multigrid methods and boundary-layer preconditioners that lead to
reduction of |[E*)|| 4 by factors bounded below unity in each iteration, where these bounds are independent
of both N and e. This implies that, at worst, the number of iterations required for convergence grows like
In(N) or —1In(e). More detailed analysis generally confirms this expectation, showing that the initial norms,
|E©)| 4, are reasonably well-behaved, with mild dependence on N and . A significant reduction in these
norms is achieved already by the first multigrid relaxation step and, consequently, ||[E(M] 4 is much reduced
from its initial values, typically by a factor proportional to at least 1/e. Further reduction in these norms is
generally seen to be independent of N, leading to the mild increases in iteration counts and computing time
reported in Section 5.

5. Numerical Results. All numerical results in this section are computed using code (both C and
Fortran) compiled with full optimization, executed on a Beowulf cluster using a single core of a node with
an AMD Opteron 2427, 2200 MHz processor with 32Gb of RAM (the same as was used for results in Section
3). The main driver routines are written in C to compute the fitted meshes and assemble the matrices, while
the CHOLMOD [11], BoxMG [15], and our own AMG libraries are linked to provide linear solvers. Both
BoxMG and AMG provide their own PCG wrappers. The boundary-layer preconditioners in one and two
dimensions are implemented (separately) in C within their own PCG wrappers.

We do not report errors for the solutions computed here. Instead, we fix convergence tolerances as
discussed above (with a small constant factor for BoxMG, detailed below) such that the error in the iterative
solutions generated by geometric multigrid, AMG, BoxMG, and, for suitably small &, the boundary-layer
preconditioners, matches that of the direct solver (as reported, for example, in Table 2.3 for the Bakhvalov
mesh in 2D) to three significant digits. We present here only results for Bakhvalov meshes, as results for
Shishkin meshes are nearly identical.

5.1. One-dimensional problems. We consider the solution of the linear systems arising from the finite
difference approximation to the test problem (1.3). Because the computing times for solves on reasonable
fitted grids in 1D are so small, we solve the resulting linear systems 500 times in succession and report the
aggregate solve times here.

As discussed above, there are two reasons for using geometric multigrid as a preconditioner to solve these
problems, given the difficulties for convergence caused by non-uniform grids (particularly in the Shishkin
case) and the difficulties of computing ¢ norms of the residuals with enough accuracy in double precision
to meet the more stringent stopping tolerances of the stationary iteration. Thus, in Tables 5.1 and 5.2, we
show the aggregated solve times and (unaggregated) iteration counts for geometric multigrid preconditioned
CG applied to Bakhvalov meshes.

g2 N=22 | N=20 | N=2U1 | N=212 | N=213 | N=21
1 0.78 1.61 3.22 7.02 14.17 28.72
1072 0.82 1.63 3.40 6.95 13.95 30.84
1074 0.86 1.80 3.51 6.97 15.25 30.87
106 0.94 1.81 3.50 7.7 15.32 33.60
1078 0.89 1.74 3.84 7.69 15.41 33.79
10710 0.96 1.74 3.87 7.74 16.86 33.72
10712 0.83 1.70 3.86 7.71 16.81 33.99
TABLE 5.1

CPU times for geometric multigrid preconditioned CG to achieve theoretically optimal error reduction on 1D Bakhvalov
meshes, aggregated over 500 runs.

The solve times in Table 5.1 show the near-linear scaling in IV expected of multigrid, as well as very
slow growth with €. Both of these observations are also demonstrated in the iteration counts in Table 5.2,
showing slight growth in the iteration counts as € decreases and as N increases. Both of these are consistent
with multigrid achieving a fixed reduction in the norm of the preconditioned residual per iteration, given the
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TABLE 5.2
Iteration counts for geometric multigrid preconditioned CG to achieve theoretically optimal error reduction on 1D Bakhvalov
meshes.

behaviour of the stopping tolerance with N and €. Overall, we note that the solve times in Table 5.1 are
about a factor of 3 slower than the direct solves on the finest grids, as expected due to the optimal scaling
of the Cholesky factorization for these problems.

Nonetheless, it is interesting to compare the speedup realized by the boundary-layer preconditioner with
the times shown in Table 5.1. Table 5.3 shows the values of §;, realized on the 1D Bakhvalov meshes; following
Theorem 4.1 and Corollary 4.2, we present results for the cases where 0, < 0.1, with aggregate CPU times
in Table 5.4 and iteration counts in Table 5.5.

g2 N =29 N =210 N =21 N =212 N =213 N =214
1 2.65 x 10° | 1.06 x 10 | 4.24 x 106 | 1.70 x 107 | 6.78 x 107 | 2.71 x 108
1072 || 2.65 x 103 | 1.06 x 10* | 4.24 x 10* | 1.70 x 10° | 6.78 x 10° | 2.71 x 108
107% || 1.21 x 10* | 4.83 x 10! | 1.93 x 10® | 7.73x 102 | 3.09 x 103 | 1.24 x 10*
1076 || 728 x 1072 | 2.91 x 107! | 1.17 x 10° | 4.66 x 10° | 1.86 x 10* | 7.46 x 10!
1078 || 671 x107% | 2.68 x 1073 | 1.07 x 1072 | 429 x 1072 | 1.72 x 107! | 6.87 x 10!
10710 || 6.63 x 1076 | 2.65 x 107° | 1.06 x 10~* | 4.24 x 10~* | 1.70 x 1073 | 6.79 x 1073
10712 || 6.62x 1078 | 2.65 x 1077 | 1.06 x 1076 | 4.24 x 107% | 1.70 x 10~® | 6.78 x 1075

TABLE 5.3

Computed values of 8, = &2 /(h252) for Bakhvalov meshes on [0,1] with two boundary layers and 8 = 0.99.

e [ N=20 | N=20 | N=2 | N=212 | N=218 | N=2!

10~6 0.41

108 0.30 0.74 1.62 3.61

1010 0.25 0.63 1.64 3.23 7.36 14.78

10712 0.28 0.72 1.64 3.17 7.40 14.87
TABLE 5.4

CPU times for boundary layer preconditioned CG to achieve theoretically optimal error reduction on 1D Bakhvalov meshes,
aggregated over 500 runs.

Comparing times between Tables 5.1 and 5.4, we see uniform improvements by factors of 2 or slightly
better for the boundary-layer preconditioning approach over standard geometric multigrid preconditioning.
This is, in general, consistent with our cost expectation, since the boundary layer approach is applying
a regular geometric multigrid cycle (adapted only to account for the implied boundary condition at the
transition points) to one-half of the grid, and a much cheaper diagonal scaling operation to the other half.
Comparing iteration counts between Tables 5.2 and 5.5, we see that they are essentially identical, with the
boundary-layer preconditioner occasionally taking one more iteration to fulfill the stopping criterion when §j,
is large.

5.2. Two-dimensional problems. Recall the test problem (1.5). In contrast to the one-dimensional
case, it is interesting to first compare the performance of AMG (as a preconditioner for CG) with the times
for the direct solvers reported in Table 3.1. Table 5.6 reports the times for AMG solution of the resulting
linear systems, averaged over 3 runs. Comparing these two tables, we see that the AMG solution times are
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2 [ N=20 | N=20 [ N=2" | N=22 | N=28 | N=24
106 8
108 7 7 8 9
1010 7 7 8 8 9 9
1012 7 7 8 8 9 9
TABLE 5.5

Iteration counts for boundary layer preconditioned CG to achieve theoretically optimal error reduction on 1D Bakhvalov
meshes.

generally greater than the best times for CHOLMOD until N = 1024 when the two algorithms are roughly
comparable. For larger N, however, the near-optimal scaling of AMG coupled with the clearly sub-optimal
scaling of CHOLMOD results in much better performance when comparing AMG to the best-case solve
times of CHOLMOD, and substantial improvements when CHOLMOD is slowed by sub-normal arithmetic,
as discussed in Section 3.

g2 N=2T|N=28 | N=27 | N=210| N =21 | N =212
1 0.26 1.09 4.90 21.12 95.30 429.53
1072 0.23 1.01 4.57 19.90 91.84 371.54
1074 0.19 0.90 3.92 17.18 74.40 327.46
10-¢ 0.17 0.84 3.86 16.67 75.13 323.07
1078 0.18 0.81 3.74 16.59 72.45 319.21
10710 0.18 0.95 4.35 20.16 86.49 396.19

10712 0.20 0.95 4.32 20.05 86.72 397.23
TABLE 5.6
CPU times for AMG preconditioned CG to achieve theoretically optimal error reduction on Bakhvalov meshes, averaged
over 8 runs.

Hidden in the AMG iteration times is some noteworthy variation in the number of PCG iterations needed
for each problem. Table 5.7 reports iteration counts for AMG preconditioned CG on Bakhvalov meshes; since
the iteration counts are the same for each run (as a zero initial guess and fixed right-hand side are used for
each value of N and ¢), no averaging is needed in these results. Here, we notice that for fixed e, there
is a slight increase in the number of iterations needed to achieve the stopping tolerance with N, roughly
proportional to log, N. This is naturally predicted by the assumption of a fixed error reduction per iteration
of AMG preconditioned CG, given that the stopping criteria decrease with N. Scaling with ¢ is less clear,
where we see an initial decrease in iteration counts as ¢ decreases, followed by an increase as € reaches 107°
and 1078, For fitted meshes, decreases in ¢ match increases in the worst-case mesh aspect ratio, which are
typically correlated with convergence of AMG. This variation in € can, to some extents, be ameliorated by
varying the value of the AMG parameter defining the relative magnitude of strong connections in each row.
For worse mesh-aspect ratios, larger values of the parameter (up to 1.0, where only the largest magnitude
connections are taken to be strong) are needed to stabilize AMG convergence, while only a fixed value (0.25)
has been used here.

e? N=2"| N=22 | N=2 | N=210 | N =21 | N =212
1 8 7 8 9 11 13
10—2 6 6 7 8 10 10
10~4 5 6 6 7 8 9
10-6 4 5 6 7 8 9
10-8 5 5 6 7 8 9
10—10 5 7 8 10 11 13
10—12 6 7 8 10 11 13

TABLE 5.7

Iteration counts for AMG preconditioned CG to achieve theoretically optimal error reduction on Bakhvalov meshes.

As seen in other cases, BoxMG clearly outperforms AMG on these problems, with averaged solution times



reported in Table 5.8. Comparing with Table 5.6, we see that CPU times range from about 6 times faster
for small grids to 3-4 times faster for large grids. Iteration counts, shown in Table 5.9, again show log, N
scaling as problem size increases, but notably less variation in . This is likely due to the effectiveness of the
alternating-direction line relaxation used within BoxMG, although there is no existing theoretical verification
of this scaling. Once again, the times are notably shorter (and better scaling) than those for the direct solver
in Table 3.1, as well as showing no sensitivity to subnormal numbers (as one would expect, since a direct
solver is only applied on the coarsest of grids). We note that, to achieve this performance, we use a slightly
stricter stopping tolerance for BoxMG than we do for AMG or BLPCG, decreasing those described above
by a factor of 10. Such small variations are expected, as the component bounds employed are true to within
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constant factors that have been neglected.

CPU times for BortMG preconditioned CG to achieve theoretically optimal error reduction on Bakhvalov meshes, averaged

over 8 runs.

Iteration counts for BoxrMG preconditioned CG to achieve theoretically optimal error reduction on Bakhvalov meshes.

The boundary-layer preconditioner discussed in Section 4.2.4 is expected to yield even faster times, but
only when &, < 1. Table 5.10 shows the values of §;, for various choices of NV and ¢; as expected, for fixed ¢,
0y, increases with increasing N (since h; decreases) while, for fixed N, d;, decreases with decreasing e. Note,

g2 N=2T| N=28 | N=29 | N=210 | y=211 | N =212
1 0.03 0.15 0.80 4.61 23.06 111.95
10~2 0.03 0.15 0.81 5.02 23.06 121.13
10~ 0.03 0.13 0.75 4.61 24.94 121.11
106 0.01 0.11 0.66 4.20 21.20 102.92
10~8 0.02 0.12 0.66 4.20 19.34 102.96
10~10 0.02 0.12 0.67 4.22 19.37 103.06
1012 0.03 0.12 0.68 4.22 19.41 103.32

TABLE 5.8

g2 N=2T| N=28 | N=20 | N=210 | y=211 | N =212
1 8 9 10 10 11 11
1072 8 9 10 11 11 12
1074 7 8 9 10 12 12
10~ 6 7 8 9 10 10
108 6 7 8 9 9 10
1010 6 7 8 9 9 10
10-12 6 7 8 9 9 10
TABLE 5.9

however, that the decrease is not linear in €2, as h; is dependent on «.

e N =27 N =28 N =2° N =210 N =2! N =212
1 1.65 x 10* 6.62 x 10* 2.65 x 10° 1.06 x 108 4.24 x 108 1.69 x 107
1072 1.24 x 102 4.99 x 102 2.00 x 103 7.98 x 103 3.19 x 10* 1.28 x 10°
1074 5.12 x 1071 | 2.05 x 10° 8.19 x 109 3.27 x 10? 1.31 x 102 5.24 x 102
10—6 427 %1073 | 1.71 x 1072 | 6.83 x 1072 | 2.73 x 10~ | 1.09 x 10° 4.37 x 10°
10—8 415 % 107° | 1.66 x 107* | 6.65 x 107* | 2.66 x 1073 | 1.06 x 1072 | 4.25 x 1072
10710 || 414 x 1077 | 1.66 x 1076 | 6.62 x 107% | 2.65 x 107° | 1.06 x 107* | 4.24 x 10~
10712 || 414 x 1072 | 1.66 x 1078 | 6.62 x 1078 | 2.65 x 10~7 | 1.06 x 1075 | 4.24 x 106

TABLE 5.1

Computed values of 6, = 62/(h%ﬂ) for Bakhvalov meshes on [0,1]? with a single boundary layer and B = 0.99.

In Tables 5.11 and 5.12, we only report results for cases where §;, < 0.1, consistent with the spectral
equivalence bounds in Theorem 4.3 and Corollary 4.4. We note that, when d;, < 0.01, there is no notable
difference between the errors in the iterative solutions generated by BLPCG with the stopping criterion as
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given above from those generated by the direct solver. For 0.01 < §;, < 0.1, the errors generated by BLPCG
are somewhat larger. For N = 512 and €2 = 1075, where &, = 0.0683, the relative increase in the BLPCG
error is just 0.1%; for N = 2048 and 2 = 1078, where §;, = 0.0425, the relative increase in the BLPCG error
is a more significant 15.4%. These values could be decreased by a tighter stopping tolerance, but this would
lead to oversolving in the cases where ¢;, is smaller.

e | N=2|N=2 | N=2 | N=2" | N=2" | N=2"
1076 0.01 0.05 0.27

108 0.01 0.05 0.25 1.31 6.82 29.34

1010 0.01 0.04 0.24 1.31 6.82 29.35

10~12 0.01 0.05 0.24 1.31 6.82 29.29
TABLE 5.11

CPU times for preconditioned CG with the boundary-layer preconditioner to achieve (near) theoretically optimal error
reduction on Bakhvalov meshes, averaged over 8 runs. Times marked as * indicate those below timing threshold.

2 | N=2"|[N=28 | N=29 | N=210 | N=2!! | N =22
10—6 6 6 8
10—8 6 6 7 8 8 8
10—10 5 6 7 8 8 8
10~ 12 5 6 7 8 8 8
TABLE 5.12

Iteration counts for preconditioned CG with the boundary-layer preconditioner to achieve (near) theoretically optimal error
reduction on Bakhvalov meshes.

Comparing Table 5.11 with Tables 5.6 and 5.8, we see that, when the BLPCG approach is effective, it
offers a substantial further reduction in the time-to-solution on large grids, by slightly more than a factor of
3 over BoxMG, and a factor of 10 or more over AMG. This is slightly better than predicted by the rough cost
estimate given in Section 4.2.4, but not surprisingly so, especially as BLPCG typically converges in fewer
iterations than BoxMG. The iteration counts in Table 5.12 are steady and show only small dependency on ¢.

6. Extensions to three-dimensional problems. While we do not directly treat either the theory
or practice of three-dimensional problems in this paper, we note that the techniques proposed here for two
dimensions all naturally extend to three. Both AMG and BoxMG can be directly applied to the seven-point
stencils of finite-difference discretizations in 3D, and past comparisons show BoxMG to be about ten to fifteen
times faster than AMG for some diffusion problems [32]. In three dimensions, BoxMG makes use of plane-
based relaxation where, because of the non-optimal scaling of direct solvers for two-dimensional problems,
relaxation is composed of a single two-dimensional V-cycle along each plane of grid points in each direction
of the mesh.

Similarly, a three-dimensional analogue of the boundary-layer preconditioner is also natural. Considering
a problem with one boundary layer in each direction and a tensor-product of meshes with N/2 points in the
boundary layer and N/2 evenly spaced points in the interior, there is one highly resolved corner with N?3/8
points, to which we would apply a standard 3D BoxMG V-cycle, with cost roughly 1/8 of that of the V-cycle
on all N3 points. Along each of the z-, y-, and z-axes, away from the corner, there are layers that are highly
resolved in two directions, but not the third. For example, along the z-axis away from the origin, there is
high resolution in the y- and z-directions, but not in the x-direction. Each of these regions has N?/8 points
in it, and can be effectively treated by a single plane solve, instead of the six plane solves (in three alternating
directions, both before and after coarse-grid correction) used in the standard BoxMG Veycle. Thus, the cost
of treating these regions at each iteration is (3/8)(1/6)(7/8), where the factor of 7/8 comes from the treatment
of only the finest grid, and not grids of N3, N3/8, N3/64, etc., as in the multigrid V-cycle. Next, along
each face in the zy-, z-, and yz-planes, there is a layer that is highly resolved in one direction (orthogonal
to the plane), but not along the plane. In these regions, line solves are sufficient. In the remaining N?3/8
points in the interior, diagonal scaling is sufficient, but we will estimate the cost of line solves here, too, for
simplicity. Thus, for N3/2 points, we make use of a single line solve (oriented in the direction of the mesh
refinement) or point solve, with cost 1/4 of the relaxation in a plane solve, which has relative complexity of
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4/3, and of which there are six in a 3D BoxMG V-cycle, with relative complexity of 8/7. This gives a cost of
(1/2)(1/4)(3/4)(1/6)(7/8) for the treatment of these regions, relative to the cost of a full multigrid V-cycle.
Adding these costs gives

1/8 4 (3/8)(1/6)(7/8) + (1/2)(1/4)(3/4)(1/6)(7/8) = 99/512

of the cost of a full 3D BoxMG V-cycle. While the non-uniform coarsening used by AMG should naturally
coarsen in ways consistent with this proposed boundary-layer preconditioner, the expectation that BoxMG
by itself outperforms AMG implies that the boundary-layer preconditioner should be the fastest approach.

7. Conclusions. This paper focuses on the solution of the linear systems of equations that arise from
finite-difference discretizations of singularly perturbed reaction-diffusion equations on fitted meshes. We show
that standard direct solvers scale poorly with both the mesh size (as is well known) and the perturbation
parameter (due to slow performance of IEEE floating-point arithmetic in this regime). In contrast, robust
multigrid methods offer nearly parameter-uniform efficiency in solving these linear systems, and the carefully
derived stopping criteria ensure accurate, and efficient, approximations to the discrete solution. FExisting
software implementing algebraic and black-box multigrid approaches is demonstrated to offer nearly scalable
performance. A new boundary-layer preconditioner is also proposed and is shown, both theoretically and
numerically, to offer near-optimal scaling at still lower cost. Overall, we see speedups of factors of 40 or
greater for problems with small perturbation parameters.

The approaches proposed here can clearly be extended to a number of other situations. Bilinear finite-
element discretizations on fitted meshes generate similar stencils to those considered here and, as such, it is
expected that simple extensions of these approaches can be applied in this case. Other layer-adapted meshes,
such as hybrid Bakhvalov-Shishkin meshes (e.g., [42]), and variants due to Vulanovié¢ (e.g., [51]), create
similar structures; in these cases, very similar approaches should also yield near-optimal scaling solution
algorithms for the resulting linear systems. The developed theory for the boundary-layer preconditioner, in
particular, is directly applicable to finite-difference discretizations on any fitted mesh that yields uniform
meshwidth away from the boundary and corner layers, while the stopping criterion derived depends only on
the minimum mesh width and existing theoretical error estimates for the discretization.

8. Acknowledgments. The authors would like to thank Iain Duff for his helpful discussions that
exposed the issue of subnormal numbers in causing the slowdown observed with sparse direct methods for
these problems.
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