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SUMMARY

Although there have been significant advances in robust algebraic multigrid methods in recent years,
numerical studies and emerging hardware architectures continue to favor structured-grid approaches.
Specifically, implementations of logically structured robust variational multigrid algorithms, such as
the Black Box Multigrid (BoxMG) solver, have been shown to be 10 times faster than AMG for
three-dimensional heterogeneous diffusion problems on structured grids [1]. BoxMG offers important
features such as operator-induced interpolation for robustness, while taking advantage of direct data
access and bounded complexity in the Galerkin coarse-grid operator. Moreover, since BoxMG uses a
variational framework, it can be used to explore advances of modern adaptive AMG approaches in a
structured setting. In this paper, we show how to extend the adaptive multigrid methodology to the
BoxMG setting. This extension not only retains the favorable properties of the adaptive framework,
but also sheds light on the relationship between BoxMG and AMG. In particular, we show how
classical BoxMG can be viewed as a special case of classical AMG, and how this viewpoint leads to
a richer family of adaptive BoxMG approaches. We present numerical results that explore this family
of adaptive methods and compare its robustness and efficiency to the classical BoxMG solver.
Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

While multigrid methods have been actively studied since the seminal work of Brandt in the
1970’s [2,3], the field remains one of active research, with recent advances in robustness from the
adaptive multigrid framework [4–7] and application to a wide variety of new problems [8–12].
Additionally, the challenges of evolving computer architectures have driven research into
numerical methods that are naturally suited to GPUs and other accelerated architectures
[13–15]. In this paper, we consider the implementation of the adaptive multigrid methodology
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for structured-grid robust multigrid approaches, such as the Black Box Multigrid algorithm
(BoxMG) [16, 17]. We also note several connections between BoxMG and the Algebraic
Multigrid algorithm (AMG) [18–20].

The Black Box Multigrid method (BoxMG), which was introduced in [17] (largely following
from [16]) and further developed in [21–24], is a robust multigrid solver (or, more correctly,
family of algorithms) that is known to be effective for the solution of various PDEs discretized
on logically structured two- or three-dimensional grids. Much like AMG (and as its name
implies), these algorithms are intended to function as “black boxes”, with the user providing
only the fine-grid discretization, right-hand side, and an initial guess for the solution. The
key difference between BoxMG and AMG is that BoxMG uses a fixed coarse-grid structure,
based on geometric coarsening, while the coarse grids in AMG are typically computed based
on either graph algorithms [18, 19, 25–27] or compatible relaxation principles [28–30]. Thus,
BoxMG may be efficiently implemented using structured data representations allowing direct
addressing, while AMG typically relies on unstructured data storage and indirect addressing.
As with AMG, interest in simulating challenging applications, such as electrical activation
in the heart [31], models of tumor growth [32], geophysical electromagnetic simulation [33],
and flow in heterogeneous porous media [34–36], has driven the algorithm’s use and continued
development.

While much of the development of robust multigrid approaches in the last decade has been
focused on algebraic multigrid techniques and their parallelization [25–27,37–41], recent trends
in computer architectures, particularly towards many-core and accelerated architectures that
achieve their best performance operating on structured data, suggest that it is worthwhile to
revisit structured robust algorithms like BoxMG. On these architectures, the performance hit
taken by unstructured data accesses and indirect addressing may be so significant that it is
more efficient to consider larger, logically structured grids with regular data access patterns
than optimal-accuracy unstructured refinements that necessitate AMG. For example, logically
structured body-fitted grids may be used to handle complex shapes, and irregular domains
may be embedded in rectangular domains.

A major goal of this paper is to extend the recently developed adaptive multigrid framework
[4–7] to the structured BoxMG setting. While classical AMG significantly expanded the scope
of problems to which multigrid can be applied, important classes of problems, such as those of
quantum chromodynamics [42–44], still pose difficulties for classical AMG. For such problems,
the implicit assumptions made by AMG regarding the errors that pointwise Gauss-Seidel
relaxation is slow to reduce are not satisfied. Adaptive multigrid methods, then, are designed
to avoid making such fixed assumptions by dynamically assessing the nature of these slow-to-
converge errors in order to construct effective multigrid components. Similarly, the construction
of the interpolation operators in classical BoxMG is based on assumptions regarding the slow-
to-converge errors in the BoxMG relaxation, either pointwise or linewise Gauss-Seidel, and the
adaptive methodology offers similar improvements to the robustness of the BoxMG algorithm.
Two important consequences of this extension are the use of the adaptive framework with
a linewise Gauss-Seidel smoother, allowing better treatment of anisotropic problems, and the
ability to remove some of the logical complexities in the classical BoxMG interpolation scheme,
which allow for efficient treatment of a wide variety of boundary conditions (see Section 4).

A natural consequence of the extension of adaptive multigrid methods (which have, thus
far, been developed only for algebraic multigrid algorithms) to the BoxMG framework is a
new perspective on the relationship between the classical and adaptive AMG and BoxMG
interpolation formulae. This relationship is also explored here. In particular, we see that
the BoxMG interpolation formulae can be viewed as special cases of the AMG formulae,
based on non-standard definitions of strong and weak connections. This perspective, then,
suggests a family of logically structured robust multigrid algorithms, based on BoxMG, AMG,
or combinations of the two. These approaches are also explored.

The remainder of this paper is organized as follows. Section 2.1 reviews the classical BoxMG
interpolation formulae, while the adaptive variants of these formulae are introduced in Section
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2.2. The adaptive multigrid setup cycling scheme is reviewed in Section 2.3. The connections
between BoxMG and AMG interpolation are discussed in Section 3. Numerical results are
presented in Section 4, while Section 5 gives conclusions.

2. STRUCTURED AND ADAPTIVE INTERPOLATION APPROACHES

The structured-grid interpolation used in BoxMG [17] is based on the assumptions that both
the fine and coarse grids are logically rectangular; that is, that the fine-grid matrix has either a
5-point or 9-point stencil that matches the connectivity pattern of a finite-difference or finite-
element discretization on a tensor-product Cartesian mesh. While there are important practical
differences in implementation if the fine-grid stencil is a 5-point (finite-difference) stencil, there
is no change in the formulae for the resulting interpolation operators, aside from the use of
zero coefficients for the missing entries in the matrix. Thus, we focus here on the 9-point
connectivity case that is typical of quadrilateral finite-element discretizations. We also focus
here on standard geometric multigrid coarsening of these meshes, by a factor of two in each
direction. While coarsening by higher ratios is also possible [45,46], the standard coarsening by
factors of 2d closely matches the classical AMG framework [18,20] to which we will compare.

Historically, BoxMG predates AMG, with the concept of operator-induced interpolation
originally introduced in [16, 17]. Thus, complications in the multigrid treatment of the PDE,
including jumps in diffusion coefficients or unequal grid spacings, are automatically included
in the definition of the interpolation operator. Physically, for a standard diffusion problem, the
BoxMG interpolation operator can be seen to be based on the approximation of continuity of
normal fluxes across jumps in the diffusion coefficient that are aligned with the mesh [36]; in
Section 3, we show that this approach can also be equated to a standard AMG definition of
interpolation for a fixed choice of the coarse grid and non-standard choice of the definition of
“strong connections” in the matrix.

In the discussion that follows, we make use of a compass-based notation for connections in
the matrix, A, as given in Figure 1. In this notation, the row of the matrix equation Ax = b
associated with node (i, j) is given by

aSW
i,j xi−1,j−1+aS

i,jxi,j−1 + aSE
i,j xi+1,j−1 + aW

i,jxi−1,j + aO
i,jxi,j

+aE
i,jxi+1,j + aNW

i,j xi−1,j+1 + aN
i,jxi,j+1 + aNE

i,j xi+1,j+1 = bi,j .

Within BoxMG, just as within AMG, the goal of the definition of interpolation is to faithfully
represent this equation for an error that yields a small residual, typically assumed to be zero:

aSW
i,j ei−1,j−1+aS

i,jei,j−1 + aSE
i,j ei+1,j−1 + aW

i,jei−1,j + aO
i,jei,j

+aE
i,jei+1,j + aNW

i,j ei−1,j+1 + aN
i,jei,j+1 + aNE

i,j ei+1,j+1 = 0, (1)

although the inclusion of the residual in an affine interpolation process was noted to be
important in certain cases in [17].

2.1. Classical BoxMG Interpolation

The classical BoxMG interpolation operator involves four cases:

1. (i, j) is a coarse point: In this case, shown at the left of Figure 2, interpolation simply
preserves the coarse-grid value:

(
PeC

)
i,j

= eC
I,J , where (I, J) is the coarse-grid index for

the node corresponding to (i, j) on the fine grid.
2. (i− 1, j) and (i+ 1, j) are coarse points: In this case, shown in the middle of Figure

2, point (i, j) lies embedded in a coarse-grid line in the x-direction, and the goal is
to define a one-dimensional interpolation formula from coarse-grid points (I, J) and
(I + 1, J), corresponding to fine-grid points (i− 1, j) and (i+ 1, j), respectively, to (i, j).
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Figure 1. Compass-Based Notation for the Stencil at Node (i, j)

Figure 2. The schematic [45] shows injection of coarse-grid points (left) and interpolation of two
different classes of fine-grid points: points embedded in coarse-grid lines (middle), and points located

at the logical center of a coarse-grid cell (right).

The BoxMG approach is to simply collapse the stencil in the y-direction onto the line with
fixed y-coordinate, j. Thus, in Equation (1), we assume that the error is approximately
constant in the y direction and write

ek,j ≈ ek,j−1 ≈ ek,j+1, for k = i− 1, i, i+ 1, (2)

giving(
aS

i,j + aO
i,j + aN

i,j

)
ei,j = −

(
aSW

i,j + aW
i,j + aNW

i,j

)
eC
I,J −

(
aSE

i,j + aE
i,j + aNE

i,j

)
eC
I+1,J , (3)

where we have used the injected errors at the coarse-grid points, ei−1,j = eC
I,J and

ei+1,j = eC
I+1,J . Thus, the interpolation formula is given by

(PeC)i,j = −
aSW

i,j + aW
i,j + aNW

i,j

aS
i,j + aO

i,j + aN
i,j

eC
I,J −

aSE
i,j + aE

i,j + aNE
i,j

aS
i,j + aO

i,j + aN
i,j

eC
I+1,J . (4)

Writing āOy
i,j = aS

i,j + aO
i,j + aN

i,j , āW
i,j = aSW

i,j + aW
i,j + aNW

i,j , and āE
i,j = aSE

i,j + aE
i,j + aNE

i,j ,

this can be compactly written as (PeC)i,j = − āW
i,j

āOy
i,j

eC
I,J −

āE
i,j

āOy
i,j

eC
I+1,J .

3. (i, j − 1) and (i, j + 1) are coarse points: This case is analogous to the previous one,
with the roles of the x- and y-coordinates switched. Thus, taking (I, J) and (I, J + 1)
to be the coarse-grid indices corresponding to fine-grid points (i, j − 1) and (i, j + 1),
respectively, we make the approximations that

ei,k ≈ ei−1,k ≈ ei+1,k, for k = j − 1, j, j + 1.
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Substituting these in Equation (1) and rearranging, as above, gives

(PeC)i,j = −
aSW

i,j + aS
i,j + aSE

i,j

aW
i,j + aO

i,j + aE
i,j

eC
I,J −

aNW
i,j + aN

i,j + aNE
i,j

aW
i,j + aO

i,j + aE
i,j

eC
I,J+1. (5)

4. (i− 1, j − 1), (i+ 1, j − 1), (i− 1, j + 1), and (i+ 1, j + 1) are coarse points: In this
case, shown at the right of Figure 2, the fine-grid point (i, j) lies at the center of a coarse-
grid cell with nodes (I, J), (I + 1, J), (I, J + 1), and (I + 1, J + 1) corresponding to fine-
grid nodes (i− 1, j − 1), (i+ 1, j − 1), (i− 1, j + 1), and (i+ 1, j + 1), respectively. In
this case, there is no clear preferential geometric direction for collapsing the stencil, since
each connection to the fine-grid neighbors of (i, j) is equidistant (both geometrically and
grid-wise) from two coarse-grid points and (i, j) itself. However, as interpolation has
already been determined for each of these neighbors, we can leverage the definitions of
interpolation given above to eliminate them from Equation (1), writing

aSW
i,j ei−1,j−1+aS

i,j

(
PeC

)
i,j−1

+ aSE
i,j ei+1,j−1 + aW

i,j

(
PeC

)
i−1,j

+ aO
i,jei,j

+aE
i,j

(
PeC

)
i+1,j

+ aNW
i,j ei−1,j+1 + aN

i,j

(
PeC

)
i,j+1

+ aNE
i,j ei+1,j+1 = 0,

or

aO
i,jei,j = −aSW

i,j eC
I,J − aS

i,j

(
PeC

)
i,j−1

− aSE
i,j e

C
I+1,J − aW

i,j

(
PeC

)
i−1,j

(6)

−aE
i,j

(
PeC

)
i+1,j

− aNW
i,j eC

i,J+1 − aN
i,j

(
PeC

)
i,j+1

− aNE
i,j e

C
I+1,I+1.

Denoting the coefficient of P interpolating from coarse-grid node (K,L) to fine-grid node
(k, `) by p(k,`),(K,L) (in a slight modification of the usual row-column indexing notation),
we can then expand the entries of PeC that appear above as(

PeC
)
i,j−1

= p(i,j−1),(I,J)e
C
I,J + p(i,j−1),(I+1,J)e

C
I+1,J ,(

PeC
)
i,j+1

= p(i,j+1),(I,J+1)e
C
I,J+1 + p(i,j+1),(I+1,J+1)e

C
I+1,J+1,(

PeC
)
i−1,j

= p(i−1,j),(I,J)e
C
I,J + p(i−1,j),(I,J+1)e

C
I,J+1,

and
(
PeC

)
i+1,j

= p(i+1,j),(I+1,J)e
C
I+1,J + p(i+1,j),(I+1,J+1)e

C
I+1,J+1.

Making these substitutions into Equation (6) implicitly gives the interpolation formula

(
PeC

)
i,j

=−
aSW

i,j + aS
i,jp(i,j−1),(I,J) + aW

i,jp(i−1,j),(I,J)

aO
i,j

eC
I,J

−
aSE

i,j + aS
i,jp(i,j−1),(I+1,J) + aE

i,jp(i+1,j),(I+1,J)

aO
i,j

eC
I+1,J

−
aNW

i,j + aN
i,jp(i,j+1),(I,J+1) + aW

i,jp(i−1,j),(I,J+1)

aO
i,j

eC
I,J+1

−
aNE

i,j + aN
i,jp(i,j+1),(I+1,J+1) + aE

i,jp(i+1,j),(I+1,J+1)

aO
i,j

eC
I+1,J+1. (7)

To achieve added robustness, for problems on grids of dimensions other than 2N + 1, that
include lower-order terms, or that involve a wide variety of boundary conditions, the BoxMG
algorithm supplements these definitions with a heuristic switch for diagonally dominant rows
of the matrix [45]. Thus, each of the definitions in Equations (4), (5), and (7) has a generalized
form that makes use of this switch. For example, at fine-grid points embedded in horizontal
coarse-grid lines, Equation (4) becomes

(PeC)i,j = −
āW

i,j

AOy
i,j

eC
I,J −

āE
i,j

AOy
i,j

eC
I+1,J .
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Taking AOy
i,j = āOy

i,j , as in Equation (4) above, is referred to as averaging interpolation.
Although this is an effective option for many situations, there are also situations where
this leads to poor performance, particularly for diagonally dominant rows of the matrix.
An alternate approach, defining AOy

i,j = āW
i,j + āE

i,j , gives interpolation coefficients that exactly
preserve the constant in interpolation, even when the stencil is diagonally dominant. This
formulation is referred to as constant-preserving interpolation; although this approach is
effective in many situations, it is not always successful. Most notably, constant-preserving
interpolation fails when the grids are not of dimension 2N + 1 in each direction, as
extrapolation is used at the right and/or top boundaries.

The solution implemented in BoxMG is to use a heuristic switch to choose between these two
formulations. Letting ωy = āW

i,j + āE
i,j , the denominator of the interpolation weights is defined

as,

AOy
i,j =

{
āOy

i,j aO
i,j > (1 + εy)ωy

ωy aO
i,j ≤ (1 + εy)ωy

,

where εy = min(|āW
i,j |/aO

i,j , |āE
i,j |/aO

i,j). An analogous switch is defined for the fine-grid points
embedded in y-lines, and for fine-grid points in the interior of coarse-grid cells. This formulation
is referred to as switched interpolation.

2.2. Adaptive BoxMG interpolation

Adjusting the interpolation formulae in Equations (4), (5), and (7) to account for modified
information about the near-null space of matrix A can be done following a similar approach as
in [6]. In (4) and (5), connections between the fine-grid point (i, j) and its fine-grid neighbors
are collapsed based on the assumption that the unwanted values of the fine-grid error vector
could be accurately approximated directly by the values at their neighbors on the coarse grid,
or by the error at point (i, j) itself. This is a natural assumption when the matrix, A, comes
from a standard discretization of an elliptic differential operator, for which the constant vector
gives a good local representative of the near-null space of the matrix. As such, this is closely
related to the standard AMG assumption that algebraically smooth errors vary slowly along
strong connections [18].

When the constant vector doesn’t give a good representation of the near-null space of the
matrix, adaptive multigrid methods [4–6, 11, 47–50] make use of so-called prototype vectors,
that are assumed to give an accurate local picture of the variation in the near-null space
of the matrix or, equivalently, in the slow-to-converge errors for simple pointwise relaxation
schemes, such as weighted Jacobi or Gauss-Seidel. Because we consider such adaptivity within
the setting of the scalar BoxMG algorithm (and, in particular, not its systems variant [22]),
we only consider the case where such information is provided in the form of a single prototype
vector, z, although recent experience with the scalar gauged-Laplacian operator from quantum
chromodynamics suggests that this may limit the applicability of the resulting algorithm [47].

Thus, given a single prototype vector, z, we propose to modify the interpolation rules given
in Equations (4) and (5) based on indirect fitting of z. When point (i, j) is embedded in a
coarse-grid line in the x-direction, instead of making the approximations in Equation (2) that
lead to (4), we define local scaling factors based on the prototype,

wS
k,j =

zk,j−1

zk,j
and wN

k,j =
zk,j+1

zk,j
, for k = i− 1, i, i+ 1,

and make weighted approximations to the error in the y direction,

ek,j−1 ≈ wS
k,jek,j and ek,j+1 ≈ wN

k,jek,j , for k = i− 1, i, i+ 1.

These factors locally capture the slope of the error transverse to the direction of interpolation,
leading to the definition of a rich interpolation space that appropriately represents the
prototype vector. With these approximations, the overall approximation of Equation (1)
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becomes (
wS

i,ja
S
i,j + aO

i,j + wN
i,ja

N
i,j

)
ei,j =−

(
wS

i−1,ja
SW
i,j + aW

i,j + wN
i−1,ja

NW
i,j

)
eC
I,J

−
(
wS

i+1,ja
SE
i,j + aE

i,j + wN
i+1,ja

NE
i,j

)
eC
I+1,J ,

which gives the interpolation formula,

(PeC)i,j = −
wS

i−1,ja
SW
i,j + aW

i,j + wN
i−1,ja

NW
i,j

wS
i,ja

S
i,j + aO

i,j + wN
i,ja

N
i,j

eC
I,J −

wS
i+1,ja

SE
i,j + aE

i,j + wN
i+1,ja

NE
i,j

wS
i,ja

S
i,j + aO

i,j + wN
i,ja

N
i,j

eC
I+1,J .

Rewriting this in terms of only entries in A and z gives

(PeC)i,j =−
zi,j

(
aSW

i,j zi−1,j−1 + aW
i,jzi−1,j + aNW

i,j zi−1,j+1

)
zi−1,j

(
aS

i,jzi,j−1 + aO
i,jzi,j + aN

i,jzi,j+1

) eC
I,J (8)

−
zi,j

(
aSE

i,j zi+1,j−1 + aE
i,jzi+1,j + aNE

i,j zi+1,j+1

)
zi+1,j

(
aS

i,jzi,j−1 + aO
i,jzi,j + aN

i,jzi,j+1

) eC
I+1,J .

Similarly, to replace the interpolation formula given in Equation (5) for the case where point
(i, j) is embedded in a coarse-grid line in the y-direction, we define the scaling factors,

wW
i,k =

zi−1,k

zi,k
and wE

i,k =
zi+1,k

zi,k
, for k = j − 1, j, j + 1,

and make weighted approximations to the error in the x direction,

ei−1,k ≈ wW
i,kei,k and ei+1,k ≈ wE

i,kei,k, for k = j − 1, j, j + 1.

Then, following the analogous derivation as in Equation (8), we can derive the adaptive version
of Equation (5),

(PeC)i,j = −
wW

i,j−1a
SW
i,j + aS

i,j + wE
i,j−1a

SE
i,j

wW
i,ja

W
i,j + aO

i,j + wE
i,ja

E
i,j

eC
I,J −

wW
i,j+1a

NW
i,j + aN

i,j + wE
i,j+1a

NE
i,j

wW
i,ja

W
i,j + aO

i,j + wE
i,ja

E
i,j

eC
I,J+1.

Again rewriting in terms of the entries of A and z gives

(PeC)i,j =−
zi,j

(
aSW

i,j zi−1,j−1 + aS
i,jzi,j−1 + aSE

i,j zi+1,j−1

)
zi,j−1

(
aW

i,jzi−1,j + aO
i,jzi,j + aE

i,jzi+1,j

) eC
I,J (9)

−
zi,j

(
aNW

i,j zi−1,j+1 + aN
i,jzi,j+1 + aNE

i,j zi+1,j+1

)
zi,j+1

(
aW

i,jzi−1,j + aO
i,jzi,j + aE

i,jzi+1,j

) eC
I,J+1.

While modification of the definition of interpolation to fine-grid nodes that lie at the centers
of coarse-grid cells, as given in (6), is possible (see Section 3), it is natural to keep the general
form, and simply replace the values of

(
PeC

)
i,j−1

,
(
PeC

)
i,j+1

,
(
PeC

)
i−1,j

, and
(
PeC

)
i+1,j

with those from Equations (8) and (9).
An immediate consequence of these definitions is a scaling-invariance property of the

adaptive BoxMG interpolation scheme given in Equations (8) and (9). Just as in classical
AMG [6], the performance of classical BoxMG is known to suffer significantly when the system
matrix, A, is rescaled, even in the simplest ways; however, the adjustments in (8) and (9) are
sufficient to “undo” the effects of scaling.

Theorem 1. Let A be a given matrix with regular 9-point connectivity structure (i.e., a
non-zero pattern contained within that of the standard 9-point tensor-product bilinear finite-
element stencil on a regular mesh), and let S be a non-singular diagonal matrix. Define
Â = SAS, and z = S−11 to be the prototype vector for adaptive BoxMG interpolation, so
that zi,j = 1/s(i,j),(i,j) is the value of the prototype at node (i, j). Let P denote the classical
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8 S.P. MACLACHLAN, J.D. MOULTON, AND T.P. CHARTIER

BoxMG interpolation operator for matrix A, as given in Equations (4), (5), and (7). Assume
that all of

aO
i,j

aW
i,j + aO

i,j + aE
i,j

aS
i,j + aO

i,j + aN
i,j

âW
i,jzi−1,j + âO

i,jzi,j + âE
i,jzi+1,j

âS
i,jzi,j−1 + âO

i,jzi,j + âN
i,jzi,j+1

are nonzero for each node (i, j) where these appear in the interpolation formulae, so that
both the classical BoxMG interpolation operator for A and the adaptive BoxMG interpolation
operator for Â based on prototype z, P̂ , are well-defined. Then, P̂ = S−1PSc, where Sc is the
diagonal matrix whose values are given by taking the values of S at only the coarse-grid nodes.

Proof
We prove this result by considering each of the four cases discussed above.

1. (i, j) is a coarse point: In this case, both
(
PeC

)
i,j

= eC
I,J and

(
P̂eC

)
i,j

= eC
I,J . Note,

however, that the entry on the diagonal of Sc corresponding to (I, J) is the same as the
entry on the diagonal of S corresponding to (i, j), so that the effects of the left and right
scalings in S−1PSc on these rows cancel out.

2. (i− 1, j) and (i+ 1, j) are coarse points: In this case, we have two formulae for the
classical and adaptive cases, Equations (4) and (8), respectively, giving

(PeC)i,j =−
aSW

i,j + aW
i,j + aNW

i,j

aS
i,j + aO

i,j + aN
i,j

eC
I,J −

aSE
i,j + aE

i,j + aNE
i,j

aS
i,j + aO

i,j + aN
i,j

eC
I+1,J

and (P̂eC)i,j =−
zi,j

(
âSW

i,j zi−1,j−1 + âW
i,jzi−1,j + âNW

i,j zi−1,j+1

)
zi−1,j

(
âS

i,jzi,j−1 + âO
i,jzi,j + âN

i,jzi,j+1

) eC
I,J

−
zi,j

(
âSE

i,j zi+1,j−1 + âE
i,jzi+1,j + âNE

i,j zi+1,j+1

)
zi+1,j

(
âS

i,jzi,j−1 + âO
i,jzi,j + âN

i,jzi,j+1

) eC
I+1,J .

Noting that the scaling, Â = SAS, gives âSW
i,j = aSW

i,j z−1
i,j z

−1
i−1,j−1, âW

i,j = aW
i,jz
−1
i,j z

−1
i−1,j ,

and so forth, we see that many of the terms, zk,`, in the adaptive case cancel with the
scaling in Â, ultimately giving

P̂eC
i,j = −

zi,j

(
aSW

i,j + aW
i,j + aNW

i,j

)
zi−1,j

(
aS

i,j + aO
i,j + aN

i,j

) eC
I,J −

zi,j

(
aSE

i,j + aE
i,j + aNE

i,j

)
zi+1,j

(
aS

i,j + aO
i,j + aN

i,j

)eC
I+1,J .

From this, we see that p̂(i,j),(I,J) = zi,j

zi−1,j
p(i,j),(I,J) and that p̂(i,j),(I+1,J) =

zi,j

zi+1,j
p(i,j),(I+1,J). Further noting that the entry of Sc corresponding to (I, J) is z−1

i−1,j

and that corresponding to (I + 1, J) is z−1
i+1,j (since (i− 1, j) and (i+ 1, j) are the

fine-grid points corresponding to these coarse-grid indices), establishes that p̂(i,j),(I,J) =(
S−1PSc

)
(i,j),(I,J)

and p̂(i,j),(I+1,J) =
(
S−1PSc

)
(i,j),(I+1,J)

.
3. (i, j − 1) and (i, j + 1) are coarse points: This case is essentially identical to the

previous case, except that we now identify coarse points (I, J) and (I, J + 1) with fine
points (i, j − 1) and (i, j + 1), respectively. Following the analogous steps, Equation (9)
becomes

(P̂eC)i,j = −
zi,j

(
aSW

i,j + aS
i,j + aSE

i,j

)
zi,j−1

(
aW

i,j + aO
i,j + aE

i,j

)eC
I,J −

zi,j

(
aNW

i,j + aN
i,j + aNE

i,j

)
zi,j+1

(
aW

i,j + aO
i,j + aE

i,j

) eC
I,J+1.
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ROBUST AND ADAPTIVE MULTIGRID METHODS 9

As before, we see the relationship that p̂(i,j),(I,J) = zi,j

zi,j−1
p(i,j),(I,J) and p̂(i,j),(I,J+1) =

zi,j

zi,j+1
p(i,j),(I,J+1); a similar argument shows that p̂(i,j),(I,J) =

(
S−1PSc

)
(i,j),(I,J)

and

p̂(i,j),(I,J+1) =
(
S−1PSc

)
(i,j),(I,J+1)

.
4. (i− 1, j − 1), (i+ 1, j − 1), (i− 1, j + 1), and (i+ 1, j + 1) are coarse points: In this

case, the formula for Â follows that for A, with entries from P̂ replacing those of P :(
P̂eC

)
i,j

=−
âSW

i,j + âS
i,j p̂(i,j−1),(I,J) + âW

i,j p̂(i−1,j),(I,J)

âO
i,j

eC
I,J

−
âSE

i,j + âS
i,j p̂(i,j−1),(I+1,J) + âE

i,j p̂(i+1,j),(I+1,J)

âO
i,j

eC
I+1,J

−
âNW

i,j + âN
i,j p̂(i,j+1),(I,J+1) + âW

i,j p̂(i−1,j),(I,J+1)

âO
i,j

eC
I,J+1

−
âNE

i,j + âN
i,j p̂(i,j+1),(I+1,J+1) + âE

i,j p̂(i+1,j),(I+1,J+1)

âO
i,j

eC
I+1,J+1,

where the coarse-grid indices (I, J), (I + 1, J), (I, J + 1), and (I + 1, J + 1) refer to
fine-grid points (i− 1, j − 1), (i+ 1, j − 1), (i− 1, j + 1), and (i+ 1, j + 1), respectively.
Making the appropriate substitutions for entries in Â and P̂ , we have

p̂(i,j),(I,J) = −
âSW

i,j + âS
i,j p̂(i,j−1),(I,J) + âW

i,j p̂(i−1,j),(I,J)

âO
i,j

= −
aSW

i,j z−1
i,j z

−1
i−1,j−1

aO
i,jz
−2
i,j

−
aS

i,jz
−1
i,j z

−1
i,j−1p(i,j−1),(I,J)

zi,j−1
zi−1,j−1

aO
i,jz
−2
i,j

−
aW

i,jz
−1
i,j z

−1
i−1,jp(i−1,j),(I,J)

zi−1,j

zi−1,j−1

aO
i,jz
−2
i,j

= −
zi,j

(
aSW

i,j + aS
i,jp(i,j−1),(I,J) + aW

i,jp(i−1,j),(I,J)

)
zi−1,j−1aO

i,j

=
zi,j

zi−1,j−1
p(i,j),(I,J).

Similar calculations for the other coefficients show that

p̂(i,j),(I+1,J) =
zi,j

zi+1,j−1
p(i,j),(I+1,J),

p̂(i,j),(I,J+1) =
zi,j

zi−1,j+1
p(i,j),(I,J+1),

and p̂(i,j),(I+1,J+1) =
zi,j

zi+1,j+1
p(i,j),(I+1,J+1).

As before, this shows that these coefficients are also scaled as given by P̂ = S−1PSc.

The desired corollary to Theorem 1 is that the performance of BoxMG based on adaptive
interpolation applied to Âx̂ = b̂ is equivalent to that of classical BoxMG applied to Ax = b;
however, the truth of this depends on both the choice of smoother and availability of entries in
S. If the error-propagation operator for the BoxMG smoother applied to A is I −MA, while
that applied to Â is I − M̂Â, then the performance of BoxMG based on adaptive interpolation
applied to Âx̂ = b̂ depends on how M̂ relates to S. For standard smoothers, such as Jacobi and
Gauss-Seidel, M̂−1 = SM−1S and, so, I − M̂Â = S−1(I −MA)S. The same relation holds for
line smoothers, or any other smoother where M−1 is chosen by taking a fixed subset of the
nonzero elements of A. Under the assumption that M̂−1 = SM−1S, it can be seen that the
overall solver performance of BoxMG based on adaptive interpolation applied to Âx̂ = b̂ is
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10 S.P. MACLACHLAN, J.D. MOULTON, AND T.P. CHARTIER

equivalent to that of classical BoxMG applied to Ax = b, when the diagonal scaling S is known
exactly. This, of course, is not a practical assumption, although results in Section 4 show that
a good enough approximation can usually be found such that the performance doesn’t suffer
very much.

2.3. Adaptive setup procedure

In this paper, we make use of a simple adaptive setup cycling scheme, as was considered
in [6], where the prototype vector is initialized to be a random vector, and an initial series of
setup V-cycles is performed. On each level of these cycles, a fixed number of pre-relaxations is
performed on the homogeneous problem, Az = 0 (with the current prototype on that level used
as the initial guess), an adaptive interpolation operator, P , is formed based on the resulting
improved prototype, which is then injected to give an initial prototype vector on the next
coarser grid along with the computed Galerkin coarse-grid operator, PTAP . After these steps,
the process moves to the next coarser grid and begins again, until the coarsest grid is reached.
No computation is done on the coarsest grid (although further relaxation or an exact eigensolve
might be used to improve the process [6, 7, 49]). On the upward traversal of the V-cycle, the
coarser-grid prototype is interpolated to the finer grid based on the appropriate adaptive
interpolation operator defined on the downward traversal, again a fixed number of relaxations
on Az = 0 is performed with the interpolated prototype as the initial guess, but no update
is computed for the interpolation operators. (Thus, if we are performing a fixed number of
cycles, we skip this relaxation on the final cycle to avoid unnecessary work.) As was noted
in [6], this is not typically the most efficient approach to the adaptive cycling when only one
or two relaxations are used on each level in the setup V-cycle, as we consider in Section 4;
rather, this serves to illustrate the overall performance of the adaptive approach.

After these setup cycles are performed, we take the interpolation and Galerkin coarse-grid
operators defined on the last adaptive cycle and use these in the solve phase of the algorithm.
The solve phase makes use of standard multigrid V-cycles in the usual way. Here, we follow the
BoxMG solution algorithm and make use of either pointwise or linewise Gauss-Seidel relaxation
and Galerkin coarse-grid correction.

3. CONNECTIONS BETWEEN BOXMG AND AMG

The equivalence given in Theorem 1 is effectively the same as that observed for classical and
adaptive AMG in [6], and relies on similar cancellations occurring when the scaled coefficients
of Â are introduced into the adaptive interpolation formula. Thus, it is natural to investigate
the connection between both the classical and adaptive interpolation formulae for BoxMG
and AMG. Here, we show that BoxMG can be viewed as a “special case” of AMG, based on
geometric choices of the definitions of strong connections, rather than the typical algebraic
choice based on classical M-matrix properties [18].

The primary difference between the coarsening algorithms employed by BoxMG and AMG
is in the selection of coarse grids, with BoxMG using standard geometric coarsening, while
AMG uses an algebraic approach based on the graph of the matrix, A, filtered based on
“strong connections”. If A has a standard 9-point stencil with all connections deemed to
be strong, then the standard “fully coarsened” grid used by BoxMG is an allowable coarse
grid for the classical AMG coloring algorithm [51]. While this standard coarsening can also
arise in other situations, our goal here is, instead, to examine the interpolation processes
rather than the coarse-grid selection algorithms. However, it is interesting to note some of
the fundamental differences between BoxMG and AMG that result from these very different
approaches to coarsening. First, since BoxMG uses a geometric coarsening that is independent
of the problem, some fine-scale features of the problem, such as discontinuities in the continuum
diffusion coefficients, will not be preserved on coarser grids. In these cases, the operator-induced
interpolation must capture these features and, through the Galerkin coarse-grid operator,
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ROBUST AND ADAPTIVE MULTIGRID METHODS 11

represent their influence on coarser grids. In contrast, the algebraic approach to coarsening
in classical AMG naturally attempts to preserve these features on coarser grids and, hence,
tends to coarsen along features but not across them. Similarly, for anisotropic problems, AMG
aims to achieve the semicoarsened grids needed for efficient multigrid solution using pointwise
smoothers, while BoxMG defaults to using the coupled line relaxation (and, in 3D, plane
relaxation) approaches needed for efficient multigrid solution using full geometric coarsening.

Based on this structured coarse grid, the BoxMG interpolation formulae are given above
in Section 2. In contrast, the AMG interpolation formulae are determined based on only two
cases, when a fine-grid point is also a coarse-grid point, and when it isn’t. When node (i, j)
is both a fine-grid and coarse-grid point, then the AMG interpolation is the same as BoxMG,(
PeC

)
i,j

= eC
I,J , where (I, J) is the coarse-grid index corresponding to fine-grid point (i, j).

When (i, j) doesn’t correspond to a coarse-grid point, the definition of AMG interpolation
begins with the same small-residual assumption that gives Equation (1). From here, the
neighboring points, indexed by d ∈ {SW,S, SE,W,E,NW,N,NE}, are divided into the
strongly connected coarse-grid, Ci,j , and fine-grid, Fi,j , neighbors and the weakly connected
neighbors, Wi,j . Then, Equation (1) can be rewritten as

aO
i,jei,j = −

∑
d∈Ci,j

ad
i,je(i,j)+~d −

∑
d′∈Fi,j

ad′

i,je(i,j)+~d′ −
∑

d′′∈Wi,j

ad′′

i,je(i,j)+~d′′ ,

where we use the notation e(i,j)+~d to denote the error at the grid point in direction d from

(i, j); for example, e
(i,j)+

−−→
SW

= ei−1,j−1. For directions d ∈ Ci,j , node (i, j) + ~d is a coarse-grid
node, and so these values can be used directly in interpolation. The goal in the AMG definition
of interpolation is to “collapse” connections to d ∈ Fi,j ∪Wi,j onto those in Ci,j .

Weak connections, d′′ ∈Wi,j , occur when ad′′

i,j is small enough that the approximation of
e(i,j)+~d′′ is unimportant, so long as a significant error in scaling isn’t made. In this case, it
is typical to assume that e(i,j)+~d′′ ≈ ei,j , so that the connection is said to be collapsed onto
the diagonal. For strong connections between (i, j) and one of its fine-grid neighbors, d′ ∈ Fi,j ,
AMG interpolation makes the approximation that the error at node (i, j) + ~d′ can be written
as a linear combination of the errors at the coarse-grid points d ∈ Ci,j ,

e(i,j)+~d′ ≈
∑

d∈Ci,j

wd′,d
i,j e(i,j)+~d.

To determine the coefficients, wd′,d
i,j , we again start with a modified form of Equation (1),

aO
(i,j)+~d′

e(i,j)+~d′ = −
∑

d∈Ci,j

ad−d′

(i,j)+~d′
e(i,j)+~d −

∑
d′′ /∈Ci,j∪{d′}

ad′′−d′

(i,j)+~d′
e(i,j)+~d′′ , (10)

where the notation d− d′ refers to the net direction between nodes (i, j) + ~d′ and (i, j) + ~d,
when d′ and d are directions measured from node (i, j). For example, if d′ = SW and d = W ,
then d− d′ = N , the direction from (i− 1, j − 1) to (i− 1, j). Note that d− d′ is not well-
defined for all pairs of directions (e.g., if d′ = SW and d = N); the coefficient ad−d′

(i,j)+~d′
is taken

to be zero if d− d′ is not well defined.
To turn Equation (10) into an interpolation weighting to collapse the connection to ad′

i,j , we
introduce an approximation, where the second sum on the right-hand side is discarded, and
the coefficient of e(i,j)+~d′ is modified to compensate. In classical AMG, this is done based on
the assumption that the slow-to-converge errors of relaxation (the algebraically smooth errors)
locally match the constant vector, so that the interpolation from d ∈ Ci,j to (i, j) + ~d′ should
also preserve the constant vector. With this assumption, the weights wd′,d

i,j for d ∈ Ci,j are
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given by

wd′,d
i,j =

ad−d′

(i,j)+~d′∑
d′′∈Ci,j

ad′′−d′

(i,j)+~d′

. (11)

Putting these all together gives the approximation of Equation (1) ofaO
i,j +

∑
d′′∈Wi,j

ad′′

i,j

 ei,j = −
∑

d∈Ci,j

ad
i,je(i,j)+~d −

∑
d′∈Fi,j

ad′

i,j

∑
d∈Ci,j

ad−d′

(i,j)+~d′∑
d′′∈Ci,j

ad′′−d′

(i,j)+~d′

e(i,j)+~d,

(12)
which can easily be transformed into an interpolation operator after consolidating terms on
the right-hand side and dividing by the coefficient on the left-hand side.

While Equation (12) and its derivation appear to be completely unrelated to the BoxMG
formulae derived in Section 2, there are, nonetheless, similarities in the treatment of
connections from node (i, j) to fine-grid neighbors in Equation (1). Considering Equation (3),
we see that this has similar form, with the term aS

i,j + aO
i,j + aN

i,j replacing the sum on the left-
hand side, and simple sums of coefficients on the right-hand side. Note, however, that in this
case, nodes (i+ 1, j + 1) and (i+ 1, j − 1) have only a single connection to d ∈ Ci,j , for d = E,
so that wNE,E

i,j = wSE,E
i,j = 1 and, similarly, wNW,W

i,j = wSW,W
i,j = 1. Thus, one observation is

that the BoxMG interpolation formula in Equation (4) is the same as the AMG interpolation
formula in this case, where nodes (i, j ± 1) are treated as weakly connected neighbors
(S,N ∈Wi,j), and (i− 1, j ± 1) and (i+ 1, j ± 1) are treated as strongly connected fine-grid
neighbors (SW,NW,SE,NE ∈ Fi,j), with (i± 1, j) as coarse-grid neighbors, W,E ∈ Ci,j .

This equivalence is, however, somewhat unsatisfactory, as there is no apparent justification
in treating the connections to nodes (i, j ± 1) as weak connections. A more satisfying point of
view arises from considering an analogue of Equation (10) in which collapsing strong fine-grid
connections is allowed to both (i, j) and d ∈ Ci,j :

aO
(i,j)+~d′

e(i,j)+~d′ = −
∑

d∈Ci,j∪{O}

ad−d′

(i,j)+~d′
e(i,j)+~d −

∑
d′′ /∈Ci,j∪{O,d′}

ad′′−d′

(i,j)+~d′
e(i,j)+~d′′ ,

leading to the analogue of Equation (11) for d ∈ Ci,j ∪ {O},

wd′,d
i,j =

ad−d′

(i,j)+~d′∑
d′′∈Ci,j∪{O}

ad′′−d′

(i,j)+~d′

.

With this definition of wd′,d
i,j , the modified AMG interpolation weights and the classical BoxMG

interpolation weights coincide when the definition of strong connections used in determining the
AMG interpolation weights is based on the simple criterion of geometric distance. For each fine-
grid neighbor of (i, j), (k, `), we say that (k, `) strongly depends on node (k′, `′) ∈ Ci,j ∪ (i, j)
if and only if the geometric distance between (k, `) and (k′, `′) is minimal over all points in
Ci,j ∪ (i, j). Note that we specifically use geometric distance here rather than graph distance,
since the two are not the same for a standard 9-point stencil. A similar conclusion holds for
the analogue of Equation (5).

For the case where (i, j) is in the center of a coarse-grid cell, given in Equation (7),
the inclusion of node (i, j) in the distribution does not give equivalence between the AMG
and BoxMG approaches. The “usual” indirect interpolation weights, given by Equation (11)
may give this equivalence, depending on the relationship between the weights prescribed by
Equation (11) and the BoxMG weights given in Equations (4) and (5). When these weights
are the same (as, for instance, they will be in cases where both result in linear interpolation
along cell edges, such as for a constant-coefficient diffusion problem), then the BoxMG and
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AMG interpolation rules coincide. A plausible rule to distinguish between the cases where
(i, j) should and shouldn’t be included in the distribution is based on whether or not node
(k, `) is strongly connected (based on geometric distance) to only node (i, j) or to some nodes
in Ci,j . When the strong connection is only to node (i, j), as in the horizontal and vertical
line interpolation cases, the generalized formula should be used, since the denominator in the
classical formula (Equation (11)) is zero. This occurs because the fully coarsened grid enforced
by BoxMG violates the typical AMG assumption that every pair of strongly connected fine-
grid points should have a common coarse-grid neighbor that is strongly connected to each
of the fine-grid points. When this assumption is not violated, as in the case when (i, j) is a
coarse-grid cell center, the classical AMG collapsing should be used.

This connection between BoxMG and AMG is, to our knowledge, a new perspective on these
two robust multigrid approaches. While BoxMG has long been acknowledged as an efficient
and robust multigrid solution algorithm, outperforming AMG by a factor of 10 in solving 3D
heterogeneous diffusion equations in [1], this connection provides the opportunity to investigate
a broader family of structured robust multigrid methods, in both the classical and adaptive
frameworks. Among the possible “hybrid” approaches of structured coarsening with algebraic
interpolation are

1. Using classical or adaptive AMG interpolation on structured coarsening meshes,
2. Using classical or adaptive AMG interpolation for interpolation along coarse-grid cell

edges, in place of Equations (4) and (5), combined with BoxMG interpolation for coarse-
grid cell centers, and

3. Using classical or adaptive BoxMG interpolation for interpolation along coarse-grid cell
edges, combined with classical or adaptive AMG interpolation for coarse-grid cell centers.

In all of these cases, because of the explicit grid structure, we can derive fully explicit formulae
if we use geometric or graph-based definitions of strength of connection. Even with algebraic
definitions of strength of connection, however, we can still make use of the known coarsening
structure to make use of direct data access in achieving significant speedup over näıve AMG
implementations. These hybrid approaches are investigated in Section 4.1.2.

4. NUMERICAL RESULTS

In this section, we explore the performance of adaptive BoxMG interpolation operators,
in comparison to the classical BoxMG algorithm, as well as with interpolation based on
AMG and adaptive AMG principles. We consider two examples where the fine-grid matrix
comes from a bilinear finite-element discretization of the second-order form of Darcy’s Law,
−∇ · K(x)∇p(x) = q(x) on [0, 1]2, with variable permeability K(x). In the first examples, K(x)
has a simple two-scale periodic structure that allows easy comparison and analysis of the
numerical performance of these algorithms. The second set of examples are more realistic, using
a geostatistical approach to generate layered media, with corresponding values of K(x). Finally,
we consider test problems based on five-point finite-difference discretizations of both isotropic
and anisotropic diffusion problems, with a focus on the effects of non-standard boundary
conditions.

4.1. Periodic Permeability

Our first tests focus on the simple case of a periodic, two-scale diffusion problem, with a
structured pattern of high-permeability square inclusions against a homogeneous background,
as depicted on the left of Figure 3. This permeability is constructed based on a 4× 4 tiling
of the unit cell shown on the right of Figure 3, where K(x) = 1000 inside the dark regions
and K(x) = 1 in the background medium. Note that with a 64× 64 element finest grid, this
permeability field is perfectly resolved on the given finest grid, but it is not accurately resolved
on any coarser grid in the multigrid hierarchy.
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Figure 3. Periodic permeability field. At left, the 4× 4 tiling of a unit cell (shown at right) that is
used in the numerical examples that follow.

4.1.1. Neumann Boundary Conditions A natural first experiment is to see if the adaptive
BoxMG approach can recover the performance seen by the classical BoxMG approach in the
case where the ideal prototype vector is the constant vector. While classical BoxMG and
AMG effectively use the constant vector as the prototype for all problems, in the adaptive
setup stage (regardless of the final choice of adaptive interpolation), the constant vector arises
as the ideal prototype only if it is the (unique) eigenvector associated with the largest (in
modulus) eigenvalue of the relaxation process. A natural way to guarantee that this is the case
is to consider the singular problem that arises from considering Neumann boundary conditions
on all edges of the domain. The (unique) zero eigenvalue of the system matrix, A, becomes
the (unique) unit eigenvalue of the semi-convergent relaxation process, I −MA, for standard
choices of M , such as in weighted Jacobi or Gauss-Seidel relaxation. This, then, in the adaptive
viewpoint, makes the associated eigenvector (the constant vector) the ideal vector on which
to base interpolation.

The obvious disadvantage of considering the case with only Neumann Boundary conditions
is the singularity of the resulting linear system, and its effect on the convergence of the
resulting multigrid V-cycle iteration. To address this, we employ two strategies. Following
classical BoxMG [24], for problems with a non-zero right-hand side (i.e., in the case where
we are interested in the solution of a PDE and not in measuring asymptotic convergence
factors), the singularity is treated only on the coarsest grid. Here, we modify the last diagonal
entry of the coarsest-grid matrix to make it artificially non-singular before factoring it; after
solving this perturbed coarsest-grid system in each V-cycle, we add a projection step, making
the coarsest-grid correction orthogonal to the coarsest-grid constant vector, to ensure that
the coarse-grid correction process does not introduce components in the direction of the null
space. For the case of a non-zero right-hand side, this approach is sufficient to restore optimal
multigrid convergence to the level of machine precision; however, it does not allow for testing
of asymptotic convergence rates by applying the multigrid V-cycle to a problem with a zero
right-hand side (with a random initial guess). In that case, we add an additional projection
step against the finest-grid constant vector, to eliminate the effects of the singularity on the
measurement of the performance of the resulting multigrid methods. We note that both of
these approaches rely on the assumption that the null-space vector is known with sufficient
accuracy to make these projections effective. In the case of the projection on the coarsest-grid,
this means that the pre-image of the finest-grid null-space is assumed to be known; this may
be reasonable for standard finite-element problems, such as are typically considered, but adds
an additional challenge for problems where this is not the case.

Our first test is to examine how the adaptive process converges to a steady-state, and how
that convergence can be related to the case of classical BoxMG. In Table I, we compare the
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Table I. Average and last-cycle convergence factors (ρ and ρ100, resp.) for adaptive BoxMG, as well
as Rayleigh quotients for prototype vectors used, as a function of number of adaptive setup cycles

performed.

# of setup cycles 1 2 3 4 5 6 Classical
ρ 0.89 0.81 0.37 0.081 0.077 0.077 0.077

ρ100 0.99 0.91 0.42 0.091 0.087 0.087 0.087
RQ 4.10 4.54e−2 1.82e−3 1.61e−4 1.47e−5 7.23e−7 0

convergence factors of the resulting BoxMG V-cycle (using the adaptive BoxMG interpolation
described above) to that of classical BoxMG applied to this problem. We report both the
convergence factor averaged over 100 iterations, ρ, and the convergence factor measured for
the 100th iteration, ρ100, for each test. Additionally, we measure the Rayleigh quotient of the
final prototype vector used on the finest grid. For all experiments with this problem, we make
use of 1 pre-relaxation and 1 post-relaxation in the adaptive setup cycles.

Two important trends can be seen in Table I. First, the performance of the resulting V-
cycles using the adaptive setup improves uniformly until it matches that of the classical (non-
adaptive) BoxMG algorithm. Secondly, the Rayleigh Quotient of the adaptive prototype vector
is uniformly decreasing, by over an order of magnitude per cycle, to zero, the Rayleigh Quotient
of the true null-space vector.

Another way to monitor the convergence of the adaptive cycle is to look at the convergence
of entries in the resulting interpolation operators. While this could be measured in an entrywise
manner (e.g., using the Frobenius norm) at each level, this convergence is complicated by the
effects of the changing Galerkin coarse-grid operators with each adaptive cycle. Instead, we
make use of an approach from [52] to visualize the adaptation of the entries in the interpolation
operator in terms of evolving coarse-scale basis functions.

On each scale, k (counting k = kf to be the finest grid, with decreasing k indicating depth
in the multigrid hierarchy), we recursively define a set of basis functions {ψk

j }, starting from
the standard bilinear basis functions used on the finest scale. Thus, on the finest scale, k = kf ,
we have the given set of basis functions, {ψkf

j }, for all fine-scale nodes, j, used to define the
fine-scale matrix by

aij =
∫

Ω

〈
K(x)∇ψkf

j ,∇ψkf

i

〉
dΩ.

Writing interpolation, P k
k−1, from level k − 1 to level k as

(
P k

k−1

)
ij

= pk
ij , we can compute the

Galerkin coarse-grid operator, Ak−1 =
(
P k

k−1

)T
AkP

k
k−1, as

(Ak−1)ij =
∑
l,m

pk
li(Ak)lmp

k
mj =

∑
l,m

pk
li p

k
mj

∫
Ω

〈K(x)∇ψk
m,∇ψk

l 〉dΩ

=
∫

Ω

〈
K(x)∇

(∑
m

pk
mj ψ

k
m

)
,∇

(∑
l

pk
li ψ

k
l

)〉
dΩ.

Thus, we can recursively define multiscale basis functions on level k − 1 as

ψk−1
j =

∑
m

pk
mjψ

k
m, (13)

and write the discrete coarse-grid operator in the form

(Ak−1)ij =
∫

Ω

〈
K(x)∇ψk−1

j ,∇ψk−1
i

〉
dΩ.

We can then use the recursive definition (13) to define coarse-scale basis functions associated
with both the adaptive interpolation operators and the classical BoxMG interpolation operator
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(a) 1 adaptive setup cycle (b) 2 adaptive setup cycles (c) 3 adaptive setup cycles

(d) 4 adaptive setup cycles (e) 5 adaptive setup cycles (f) Classical BoxMG

Figure 4. Multiscale basis functions from the 4× 4 coarse grid associated with the node at (0.5, 0.5)
for the 64× 64 element fine-grid discretization of the diffusion equation with periodic permeability

given as in Figure 3.

(which was investigated from this viewpoint in [34]). Figure 4 shows the basis functions
associated with the experiments in Table I. Note that after only one or two adaptive setup
cycles, the basis functions shown bear little resemblance to that of classical BoxMG, nor do they
reflect the fine-scale permeability structure in any meaningful way. Thus, it is not surprising
that the multigrid V-cycle based on these interpolation operators is ineffective. While there is
little qualitative difference between the basis function after three setup cycles and those after
four or five setup cycles (or from classical BoxMG), it is clear that the evolution from three
to four adaptive setup cycles makes the difference between achieving reasonable convergence
factors and optimal convergence factors. Thus, while the defects in Figure 4c are small, they
are important in the resulting multigrid convergence factors.

4.1.2. Comparing adaptive AMG and BoxMG interpolation As discussed above, while both
the classical and adaptive AMG interpolation formulae make implicit assumptions on the
relationship between the coarse and fine grids, we can still pair these approaches with the
regular coarse grids used by BoxMG. Table II gives results for both adaptive AMG and classical
AMG (Method 1 in Section 3), for comparison with the adaptive and classical BoxMG results
in Table I. Several notable differences occur between these two sets of results. First, comparing
the performance of classical BoxMG with classical AMG, we see that classical AMG has slightly
worse performance, likely due to the mismatch between the interpolation formula and choice
of coarse grids. The adaptive process for AMG, however, converges slightly faster than that for
BoxMG; excellent convergence is already seen after 3 adaptive setup cycles, and the adaptive
AMG performance matches that of classical AMG after 4 adaptive setup cycles. This faster
adaptive convergence is mirrored in the reduction of the Rayleigh Quotient of the prototype
vector, which also converges to zero at a slightly quicker rate than in the adaptive BoxMG
results.

Two interesting variants on these approaches occur when we consider hybrid interpolation
schemes that use one of the adaptive BoxMG and AMG interpolation formulae for interpolating
along edges in the coarse mesh and the other for interpolating to coarse-grid cell centers,
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Table II. Average and last-cycle convergence factors (ρ and ρ100, resp.) for adaptive AMG (Method
1 in Section 3), as well as Rayleigh quotients for prototype vectors used, as a function of number of

adaptive setup cycles performed.

# of setup cycles 1 2 3 4 5 6 Classical
ρ 0.89 0.73 0.13 0.094 0.095 0.095 0.095

ρ100 0.99 0.81 0.15 0.11 0.11 0.11 0.11
RQ 4.10 3.79e−2 8.85e−4 2.23e−5 1.62e−6 1.85e−7 0

Table III. Average and last-cycle convergence factors (ρ and ρ100, resp.) using adaptive AMG for
interpolation along edges and BoxMG for interpolation to cell centers (Method 2 in Section 3), as well
as Rayleigh quotients for prototype vectors used, as a function of number of adaptive setup cycles

performed.

# of setup cycles 1 2 3 4 5 6 Classical
ρ 0.89 0.69 0.098 0.091 0.091 0.091 0.092

ρ100 0.98 0.76 0.11 0.10 0.10 0.10 0.10
RQ 4.10 3.59e−2 4.87e−4 4.74e−6 2.24e−7 2.09e−8 0

Methods 2 and 3 in Section 3. Table III shows results for one of these variants, using adaptive
AMG for interpolation along the coarse-grid mesh edges and BoxMG for interpolation to
coarse-grid cell centers (Method 2 in Section 3). These results are quite comparable to those
in Table II, both in terms of the asymptotic convergence rates (which are slightly better
than using adaptive AMG alone) and the Rayleigh Quotients of the prototype vectors. This
slight improvement in performance may be due to the use of the adaptive AMG interpolation
coefficients in the definition of the BoxMG interpolation coefficients for the cell centers,
ensuring that (APeC)i,j = 0 for a fine-grid node, (i, j), that is at the center of a coarse-
grid element. For the singular problem considered here, this may allow better recovery of the
true null-space vector from the adaptive process than the fit by adaptive AMG, which gives a
misfit that depends on the fine-grid values of Az [6].

In contrast, using adaptive BoxMG interpolation along coarse-grid mesh edges and adaptive
AMG for coarse-grid cell centers (Method 3 in Section 3) yields an adaptive process that
converges much more slowly than any of the cases considered above. Figure 5 shows
the convergence of the adaptive process, measured in terms of the obtained V(1,1)-cycle
convergence factors and the Rayleigh Quotients of the evolving prototype, over 25 adaptive
setup cycles. While the convergence of the Rayleigh Quotient is almost monotonic (there
is a slight increase in the RQ between the ninth and tenth adaptive setup cycles, but it is
otherwise always decreasing), it decreases at a much slower rate than is achieved with the
other interpolation approaches. The reason for this is not immediately apparent, but may be
due to poor compatibility between the adaptive BoxMG approach along edges (which includes
collapsing to the diagonal of some fine-fine connections that would be considered to be strong
by AMG) and the adaptive AMG approach that interpolates to the cell centers completely
independently of the interpolation for the edges. Coupled with this slow convergence of the
prototype vector is an irregular convergence of the asymptotic convergence factors of the
resulting V-cycles. Such irregular convergence highlights a current downside in the adaptive
multigrid methodology, that reduction of the Rayleigh Quotient of a prototype vector does
not guarantee improvement in the asymptotic convergence of the resulting multigrid V-cycle.
Despite these issues, however, the adaptive process does converge, after about 20 cycles, to an
interpolation operator that yields ρ = 0.080 and ρ100 = 0.090, values that are very similar to
those achieved by classical BoxMG and by the adaptive BoxMG method, shown in Table I.

These examples highlight the use of the Rayleigh Quotient of the evolving prototype as a
potential measure of the convergence of the adaptive cycle. While reduction of the Rayleigh
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(a) ρ and ρ100 (b) Rayleigh quotients of prototype vectors

Figure 5. Average and last-cycle convergence factors (ρ and ρ100, resp.) using adaptive BoxMG for
interpolation along edges and adaptive AMG for interpolation to cell centers (Method 3 in Section 3),
as well as Rayleigh quotients for prototype vectors used, as a function of number of adaptive setup
cycles performed. For comparison, lines marked with the × symbols give results from Table I for

adaptive BoxMG.

Quotient does not always lead to a reduction in the resulting multigrid V-cycle performance,
optimal V-cycle performance does result from uniformly small values of the Rayleigh Quotient.
In the above tables and figure, we see that the estimates of the asymptotic convergence factors
are uniformly substandard if the Rayleigh Quotient of the prototype is much larger than
O(10−4), while they are uniformly optimal for smaller values. For non-singular problems, this
in line with what was observed in early experiments with the adaptive methodology [53];
for the singular problem considered here, the relevant tolerance is likely to depend on the
second-smallest eigenvalue, which is expected to be about

(
1
64

)2 ≈ 2.44× 10−4.

4.1.3. Dirichlet and Mixed Boundary Conditions In order to test the robustness of the
adaptive BoxMG approach to symmetric diagonal scalings, as predicted in Theorem 1, we
switch to considering the non-singular problem with full Dirichlet boundary conditions. This
is to avoid confusion between the effects of the adaptive process and those of the additional
projections included for the singular full-Neumann case. Table IV shows results for three
different definitions of the scaling matrix, S: the unscaled case, S = I, choosing S so that the
resulting scaled matrix, Â = SAS has all ones on the diagonal, and choosing S randomly, by
taking s(i,j),(i,j) = 10ui,j where the parameters ui,j are independently chosen from a uniform
distribution on [0, 1]. We compare adaptive BoxMG with two variants of classical BoxMG,
the switched version (described in Section 2.1) and the constant-preserving interpolation that
forces each row in interpolation to have coefficients that sum to one. For these tests, we
continue to consider a problem with random initial guess and zero right-hand side, so that we
can effectively measure approximations to the asymptotic convergence factor of the multigrid
cycle.

Results for the unscaled case in Table IV already show different behavior than those in the
full Neumann case (cf. Table I). In particular, while the adaptive BoxMG process is quick
to converge, it does not converge to a solver that is comparable to the classical BoxMG
performance. This is likely due to the treatment of the Dirichlet boundary conditions in
the system matrix. While AMG (and adaptive AMG) automatically eliminate any Dirichlet
boundary points included in the discretized operator, BoxMG does not and, instead, retains
some boundary points on all coarse grids. Thus, in contrast to the experiments with adaptive
AMG in [6], there is a distinct difference in the performance of adaptive BoxMG for the
Dirichlet and Neumann problems. Similar difficulties arise when forcing classical BoxMG to
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Table IV. Average and last-cycle convergence factors (ρ and ρ100, resp.) using adaptive BoxMG
interpolation for scaled versions of the periodic test problem with Dirichlet boundary conditions.

# of setup Unscaled Unit Diagonal Random scaling
cycles ρ ρ100 ρ ρ100 ρ ρ100

1 0.906 0.993 0.900 0.994 0.903 0.995
2 0.756 0.831 0.796 0.886 0.878 0.977
3 0.229 0.252 0.240 0.261 0.386 0.423
4 0.204 0.227 0.211 0.227 0.203 0.228
5 0.204 0.227 0.211 0.227 0.202 0.227

Classical 0.0599 0.0668 0.898 0.992 0.900 0.9996
Constant-Preserving 0.635 0.700 0.900 0.998 0.900 0.9997

Table V. Iteration counts for classical and adaptive BoxMG to reduce the L2 norm of the residual
by a relative factor of 1014 for the scaled periodic permeability problem with combined Dirichlet and
Neumann boundary conditions. > 500 denotes a run that did not meet this criterion in 500 iterations.

# of setup cycles 1 2 3 4 5 6 Classical
Unscaled > 500 240 28 12 12 12 11

Unit Diagonal > 500 370 39 18 17 17 > 500
Random Scaling > 500 > 500 46 14 13 13 > 500

make use of the constant-preserving interpolation, which leads to much poorer performance
than either classical (switched-interpolation) BoxMG or the adaptive BoxMG process. The
adaptive process shows its advantages (and verifies Theorem 1) for the two non-trivially scaled
examples, which both lead to near-total failure of the classical BoxMG approaches, while the
adaptive approach recovers essentially the same convergence factor (both averaged, ρ, and last
cycle, ρ100) in all cases.

Finally, we consider a problem with mixed Dirichlet and Neumann boundary conditions
and a nonzero right-hand side vector. For this problem, we again consider the second-order
form of Darcy’s Law, −∇ · K(x)∇p(x) = 0, with homogeneous Neumann boundary conditions,
(K(x)∇p(x)) · n(x) = 0, for points, x, on the top and bottom edges of the square, where n(x)
is the outward unit normal vector at x. Dirichlet boundary conditions are imposed on the left
and right edges of the domain, with fixed pressure, p(x) = 1 on the left edge and p(x) = 0 on
the right edge. Thus, instead of computing the approximations (ρ and ρ100) to the asymptotic
convergence factors, we simply compute the number of iterations needed to reach convergence,
defined as a reduction in the L2 norm of the residual by a relative factor of 1014.

Table V shows iteration counts needed for the classical and adaptive BoxMG algorithms to
achieve these reductions for the same scalings as considered in Table IV. For these problems,
for each choice of S, we apply the standard BoxMG V(1,1) cycle based on adaptive (or
classical) BoxMG interpolation to the problem SASy = Sb. Thus, the stopping criterion for
each problem is somewhat different, given the effect of the scaling by S on the L2 norm of
the residual; this is seen in the similar, but not identical iteration counts in Table V. As
expected, the classical BoxMG approach is only successful for the unscaled problem, while
V-cycles based on only one or two adaptive setup cycles are also slow to converge. For all three
problems, reasonable solvers are achieved with three setup cycles, while there is only small (if
any) improvement beyond the fourth setup cycle.
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(a) Principle axis of 15◦ (b) Principle axis of 60◦

Figure 6. Geostatistical permeability fields, K(x), with principle axes of anisotropy of 15◦ (left) and

60◦ (right). Permeability values range from approximately 10−3 (white) to 103 (black).

4.2. Geostatistical Examples

We now apply the adaptive BoxMG and AMG algorithms to a much more difficult class of
heterogeneous diffusion problems, with much more realistic structures for K(x). To generate
K(x), we use the geostatistical techniques implemented in the GSLIB software package [54].
We select a fine scale of 256× 256 elements and, on each element, we generate a scalar
constant permeability value. These values are selected by choosing a principle axis of statistical
anisotropy, at 5◦ increments between 0 and 90 degrees relative to the positive x-axis, and
generating a permeability field such that log10(K(x)) is normally distributed with mean 0,
variance 4, and with correlation lengths of 0.8 along the principle axis and 0.04 in the direction
orthogonal to this axis. Figure 6 shows grayscale images of two of these permeability fields,
corresponding to principle axes of anisotropy of 15◦ and 60◦ degrees. Note that the fields do
not correspond to simple rotations of one-another. An independent field is generated for each
angle.

Iteration counts for solving the discretization of −∇ · K(x)∇p(x) = 0 with the same mixed
Dirichlet and Neumann boundary conditions as in Section 4.1.3 are plotted in Figure 7. Here,
solution is taken to mean a reduction in the L2 norm of the residual by a relative factor
of 1010, and a maximum of 100 iterations are allowed. As a benchmark, we first consider the
performance of classical BoxMG (with the switched version of interpolation). Classical BoxMG
successfully solves all of these realizations within 100 iterations, but the actual iteration
counts are fairly angle-dependent, with relatively fewer iterations for smaller angles and more
iterations for larger angles, peaking at 75◦ with 34 iterations. For the adaptive BoxMG tests, we
use V(2,2) setup cycles (because V(1,1) setup cycles showed poor performance for some angles).
While a single V(2,2) setup cycle never yielded a successful solver, two cycles were sufficient
for all but one angle (10◦). Four or five adaptive BoxMG V(2,2) setup cycles were sufficient to
achieve steady-state of the adaptive solvers, with iteration counts similar to classical BoxMG.
Notably, there is less angle-dependent variation in the iteration counts for these solvers, with
variation from 8 to 19 iterations to solution for five setup cycles, compared to the maximum
of 34 iterations needed by classical BoxMG. Adaptive AMG performs less well than adaptive
BoxMG; with six V(2,2) setup cycles, adaptive AMG is notably worse than adaptive BoxMG,
particularly for large angles. While increasing the work in the adaptive AMG setup process to
six V(4,4) setup cycles improves these results somewhat (particularly the outlying data point
where the V(2,2) setup approach failed for 25◦), it is clear that adaptive BoxMG generally
outperforms adaptive AMG for these problems. This is not surprising, however, as BoxMG
(and its adaptive counterpart) is designed to treat these strongly varying permeability fields
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(a) Adaptive BoxMG (b) Adaptive AMG

Figure 7. Iteration counts for solving problems with geostatistical media. In black in both plots, marked
by the solid lines and × symbol, are the iteration counts for classical BoxMG to reduce the residual by
a relative factor of 1010. At left are the results for adaptive BoxMG; + symbols (in magenta) mark 2
adaptive V(2,2) setup cycles, © symbols (in green) mark 3 adaptive setup cycles, 2 symbols (in red)
mark 4 adaptive V(2,2) setup cycles, and 4 symbols (in blue) mark 5 adaptive V(2,2) setup cycles.
At right are the results for adaptive AMG, with the classical BoxMG and last adaptive BoxMG (with
5 adaptive V(2,2) setup cycles) provided for reference; 2 symbols (in green) mark 6 adaptive V(2,2)
setup cycles, while • symbols (in red) mark 6 adaptive V(4,4) setup cycles. Solve phases that failed

to converge within 100 iterations are marked as 100 iterations.

with structured coarsening, while both classical and adaptive AMG would naturally treat these
fields with unstructured coarsening schemes.

4.3. Vacuum Boundary Conditions

A powerful feature of the classical BoxMG code is its robustness with respect to grid dimension
and boundary conditions. Specifically, BoxMG uses the heuristic switch described in Section 2.1
to treat grids that are not of dimension 2N + 1 efficiently, and to ensure that the performance of
Neumann, Dirichlet, and Robin (mixed) boundary conditions are comparable. In this section,
we consider a simple problem with a vacuum boundary condition on one side of the domain
that illustrates the performance of this heuristic switch. In addition, this example demonstrates
the ability of the adaptive BoxMG algorithm to perform as well as or better than the heuristic
switch. We use the adaptive setup cycle described in Section 2.3, with 5 V(2,1) setup cycles,
and a random vector for the initial prototype. To quantify the performance of each method we
report the average convergence factor, ρ, which is computed as the average over 20 iterations
of the resulting multigrid cycle.

The vacuum boundary condition is a specific Robin boundary condition that arises in the
P1 approximation of the neutron transport equation. Physically, it represents a boundary on
which neutrons can leave the domain, but do not enter. Here, we consider a standard 5-point
vertex-based discretization of the example introduced in [45]:

−∇ · (K∇p) = 0 in Ω = (0, XR)× (0, YT ) ,

(K∇p) · n = 0 on ({0} × (0, YT )) ∪ ((0, XR)× {0}) ∪ ({XR} × (0, YT )) ,

(K∇p) · n +
1
2
p = 0 on (0, XR)× {YT } ,

where K is a diagonal diffusion tensor. The finite-difference discretization leads to a symmetric
M-matrix that has a diagonally dominant stencil along the top boundary, y = YT . The mesh
spacing, h, and the y-component of the diffusion tensor, Kyy, control the strength of this
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Table VI. Convergence rates for the anisotropic problem with grids of dimension 2N + 1 are shown.
In this case, the diagonally dominant point remains on all coarser grids, and averaging interpolation

is ineffective.

Grid Dimension ρcp ρavg ρ sw ρadapt

17× 17 0.01003 0.56821 0.01003 0.00985
33× 33 0.03348 0.53651 0.03348 0.03604
65× 65 0.04854 0.50340 0.04854 0.04716

129× 129 0.04957 0.47413 0.04957 0.05049
257× 257 0.04993 0.45050 0.04993 0.04977

diagonal dominance. To demonstrate the importance of the this seemingly benign diagonal
dominance, we follow [45] and consider two variations of this problem.

First, we consider an anisotropic problem that demonstrates the failure of the averaging
interpolation and the solid performance of the other formulations. In addition, this is the
first demonstration of adaptive BoxMG with line relaxation. Consider the constant-coefficient
anisotropic problem on the unit square defined by

K =
[
1 0
0 100

]
, XR = YT = 1 .

As noted earlier, combining anisotropic diffusion with standard coarsening dictates that we
use y-line relaxation. The failure of averaging interpolation arises on grids that are dimension
2N + 1 as the diagonally dominant stencil remains on all coarse grids. Specifically, the averaging
interpolation along the top boundary introduces a significant error, due largely to the strength
of Kyy, and this error is immediately propagated to the neighboring fine-grid points located
on the interior of coarse-grid cells. This failure is shown in Table VI, where the averaging
interpolation yields ρ ≈ 0.5, while other formulations all have ρ ≈ 0.05. We also note that the
adaptive cycling procedure used to construct the adaptive BoxMG interpolation performs well
with line relaxation, producing convergence rates nearly identical to the classical BoxMG code.

The second example is an isotropic problem that demonstrates the failure of the constant-
preserving interpolation, as well as the ability of the adaptive BoxMG interpolation to
outperform classical BoxMG in some cases. We continue to use y-line relaxation to further
demonstrate the capability of the adaptive setup to use non-point smoothers. This constant-
coefficient isotropic problem uses a large domain and is defined by

K =
[
1 0
0 1

]
, XR = YT = 128 .

With the large domain, we have h� Kxx = Kyy, making the stencil diagonally dominant on
the top boundary. We consider two sequences of grids. In the first sequence, we consider grids
with dimensions 2N , such that the last point in each direction (right,top) is lost on each
successively coarser grid. This leads to extrapolation at the right and top boundaries. The
failure of constant-preserving interpolation for this hierarchy of grids is shown in Table VII,
where ρcp ≈ 0.5 while the other formulations yield the expected ρ ≈ 0.05. Next, we consider
grids of dimension 2N + 1 for this problem. In this case, like the anisotropic problem above,
the boundary point remains on all coarser grids. So, given identical grid hierarchies, it is
interesting to examine the similarities and differences between this problem and the anisotropic
one. As before, the constant-preserving interpolation does very well, with ρcp ≈ 0.055 (see
Table VIII). This success is primarily because only points on the boundary have diagonally
dominant stencils, and constant-preserving interpolation is most appropriate there. However,
in this case, the averaging interpolation does not fail and, instead, gives ρavg ≈ 0.12. Here,
unlike the strongly anisotropic case, the error introduced using averaging interpolation along
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Table VII. Convergence rates for the isotropic, large domain, problem are shown. Grids of dimension

2N lead to extrapolation at the right and top boundaries.

Grid Dimension ρcp ρavg ρ sw ρadapt

16× 16 0.47194 0.05503 0.05503 0.05543
32× 32 0.50807 0.05479 0.05479 0.05576
64× 64 0.51016 0.05558 0.05558 0.05524

128× 128 0.49309 0.05505 0.05505 0.05483
256× 256 0.47210 0.05506 0.05506 0.05511

Table VIII. Convergence rates for the isotropic, large domain, problem are shown. The grids are of

dimension 2N + 1 and, hence, keep the diagonally dominant point on all coarser grids (no extrapolation
at top and right boundaries).

Grid Dimension ρcp ρavg ρ sw ρadapt

17× 17 0.05735 0.06901 0.06098 0.05626
33× 33 0.08535 0.08976 0.07764 0.05572
65× 65 0.05492 0.11529 0.10516 0.05542

129× 129 0.05489 0.12839 0.12212 0.05490
257× 257 0.05492 0.12076 0.10895 0.05506

the top boundary is quite small. Moreover, based on the strength of the diagonal dominance,
the heuristic switch tends to use averaging interpolation and, hence, leads to ρ sw ≈ 0.12 as
well. In contrast, the adaptive interpolation, which is generated by the adaptive setup cycle,
yields ρadapt ≈ 0.055. Thus, this example demonstrates that the adaptive interpolation may
outperform the heuristic switch that is used in classical BoxMG.

5. CONCLUSIONS

This paper presents two main contributions: the extension of the adaptive multigrid framework
to a structured, robust multigrid algorithm, BoxMG, and insight into the relationship between
the interpolation operators used in classical algebraic multigrid (AMG) and BoxMG. For
the former, we show, both analytically and numerically, that the adaptive BoxMG approach
inherits the diagonal-scaling invariance properties of the adaptive AMG algorithms. Further,
the adaptive BoxMG approach naturally treats highly heterogeneous media and a wide variety
of boundary conditions without the logical complexity needed for robustness in the classical
BoxMG approach; it also naturally complements the use of line relaxation strategies for
anisotropic problems. For the latter, we present a simple relationship between the classical
AMG interpolation operators on structured grids and those used by BoxMG and investigate
hybrid approaches based on these two points of view. Taken together, these results lead to
improved insight into and performance from the robust structured-grid context of BoxMG,
which has the potential to be very useful in the many-core and accelerated architecture
paradigms, where the computational advantages of structured-grid approaches over AMG are
significant.
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