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SUMMARY

With the ubiquity of large-scale computing resources has come significant attention to practical details
of fast algorithms for the numerical solution of partial differential equations. Included in this group
are the class of multigrid and algebraic multigrid algorithms that are effective solvers for many of the
large matrix problems arising from the discretization of elliptic operators. Algebraic multigrid (AMG)
is especially effective for many problems with discontinuous coefficients, discretized on unstructured
grids, or over complex geometries. While much effort has been invested in improving the practical
performance of AMG, little theoretical understanding of this performance has emerged. This paper
presents a two-level convergence theory for a reduction-based variant of AMG, called AMGr, which is
particularly appropriate for linear systems that have M-matrix-like properties. For situations where
less is known about the problem matrix, an adaptive version of AMGr that automatically determines
the form of the reduction needed by the AMGr process is proposed. The adaptive cycle is shown, in
both theory and practice, to yield an effective AMGr algorithm.
Copyright c© 2005 John Wiley & Sons, Ltd.
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1. Introduction

While modern scientific computing has benefited greatly from improvements in computational
technology, our ability to simulate complex physical systems owes as much to improved
algorithms, particularly in the area of linear systems solvers. The matrix equations that arise
from discretizing partial differential equations (PDEs) can often be solved most efficiently
using a multiscale solver, such as multigrid. Algebraic multigrid (AMG) [1, 2] offers many
improvements in robustness and ease of use over classical geometric multigrid, especially for
discretizations on complex geometries or irregular meshes, or when the coefficients of the PDE
vary widely or are discontinuous.

The performance of AMG has been assessed (c.f., [3]), and modifications proposed in
many contexts, for a wide variety of problems on a wide variety of computer architectures.
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Ruge and Stüben give many examples and describe system variants of AMG in [2]. Parallel
implementations of the AMG algorithm are discussed in [4, 5]. Within a parallel AMG
algorithm, many details of the multigrid algorithm may also have a significant effect, such
as the parameters of the relaxation scheme chosen [6] or the the choice of coarse grids and
interpolation operators [7].

While these advances play an important role in the applicability of AMG to many linear
systems, there is less theoretical understanding of the performance of AMG. Brandt analyzes
the evolution of errors and residuals through relaxation and coarse-grid correction, based on
the entries of the matrix [8]. More recently, the element-based AMG (AMGe) framework
[9, 10] provides insight into the choice of multigrid interpolation operators when individual
element stiffness matrices are known in addition to the global linear system. Falgout et al.
[11, 12] present a sharp theoretical analysis of the performance of an AMG algorithm, yet
their measures are, in general, difficult both to compute exactly and to approximate. Here, we
present a two-level variant of AMG, called AMGr, that is based on approximating the Schur
complement by an equivalent operator. The performance bound for the resulting two-grid cycle
depends only on the equivalence constants.

While classical AMG is robust in several respects, it can break down for problems that are
not properly elliptic or, more precisely, for problems whose near-null-space components are
not well understood. AMG relies on an algebraic sense of smoothness, which refers loosely to
the character of error components that give relatively small residuals. Classical AMG uses
knowledge of the local nature of this smoothness to “collapse” entries in certain rows of
the matrix to obtain a suitable interpolation operator. Nominally, it assumes that smooth
errors are constant along strong connections. Classical smoothed aggregation (SA) [13] uses
representative smooth vectors (e.g., rigid body modes in elasticity) to define columns of the
interpolation operator locally. Unfortunately, when representative smooth components are
neither available nor well understood, these algebraic schemes cannot be effectively applied.

It is this limitation that motivates the development of adaptive algebraic multigrid methods
(αAMG and αSA [14, 15, 16]) that attempt to determine the sense of smoothness automatically.
The basic idea is to apply relaxation to the homogeneous problem (Ax = 0) to determine
which components are slow to converge. Coarsening is then constructed based on the resulting
algebraically smooth component(s). Because these components may not be fully representative,
the resulting algorithm itself is applied to the homogeneous problem and coarsening is adjusted
to match any slow-to-converge error components that are found. This process is continued until
good efficiency is, hopefully, achieved.

To improve our understanding of adaptive AMG, here we develop a two-level, reduction-
based version of it, called adaptive AMGr (αAMGr). We analyze the adaptive setup cycle
to recover the lowest-energy mode of the linear system and, using this, find an equivalent
diagonal operator to use in the AMGr algorithm. Global convergence is possible in special
cases; however, because of the nonlinearity of this iteration, only a local result is given for the
most general case considered.

This paper is arranged as follows. In Section 2, the AMGr algorithm is explained and a
convergence proof is given. The adaptive extension of this algorithm, αAMGr, is discussed in
Section 3. Numerical experiments are given in Section 4, and concluding remarks are made in
Section 5.
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2. Reduction-Based AMG (AMGr)

Consider the following representation for the symmetric n× n matrix A:

A =
[

Aff −Afc

−AT
fc Acc

]
.

Here, we assume the existence of a partition of Rn into F and C points. The development of
AMGr is motivated by two-level theory from a reduction point of view; for a multigrid scheme
based on F -point relaxation, it is easy to see that the ideal interpolation operator from an
approximation point of view is P =

[
A−1

ff Afc

I

]
. Because this is usually not practical from a

computational point of view (A−1
ff is generally dense), we instead ask the question of what sort

of approximation to Aff by a more-easily inverted matrix, D, is necessary to achieve good
multigrid performance.

Assume, then, that the original degrees of freedom (points or variables in Rn) are partitioned
into those that are associated with the coarse level (set C) and those that are not (set
F ): Rn = F ∪ C. Further, suppose that this is done in such a way that the F -to-F
connections are subdominant (i.e., the submatrix associated with the fine-level-only points
is significantly better conditioned than the whole matrix). Such a splitting can be achieved
by using compatible relaxation [17, 11, 18] in the multigrid coarsening process. Here, we show
that, given such a splitting, the multigrid convergence factors, measured in the A-norm, can
be bounded by a constant less than one that depends only on the spectral equivalence bounds
between Aff and D, indicating uniform multigrid convergence in that norm.

In what follows, lower case Greek letters are used to denote scalars, while lower case Roman
letters denote vectors. The matrix, A, is assumed to be real, symmetric, and positive definite.
Additional assumptions are imposed on A that specify the F -to-C dominance we need. We
show that this algorithm obtains uniform convergence, for any given scale of dominance of the
F -F block.

Write Aff = D + E , where D is positive definite and E is such that 0 ≤ E ≤ εD for some
ε > 0. The notation A ≤ B is taken to mean that xTAx ≤ xTBx, for all x. Assume further
that A and D satisfy

AD =
[

D −Afc

−AT
fc Acc

]
≥ 0. (1)

If A is diagonally dominant, then such a partition of Aff is always possible with a diagonal
matrix, D [19, Lemma 8]. It is, however, possible to satisfy these conditions in much more
general circumstances than diagonally dominant matrices or, even, M-matrices. For any given
non-negative definite matrices Aff and D for which E = Aff −D is non-negative definite, ε
is simply the largest eigenvalue of the generalized eigenvalue problem, Ex = λDx; since we
assume D to be positive definite, then ε is guaranteed to be finite. Thus, given any symmetric
non-negative definite matrix of form AD and any symmetric and non-negative definite matrix
E , matrix A with Aff = D+ E satisfies Equation (1). Thus, the theory presented here is more
general than the usual M-matrix based AMG theory, as in [8, 2]. Of particular interest is the
case where A and its partitioning come from some fixed process for a given problem size (such
as discretization of a PDE) and D is computed by a given formula (e.g., as part of the diagonal
of Aff , computed so that the remaining part, E = Aff −D, is non-negative definite). In this
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case, our interest and expectation is not just that finite ε exists, but that the bound achieved
is independent of the size of A, indicating the efficacy of the AMG algorithm.

The two-level AMGr scheme is defined by its basic components, relaxation and coarse-
level correction. For relaxation, we choose a weighted F -point-only relaxation whose error
propagation matrix is given by

REL =
(
I − σ

[
D−1 0

0 0

]
A

)
, (2)

where σ =
2

2 + ε
. To complement this, a variational coarse-level correction using the

interpolation operator,

P =
[
D−1Afc

I

]
,

is used. Note that the error propagation matrix for the coarse-level correction is then given by

CLC = I − P (PTAP )−1PTA.

The error propagation matrix for our two-grid scheme, which consists of one relaxation step
followed by coarse-level correction, is given by

MG2 = CLC ·REL.

The analysis is simplified by noticing that any e ∈ Rn can be written as the A-orthogonal
sum

e = α

[
A−1

ffAfc

I

]
v + β

[
I
0

]
w, (3)

where ‖v‖Âcc
= ‖w‖Aff

= 1 and Âcc = Acc − AT
fcA

−1
ffAfc is the Schur complement of Aff

in A. Here, we use the energy-norm notation, ‖x‖B = 〈Bx, x〉 12 , where B is any symmetric,
positive definite matrix.

Theorem 1. Suppose we are given A =
[

Aff −Afc

−AT
fc Acc

]
≥ 0 such that Aff = D + E, with

D symmetric, 0 ≤ E ≤ εD, and
[

D −Afc

−AT
fc Acc

]
≥ 0. Define relaxation with error propagation

operator REL =
(
I − σ

(
D−1 0

0 0

)
A
)

for σ = 2
2+ε , interpolation P =

[
D−1Afc

I

]
, coarse-level

correction with error propagation operator CLC = I − P (PTAP )−1PTA, and the two-grid
AMGr algorithm whose error propagation operator is given by MG2 = CLC ·REL. Then,

‖MG2‖A ≤
(

ε

1 + ε

(
1 +

(
ε

(2 + ε)2

))) 1
2

< 1. (4)

Thus, the two-grid AMGr scheme converges uniformly for any fixed ε ≥ 0.

Proof: Let e be a unit vector in the A-norm, so that (3) implies that α2+β2 = 1. Considering
the effect of relaxation on e, the A–orthogonal decomposition then gives us

Copyright c© 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 0:1–19
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ADAPTIVE REDUCTION-BASED AMG 5

RELe = e− σ
[
D−1 0

0 0

](
βAffw

αÂccv − βAT
fcw

)
= e− βσ

(
D−1Affw

0

)
= α

[
A−1

ffAfc

I

]
v + β

[
I − σD−1Aff

0

]
w.

However,∥∥∥∥[ I − σD−1Aff

0

]
w

∥∥∥∥
A

= ‖
(
I − σD−1Aff

)
w‖Aff

≤ ρ
(
I − σA1/2

ff D
−1A

1/2
ff

)
≤ max

(∣∣∣∣1− 2
2 + ε

∣∣∣∣ , ∣∣∣∣2 + 2ε
2 + ε

− 1
∣∣∣∣) =

ε

2 + ε
,

because D ≤ Aff ≤ (1+ ε)D implies that A−1
ff ≤ D−1 ≤ (1+ ε)A−1

ff . It is therefore easy
to see that

RELe = α

[
A−1

ffAfc

I

]
v + β̂

[
I
0

]
ŵ,

where ‖ŵ‖Aff
= 1 and

|β̂| ≤ |β|
(

ε

2 + ε

)
. (5)

To analyze the coarse-level correction step, let ê = RELe. We first bound the error after

the coarse-level correction by the error modified by the interpolant,
[
D−1Afc

I

]
v, that

is optimally scaled (writing this scale as αθ, for convenience):

‖CLCê‖A = min
u

∥∥∥∥ê− [ D−1Afc

I

]
u

∥∥∥∥
A

≤ min
θ

∥∥∥∥α [ A−1
ffAfc

I

]
v + β̂

[
I
0

]
ŵ − αθ

[
D−1Afc

I

]
v

∥∥∥∥
A

.

The key now is to write the correction as an A–orthogonal sum:

[
D−1Afc

I

]
v =

[
A−1

ffAfc

I

]
v +

[ (
D−1 −A−1

ff

)
Afc

0

]
v,
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which, together with the definitions of v and ŵ and the triangle inequality, yields

‖CLCê‖2A

≤ min
θ

∥∥∥∥∥α (1− θ)
[
A−1

ffAfc

I

]
v + β̂

[
I
0

]
ŵ − αθ

[ (
D−1 −A−1

ff

)
Afc

0

]
v

∥∥∥∥∥
2

A

= min
θ

[
α2 (1− θ)2

∥∥∥∥[ A−1
ffAfc

I

]
v

∥∥∥∥2

A

+
∥∥∥β̂ŵ − αθ (D−1 −A−1

ff

)
Afcv

∥∥∥2

Aff

]

≤ min
θ

[
α2 (1− θ)2 +

(
β̂ + αθ

∥∥∥(D−1 −A−1
ff

)
Afcv

∥∥∥
Aff

)2
]
.

Note now that equation (1) implies that Acc ≥ AT
fcD

−1Afc, which, with the assumed
bound on D, implies that∥∥∥(D−1 −A−1

ff

)
Afcv

∥∥∥2

Aff

= vTAT
fcA

−1/2
ff

(
A

1/2
ff D

−1A
1/2
ff − I

)2

A
−1/2
ff Afcv

≤ εvTAT
fcA

−1/2
ff

(
A

1/2
ff D

−1A
1/2
ff − I

)
A
−1/2
ff Afcv

= εvTAT
fc

(
D−1 −A−1

ff

)
Afcv

≤ εvT
(
Acc −AT

fcA
−1
ffAfc

)
v

= ε‖v‖2
Â

= ε.

Combining these last two bounds and using (5) yields

‖CLCê‖2A ≤ min
θ

[
α2 (1− θ)2 +

((
ε

2 + ε

)
β + αθ

√
ε

)2
]
.

A little calculus shows that the optimal θ is

θ =
α−

(
ε

2+ε

)√
εβ

(1 + ε)α
,

which, with a little algebra, simplifies the bound to

‖MG2e‖2A ≡ ‖CLCê‖2A ≤
ε

1 + ε

(
α+

( √
ε

2 + ε

)
β

)2

.

A little more calculus shows that the maximum of α +
( √

ε
2+ε

)
β over α ∈ [0, 1]

(remembering that β =
√

1− α2) yields

‖MG2e‖2A ≤
ε

1 + ε

(
1 +

( √
ε

2 + ε

)2
)

=
ε
(
(2 + ε)2 + ε

)
(1 + ε) (2 + ε)2

.
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It is easy to see that this expression is less than 1: x
1+x is an increasing function of x ≥ 0

and ε < (2+ε)2

ε for ε > 0, so

ε

1 + ε
<

(2+ε)2

ε

1 + (2+ε)2

ε

=
(2 + ε)2

(2 + ε)2 + ε
.

2

Corollary 1. Under the assumptions of Theorem 1, consider the two-level scheme with ν ≥ 1
relaxation sweeps followed by coarsening. The error propagation matrix for this scheme is
MG2 = CLC ·RELν , and

‖MG2‖A ≤

(
ε

1 + ε

(
1 +

(
ε

2 + ε

)2(ν−1)(
ε

(2 + ε)2

))) 1
2

.

Note that ε
2+ε < 1. Hence, this factor monotonically decreases as ν increases, with limit ε

1+ε ,
the convergence factor for the two-level scheme based on exact F -point-only relaxation.

Proof: It is easy to see that (5) becomes

|β̂| ≤ |β|
(

ε

2 + ε

)ν

and that the remainder of the proof of Theorem 1 holds with appropriate modification.
2

Our convergence bound depends only on the equivalence bound, D ≤ Aff ≤ (1 + ε)D.
Achieving good efficiency then requires a balance in the choice of D such that the parameter,
ε, is small and relaxation and coarse-grid correction are easy to perform. At one extreme,
choosing D = Aff shows that this is a direct method - the coarse-scale operator is, simply,
the Schur complement, and relaxation is a direct solve of the fine-scale equations. At the other
extreme, choosingD to be diagonal typically yields a nonzero convergence factor (albeit smaller
than 1), but each iteration is significantly more cost effective, due to the Jacobi relaxation
and sparsity of the coarse-grid correction calculation. Indeed, compatible relaxation yields
diagonally dominant Aff blocks for many operators, allowing an efficient choice of a diagonal
matrix, D, that achieves a tight bound, ε.

Because REL is self-adjoint in the A-inner product, and CLC is a projection in the A-inner
product, the multigrid convergence factors, measured in the A-norm, for symmetric multigrid
cycles,MG2 = RELν ·CLC ·RELν , may be easily related to the non-symmetric cycles analyzed
in Theorem 1 and its corollary. Relative to the A-inner product, the symmetric cycle is the
composition of the adjoint of the non-symmetric cycle analyzed above and itself. Thus, the
multigrid convergence factor for symmetric cycles is simply the square of the cycles analyzed
in Theorem 1 and its corollary.
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Prepared using nlaauth.cls
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3. Adaptive AMGr (αAMGr)

Just as classical AMG relies on a good representation of the errors that are slow to be reduced
by relaxation (the algebraically smooth errors), the theoretical bounds on AMGr depend on the
knowledge of a good splitting of Aff into D+E with the assumed properties. In classical AMG,
the choice of relaxation is taken to be fixed and, so, the goal is to define interpolation that
effectively complements this choice. When a good representation of the algebraically smooth
errors of relaxation is not available a priori, the adaptive multigrid methodology [14, 15, 16]
may be used to probe the performance of relaxation and expose prototypes of such errors.
Here, we describe a similar, adaptive version of AMGr; however, because both relaxation and
interpolation in AMGr depend on the splitting of Aff , our goal is not to expose the slow-
to-converge errors of a fixed relaxation scheme, but rather to expose a good splitting of Aff

in the case that such a splitting is not known beforehand and, thus, improve relaxation and
interpolation simultaneously.

Despite the difference in goals, our approach is similar to that of the adaptive multigrid
methodology. The relaxation scheme chosen in (2) will be slow to resolve errors, e, that yield
small residuals regardless of the chosen splitting, because Ae will always be small relative to
e. Thus, fine-grid relaxation quickly exposes errors that are both algebraically smooth and in
the near-null space of A. As discussed in [16], we use a Rayleigh quotient minimization on
the coarse grid to better expose the near-null space of A in this two-level algorithm (for a
multilevel algorithm, relaxation would be used on every level but the coarsest). An improved
representative of the near-null space can then be used to determine an improved splitting.
To understand this process more clearly, we now assume (without loss of generality) that A
is singular, but nonnegative definite. It is easy to see that Theorem 1 still holds with the
understanding that convergence is in N (A)⊥ (the orthogonal complement of the null space of
A).

Although we no longer assume that D and E are known, we continue to suppose that the
partition Rn = F ∪ C is given and that D and E exist under the assumptions of the previous
section. Thus, the matrix, A, can be written as

A =
[

Aff −Afc

−AT
fc Acc

]
≥ 0.

Below, nf and nc denote the dimensions of the square matrices Aff and Acc, respectively, and
subscripts f and c refer to the corresponding components of v ∈ Rn. Thus, v = (vf , vc)T and
n = nf + nc. Now, assume also that A is singular with a one-dimensional null space spanned
by a unit vector, r ∈ Rn:Ar = 0, ‖r‖ = 1. Continuing to assume that AD ≥ 0 and E ≥ 0, we
must conclude that ADr = 0 and Erf = 0. To see this, note that the splitting Aff = D + E
yields

0 = 〈Ar, r〉 = 〈ADr, r〉+ 〈Erf , rf 〉.

By assumption, the two terms on the right are nonnegative, so they must both be zero. Since
AD and E are both nonnegative, it must be that ADr = 0 and Erf = 0.

Finding a general matrix, D, with which to split Aff allows many possible algorithmic
choices, but here we consider the case that D is diagonal. This is motivated by thinking of the
splitting of Rn into F and C coming from an algorithm such as compatible relaxation and, so,
the Aff block exhibits some form of diagonal dominance. Notice that the choice of diagonal

Copyright c© 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 0:1–19
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ADAPTIVE REDUCTION-BASED AMG 9

D greatly reduces the number of degrees of freedom in its specification; if we additionally
require a single vector to be exactly in the range of interpolation, then D is uniquely specified.
Further, without loss of generality and for convenience, we assume that D = I, implicitly
rescaling A if necessary. Note that such a rescaling changes neither our assumptions on A nor
the iteration in the following theorems (as viewed on the coarse scale), although the constants
in the statement of Theorem 2 do change. Our aim is to construct a two-level method that
yields grid-independent convergence factors for solving Ax = b, in general, and Ax = 0, in
particular, without assuming knowledge of r nor of the splitting of Aff = I + E .

Suppose now that the vector, u, is given as an approximation to the true null-space
component, r. We write u = r + e, where e is taken to be somehow orthogonal to r (in a
manner to be defined). Note that our goal is to expose the eigenvector, r, up to any scale
factor. The implicit rescaling of u such that 〈u, r〉 = 〈r, r〉 is acceptable, because u is not used

in what follows without being normalized against its scaling. Defining RQ(v) =
〈Av, v〉
〈v, v〉

, the

Rayleigh quotient, our two-level adaptive AMGr algorithm then takes the following abstract
form:

1. Relax on Au = 0.
2. Define P such that Puc = u, for some uc.

3. Set unew = P

(
argmin
w∈Rnc

RQ(Pw)
)

.

In this form, the relationship between the adaptive AMGr setup algorithm and two-
level eigensolvers is apparent. Indeed, the connection between good algebraic multigrid
interpolation and eigenvectors has long been known (cf. [2, 20]). For stochastic matrices,
aggregation-disagreggation methods take a form similar to the algorithm above. Local and
global convergence theory for these methods, however, relies on the positivity of the stochastic
operators [21], which does not directly hold for discretized PDEs. The RQMG methodology
[22] could be applied directly to finding the eigenvector belonging to the smallest eigenvalue of
A, but would, in general, require updates to the coarsening process used based on the evolving
prototype. The eigensolver proposed here is much simpler and designed for exactly the task
at hand.

To simplify the theoretical development, we replace the iterative block F -point solver of
Equation (2) by exact F -point relaxation, uf = A−1

ffAfcuc. While impractical for general
systems, the assumption on Aff is that it is well approximated by some diagonal matrix, D,
in the sense that D ≤ Aff ≤ (1 + ε)D, so the Aff block of A is easy to approximately invert.
In this light, it is easy to see that the following theory readily extends to the case that just a
few relaxation steps are applied to Affuf = Afcuc.

Interpolation, P , is then defined analogously to AMGr, by computing an approximate D
based on the decomposition of Aff = D + E . Under the assumptions that AD ≥ 0 and E ≥ 0,
we have Aff rf = Drf and, hence, rf = A−1

ffAfcrc = D−1Afcrc, so we define interpolation
by approximating D based on our approximation, u, to r. This is done by choosing the form
of interpolation to be Λ−1Afc for some diagonal matrix Λ > 0, and then determining Λ to
match the fine-level values: Λ−1Afcuc = uf = A−1

ffAfcuc. The interpolation operator, P , is
then given by

P =
[

Λ−1Afc

I

]
.

Copyright c© 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 0:1–19
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Using u to update Λ is analogous to the updating of interpolation in adaptive AMG [16] based
on the prototype of algebraically smooth error. An improved representation of the true null
space of A yields a better splitting of Aff , improving the convergence of the resulting AMGr
cycle. For later use, it is convenient to define an “ideal” interpolation operator,

Q =
[
A−1

ffAfc

I

]
,

that results from taking D = Aff . As remarked in Section 2, this yields ε = 0, giving an exact
two-level scheme.

A global convergence result can be obtained for the special case of a two-dimensional coarse
grid. We include this simplified result here because it motivates the general case. Writing
uc = rc + ec, with rc ⊥ ec, gives an orthogonal basis for the coarse-grid space as the span of
{rc, ec}. This reduction in complexity allows for a complete analysis of the αAMGr algorithm,
with the coarse-grid eigenproblem solved by a single step of inverse iteration.

Theorem 2. Let nc = 2, and let approximation u, with uc = rc + ec, ‖rc‖ = 1, and
rc ⊥ ec, be given. Define the usual αAMGr interpolation operator, P =

[
Λ−1Afc

I

]
, with

Λ−1Afcuc = A−1
ffAfcuc, and coarse-grid matrix AP = PTAP . Assume also that Ar = 0,

Aff = I + E, for 0 ≤ E ≤ εI, and
[

I −Afc

−AT
fc Acc

]
≥ 0. Finally, let η̄ = mini(rf )i and

η = min(min
i

(rf + Afcec)i, η̄) > 0. Then the coarse-grid solution, vc, to the inverse iteration,

vc = A−1
P uc, satisfies

vc = k(ζrc + ec),

for constant k and ζ ≥ 1 + 1
1+‖ec‖2

η2

ε(1+ε)‖rf‖2 .

Proof: Let W = [rc,
ec

‖ec‖ ] be the orthogonal transformation from Cartesian coordinates to
the (rc, ec) coordinate system. The inverse iteration, vc = A−1

P uc, may then be rewritten
as

vc = W (WTAPW )−1WT (rc + ec).

Note that Puc = Quc and Qrc = r, so that

P rc = r +
(

(Λ−1−I)rf

0

)
,

P ec = Qec −
(

(Λ−1−I)rf

0

)
.

Compute α ≡ rT
c AP rc = rT

f (Λ−1 − I)Aff (Λ−1 − I)rf . Notice then that eT
c AP rc = −α,

because Pec = Puc − P rc = Quc − P rc and Quc is A-orthogonal to any vector that is
zero on all coarse points.

Thus, taking γ = ‖ec‖ and β = eT
c Âccec, the inverse iteration matrix may be rewritten

as

WTPTAPW =

[
α −α

γ

−α
γ

α+β
γ2

]
.
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ADAPTIVE REDUCTION-BASED AMG 11

Inverse iteration then takes the form

vc = W

[
α −α

γ

−α
γ

α+β
γ2

]−1

WT (rc + ec)

= W
γ2

αβ

[
α+β
γ2

α
γ

α
γ α

](
1
γ

)
=
(
α+ β

αβ
+
γ2

β

)
rc +

(
γ + γ3

β

)
ec

γ

=
(

1 + γ2

β

)((
α+ β

(1 + γ2)α
+

γ2

1 + γ2

)
rc + ec

)
.

Now consider β = eT
c Âccec, and note that

Âcc = Acc −AT
fcAfc +AT

fc(I −A−1
ff )Afc ≥ AT

fc(I −A−1
ff )Afc,

because Acc −AT
fcAfc ≥ 0, by our assumptions as in Equation (1). Then, since

(I −A−1
ff ) = (I − (I + E)−1) = E(I + E)−1,

we see that
Âcc ≥

1
ε
AT

fcE2(I + E)−1Afc,

because
E2(I + E)−1 ≤ εE(I + E)−1.

In particular, this implies that β ≥ 1
ε e

T
c A

T
fcE2(I+E)−1Afcec. We now turn our attention

to α, which can be bounded above as follows:

α = ‖(Λ−1 − I)rf‖2Aff
≤ (1 + ε)‖(Λ−1 − I)rf‖2

= (1 + ε)
∑

i

(
((A−1

ff − I)Afcec)i

(rf +Afcec)i

)2

(rf )2i

≤ 1 + ε

η2

∑
i

((A−1
ff − I)Afcec)2i

∑
i

(rf )2i

≤ (1 + ε)‖rf‖2

η2

∑
i

((A−1
ff − I)Afcec)2i .

Hence,

α =
(1 + ε)‖rf‖2

η2
‖(A−1

ff − I)Afcec‖2

≤ (1 + ε)‖rf‖2

η2
‖(A−1

ff − I)Afcec‖2Aff

=
(1 + ε)‖rf‖2

η2
eT
c A

T
fcA

−1
ff (Aff − I)Aff (Aff − I)A−1

ffAfcec

=
(1 + ε)‖rf‖2

η2
eT
c A

T
fcE2(I + E)−1Afcec ≤

ε(1 + ε)‖rf‖2

η2
β.

Copyright c© 2005 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2005; 0:1–19
Prepared using nlaauth.cls



12 S. MACLACHLAN, T. MANTEUFFEL, AND S. MCCORMICK

Thus, vc =
(

1+γ2

β

)((
α+β

(1+γ2)α + γ2

1+γ2

)
rc + ec

)
can be seen to have the form, vc =

k(ζrc + ec), for k =
(

1+γ2

β

)
, and

ζ =
(

α+ β

(1 + γ2)α
+

γ2

1 + γ2

)
≥ 1 +

β

(1 + γ2)α

≥ 1 +
1

1 + γ2

η2

ε(1 + ε)‖rf‖2
.

2

Corollary 2. Under the hypotheses of Theorem 2, the inverse iteration process, uc ← A−1
P uc,

converges uniformly to uc = rc.

Proof: Let η̄ = mini(rf )i. Renormalizing vc = rc + 1
ζ ec, we see that 1

ζ < 1, so

ηnew = min
(

min
i

(
rf +

1
ζ
Afcec

)
i

, η̄

)
≥ ηold,

and that

γnew =
∥∥∥∥1
ζ
ec

∥∥∥∥ < γold.

Thus, for any initial η(0) and γ(0), we have ζ from Theorem 2 satisfying

ζ ≥ 1 +
1

1 + (γ(0))2
(η(0))2

ε(1 + ε)
.

2

This simplified setting allows a complete analysis of the αAMGr algorithm, under very
natural assumptions. The splitting of Aff = I+E does not reduce the generality, as discussed
above. The requirement that η > 0 arises naturally from requiring well-posedness of the AMGr

process. For any iterate, u = r + e, Λ−1 is defined pointwise as (Λ−1)i =
(A−1

ff Afcuc)i

(Afcuc)i
. The

requirement that η > 0 then ensures that, for any iterate, u, (Afcuc)i = (rf +Afcec)i 6= 0 for
all i. At the solution, Afcuc = rf and, so, the additional condition on η̄ simply enforces that
αAMGr is well-defined at the solution as well.

Because we have been unable to extend this line of proof to the general case (see, however,
[23, §5.3.3]), we turn instead to a more general approach that yields a local convergence
result. In place of inverse iteration, we consider a two-grid cycle based on an exact solution
to the coarse-grid eigenproblem. Thus, given an approximation, u, to r, consider the following
adaptive AMGr setup cycle:

1. Solve Affuf = Afcuc.

2. Define P =
[

Λ−1Afc

I

]
, for diagonal Λ such that Λ−1Afcuc = A−1

ffAfcuc.

3. Set unew = P

(
argmin
w∈Rnc

RQ(Pw)
)

.
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ADAPTIVE REDUCTION-BASED AMG 13

We show that this defines a contraction mapping (measured in a particular norm) and, thus,
converges to the solution, u = r and Λ = I, in some neighborhood of it.

In what follows, we use the notation

D(w) = Diag(. . . , wi, . . .),

for a given vector, w, to be the diagonal matrix with wi as the diagonal terms. We also use
the Jacobian notation,

J(G, x)|x=y,

to denote the Jacobian of map G with respect to x, evaluated at x = y, or J(z, x)|x=y to
denote the Jacobian of the map from x to z, evaluated at x = y.

Theorem 3. Suppose we are given an A =
[

Aff −Afc

−AT
fc Acc

]
≥ 0 such that Aff = I + E,

0 ≤ E ≤ εI, and
[

I −Afc

−AT
fc Acc

]
≥ 0. Further, suppose that Afc 6= 0 (convergence in the case

that Afc = 0 is trivial). Assume that there exists a vector, r, ri 6= 0 for all i, such that Ar = 0,
but that vTAv > 0 for any other vector, v ⊥ r.

Given uc, write uc = rc+ec, for ec ⊥ rc, rescaling uc if necessary. Define the diagonal matrix,
Λ, such that Λ−1Afcuc = A−1

ffAfcuc, and let P =
[

Λ−1Afc

I

]
and AP = PTAP . Denote the

new error by enew
c = vc − rc, where vc results from solving the coarse-grid eigenvalue problem,

AP vc = λminvc, 〈vc, rc〉 = ‖rc‖2. Let this iteration process be denoted by a map, G : ec → enew
c .

Then G is a contraction map at the solution, ec = 0, in the Ācc = (Acc − AT
fcAfc +

AfcAffAfc)-norm. Further, the norm of the Jacobian of G with respect to ec at ec = 0 satisfies

‖J(G, ec)|ec=0‖Ācc
≤ ε

1 + ε
,

and so G remains a contraction in some neighborhood of ec = 0.

Proof: The coarse-grid step is to find

enew
c = argmin

ẽc⊥rc

RQ(AP , rc + ẽc),

where RQ(B, v) = 〈Bv,v〉
〈v,v〉 . This is always possible, under the assumption that ec is close

enough to 0 that the eigenvector associated with the minimum eigenvalue is guaranteed
to have a non-zero projection onto rc, which is in the null space of the ideal coarse-grid
operator, Acc −AT

fcAfc. Since we are concerned with properties of the mapping at the
solution, ec = 0, this assumption is easily satisfied.

The fine-grid error, enew
f , is then defined by an exact fine-grid relaxation,

Aff (rf + enew
f )−Afc(rc + enew

c ) = 0.

The iteration may be viewed as the mapping, G : ec → enew
c . Defining Z = Λ−1 − I,

and letting z be the vector with components zi = Zii (i.e., Z = D(z)), the iteration
proceeds as

ec → z → enew
c .
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14 S. MACLACHLAN, T. MANTEUFFEL, AND S. MCCORMICK

First, rewrite the αAMG interpolation equation,

(I + Z)Afc(rc + ec) = A−1
ffAfc(rc + ec),

as
ZAfc(rc + ec) = (A−1

ff − I)Afc(rc + ec).

Then, defining U = D(Afcrc + Afcec) and making use of the fact that ZAfcuc = Uz,
we have

z = U−1(A−1
ff − I)Afc(rc + ec),

if U−1 exists (i.e., if (Afcuc)i 6= 0 for any i). Note that A is the sum of the two positive

semi-definite parts, [ E 0
0 0 ] and

[
I Afc

AT
fc Acc

]
, and that Ar = 0, so Erf = 0, Aff rf = rf ,

and Afcrc = rf . Thus, U−1 exists at the solution, ec = 0 (since U = D(rf ), which, by
assumption, is nonzero), and, by continuity, it must exist in some neighborhood of the
solution, which is sufficient for our analysis.

Now, noting that z = z(ec), consider the Jacobian, J(z, ec) = ∂z
∂ec

, evaluated at ec in
direction vc:

J(z, ec)|ec [vc] = U−2
(
U(A−1

ff − I)Afcvc −D(Afcvc)(A−1
ff − I)Afc(rc + ec)

)
.

At the solution, ec = 0, the second term in J(z, ec) vanishes because A−1
ffAfcrc = Afcrc,

and we have
J(z, ec)|ec=0 = D(Afcrc)−1(A−1

ff − I)Afc. (6)

For the second part of the map, we first find

uc = argmin
vc:〈vc,rc〉=〈rc,rc〉

RQ(AP , vc), (7)

and set enew
c = uc − rc. This yields an implicit relationship between z and enew

c . Taking
the gradient of (7), we have the set of equations

APuc −
〈APuc, uc〉
〈uc, uc〉

uc = 0

plus the constraint equation
〈uc, rc〉 − 〈rc, rc〉 = 0.

Note that AP = AP (z) and, to belabor the point, this has the form of a set of equations

F (uc, z) = AP (z)uc −
〈AP (z)uc, uc〉
〈uc, uc〉

uc = 0. (8)

With the constraint, there are nc + 1 equations, but they are consistent, as the first
nc do not determine the constant multiplier and are therefore singular. The constraint
fixes the scaling.

Implicit differentiation of F yields

J(F, uc)J(uc, ec)J(ec, z) + J(F, z) = 0, (9)
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ADAPTIVE REDUCTION-BASED AMG 15

where, of course, J(uc, ec) = I. We deal with the constraint equation later.

We now need to construct J(F, uc) and J(F, z). Notice that the coarse-grid operator
satisfies

AP = PTAP = Acc − 2AT
fcΛ

−1Afc +AT
fcΛ

−1AffΛ−1Afc.

Referring to the definition of AP and recalling that Aff = I+E and Λ−1 = I+Z, then

AP = (Acc − 2AT
fcAfc +AT

fcAffAfc) +AT
fc(Z

2 + ZE + EZ + ZEZ)Afc.

This yields

J(F, z)|z =AT
fc(2ZD(Afcuc) +D(EAfcuc) + ED(Afcuc) +D(EZAfcuc) + ZED(Afcuc))

− ucu
T
c

uT
c uc

AT
fc(2ZD(Afcuc) +D(EAfcuc) + ED(Afcuc)

+D(EZAfcuc) + ZED(Afcuc)).

The important thing to notice is that, at the solution, ec = 0, uc = rc, Z = 0, and
z = 0, yielding

J(F, z)|z=0 = AT
fcED(Afcrc)−

rcr
T
c

rT
c rc

AT
fcED(Afcrc).

However, rT
c A

T
fcE = (EAfcrc)T = (Erf )T = 0T , so

J(F, z)|z=0 = AT
fcED(Afcrc).

Now, to compute J(F, uc), we have

J(F, uc) = AP −RQ(AP , uc)I − uc(∇uc
RQ(AP , uc))T ,

where, as stated before,

∇uc
RQ(AP , uc) =

2
< uc, uc >

(APuc −
< APuc, uc >

< uc, uc >
uc).

At the solution, this yields

J(F, uc)|uc=rc = Acc − 2AT
fcAfc +AT

fcAffAfc = Acc −AT
fcAfc +AT

fcEAfc.

Now consider the constraint. If we think of it as the last in Equation (8), this adds one
extra equation to the set in (9). The last row of J(F, z) is 0T because the constraint
does not depend on z. The constraint equation also adds one row to J(F, uc), and that
last row is rT

c . That is, the columns of J(ec, z) are all orthogonal to rc. We must check
that this augmented system has a solution, because matrix J(F, uc)|uc=rc

= Acc −
2AT

fcAfc +AT
fcAffAfc has rc as its null space. By the assumption that r is the unique

null vector (up to scale) of A, we conclude that rc is the only null vector (up to scale) of
Acc−AT

fcAfc +AT
fcEAfc, and, thus, that J(F, uc)|uc=rc has rank nc−1. Note that each

column of the right side of −J(F, z)|z=0 = −AT
fcED(Afcrc) is orthogonal to rc, because

rT
c A

T
fcE = 0T . Then, since J(F, uc)|uc=rc

is symmetric, each column of −J(F, z)|z=0
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16 S. MACLACHLAN, T. MANTEUFFEL, AND S. MCCORMICK

must be in its range. (This is Fredholm’s theorem: (Range(B))⊥ = Null(BT ).) So, we
know that a solution, J(ec, z), exists. If we additionally ask for the solution to satisfy
the constraint, J(ec, z)rc = 0, we then get a unique value for J(ec, z)|z=0, because this
constraint is orthogonal to J(F, uc)|uc=rc , giving an nc + 1 × nc system with rank nc

and a consistent right side.

Using the results in Equations (6) and (9), we now have

(Acc −AT
fcAfc +AT

fcEAfc)J(ec, z)J(z, ec) = AT
fcE(I −A−1

ff )Afc = AT
fcE2(I + E)−1Afc,

where we are interested in J(ec, z)J(z, ec) over the space (rc)⊥. We choose to measure
the size of J(ec, z)J(z, ec) in the AP -norm that, at the solution, is the Ācc = (Acc −
AT

fcAfc + AT
fcEAfc)-norm. On this space, Ā−1

cc exists and is well-posed by assumption
that the unique (up to scale) null space component of A is r, and so the unique (up to
scale) null space component of Ācc is rc. Noting that, for any yf , rT

c A
T
fcE

1
2 yf = 0, as

Afcrc = rf , we can write

‖J(ec, z)J(z, ec)‖2Ācc
=

max
wc:wc 6=0,wc⊥rc

(
wT

c A
T
fc(I + E)−1E2AfcĀ

−1
cc A

T
fcE2(I + E)−1Afcwc

wT
c Āccwc

)
,

because Ā−1
cc only applies to vectors in r⊥c , where it is well-defined. By assumption,

Acc ≥ AT
fcAfc, so Ācc ≥ AT

fcEAfc. Since Ācc and AT
fcEAfc have the same null space,

‖J(ec, z)J(z, ec)‖2Ācc
≤

max
wc:wc 6=0,wc⊥rc

(
wT

c A
T
fc(I + E)−1E2Afc(AT

fcEAfc)−1AT
fcE2(I + E)−1Afcwc

wT
c Āccwc

)
,

but

ρ(E 1
2Afc(AT

fcEAfc)−1AT
fcE

1
2 ) = ρ((AT

fcEAfc)−
1
2AT

fcE
1
2 E 1

2Afc(AT
fcEAfc)−

1
2 ) = 1,

so E 1
2Afc(AT

fcEAfc)−1AT
fcE

1
2 ≤ I, and

‖J(ec, z)J(z, ec)‖2Ācc
≤ max

wc:wc 6=0,wc⊥rc

(
wT

c A
T
fc(I + E)−1E3(I + E)−1Afcwc

wT
c Āccwc

)
.

We can again use the bound, Ācc ≥ AT
fcEAfc, to simplify the denominator, but we must

be careful not to allow the denominator to become zero. To do this, we take

‖J(ec, z)J(z, ec)‖2Ācc
≤ max

wc:wc 6=0,wc⊥rc

(
wT

c A
T
fc(I + E)−1E3(I + E)−1Afcwc

wT
c (Acc −AT

fcAfc)wc + wT
c A

T
fcEAfcwc

)
,

= max
wc:E

1
2 Afcwc 6=0,wc⊥rc

(
wT

c A
T
fc(I + E)−1E3(I + E)−1Afcwc

wT
c (Acc −AT

fcAfc)wc + wT
c A

T
fcEAfcwc

)
,

≤ max
wc:E

1
2 Afcwc 6=0

(
wT

c A
T
fc(I + E)−1E3(I + E)−1Afcwc

wT
c A

T
fcEAfcwc

)
.
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Note that we first change the conditions on the set over which the maximum is taken.
The generalization to E 1

2Afcwc 6= 0 is possible as if E 1
2Afcwc = 0 and wc ⊥ rc, the

expression to be maximized is zero (as the numerator is zero, but the denominator is
not, since (Acc−AT

fcAfc+AT
fcEAfc)wc is zero only when wc is (up to scale) rc). Because

the condition E 1
2Afcwc 6= 0 already excludes the case that wc = 0, the set considered

in the maximum can be taken to be the set wc such that E 1
2Afcwc 6= 0 and wc ⊥ rc.

The term 〈(Acc − AT
fcAfc)wc, wc〉 may then be discarded from the denominator as it

is positive. In doing so, we expand the set over which we maximize by dropping the
requirement that wc ⊥ rc, as the critical case when wc is a scalar multiple of rc is already
covered by the other condition.

Suppose now that V is the unitary matrix that diagonalizes E , i.e.,

Ψ = D(ψ) = V EV ∗.

Under this change of basis, we have

‖J(ec, z)J(z, ec)‖2Ācc
≤ max

xf :Ψ
1
2 xf 6=0

< Ψ3(I + Ψ)−2xf , xf >

< Ψxf , xf >
≤
(

ε

1 + ε

)2

,

by assumption on E and, thus, Ψ.

Thus, the norm of the Jacobian of the mapping, J(G, ec)|ec=0 = J(ec, z)J(z, ec), is
bounded uniformly less than 1, yielding convergence in a neighborhood of the solution.

2

4. Numerical Results

We consider a set of test problems derived primarily from finite element discretizations of
elliptic PDEs. Coarse grids are chosen both consistently with standard multigrid coarsening
principles and to expose the role of the parameter, ε, in the convergence bound of Theorem 1.
The adaptive AMGr setup procedure is also tested, both in the case of a singular matrix, A, as
discussed in Section 3, and in the more general (and more important) case of a near-singular
matrix.

Parameter ε, which is used in the relaxation step (see (2)), can be computed exactly from
the decomposition Aff = D + E , D ≤ Aff , using the maximum eigenvalue of the generalized
eigenvalue problem, Affx = λmaxDx. A convenient upper bound for ε in the case of diagonally
dominant Aff comes from using Gerschgorin’s theorem to bound the largest eigenvalue of Aff ,
λmax(Aff ), from above, and the smallest eigenvalue of D, λmin(D), from below. With these
bounds, a convenient upper bound is ε ≤ λmax(Aff )

λmin(D) −1. While this works well for homogeneous,
isotropic operators when a good splitting is already known, it is less useful in the context of
adaptive AMGr. Instead, an accurate estimate of ε may be obtained using a few steps of a
Lanczos algorithm. In the tables below, we compute the exact ε for a given D, as well as
that given by Gerschgorin’s theorem, denoted εG, or the Lanczos algorithm, denoted εL, as
appropriate.

We begin by considering A to be the matrix obtained by the discretization of Poisson’s
equation in two dimensions, −∆u = f , with homogeneous Dirichlet boundary conditions,
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18 S. MACLACHLAN, T. MANTEUFFEL, AND S. MCCORMICK

grid D ν ε ρ(ε) εG ρ(εG)
16× 16 diagonal 1 4.90 0.71 6.00 0.75
16× 16 diagonal 2 4.90 0.51 6.00 0.56
16× 16 diagonal 3 4.90 0.36 6.00 0.42
16× 16 diagonal 4 4.90 0.36 6.00 0.36
32× 32 diagonal 1 4.98 0.71 6.00 0.75
32× 32 diagonal 2 4.98 0.51 6.00 0.56
32× 32 diagonal 3 4.98 0.37 6.00 0.42
32× 32 diagonal 4 4.98 0.37 6.00 0.37
16× 16 tridiagonal 1 4.13 0.67 6.00 0.75
16× 16 tridiagonal 2 4.13 0.47 6.00 0.56
16× 16 tridiagonal 3 4.13 0.34 6.00 0.42
16× 16 tridiagonal 4 4.13 0.36 6.00 0.36

Table I. Asymptotic convergence factors, ρ, for two-level AMGr cycles with given choices of D and ν.
Convergence factors are reported using both an exact ε calculated from the generalized eigenproblem,

ρ(ε), and that which results from a Gerschgorin bound, ρ(εG).

using bilinear finite elements on a regular rectangular mesh. The partition of Rn = F ∪ C is
done in a multigrid full-coarsening fashion, removing every other row and column of degrees
of freedom from the fine-scale mesh. Thus, the fine-scale block, Aff , is diagonally dominant,
because of the M-matrix structure of A and the fact that each row of A associated with F has
diagonal 8

3 and at least two entries in Afc with size − 1
3 .

Table I shows the performance of AMGr for various choices of D and ν. One simple choice
of D for this problem is the diagonal matrix that is the difference between Aff and the
matrix that has the same off-diagonal entries as Aff , with the sum of these entries on the
diagonal. This matrix can be easily computed as D(Affuf ), where (uf )i = 1 for all i. For this
choice of D, and small values of ν, the relaxation step dominates the convergence factor, with
ρ ≈

(
ε

2+ε

)ν

for both the exact and approximate values of ε. As ν grows, the error reduction
betters the theoretical bound. Thus, we see that the bound in Equation (4) is not a sharp
bound on the overall AMGr process, although the bound on relaxation in Equation (5) is
sharp and, thus, the performance of relaxation depends strongly on the chosen value of ε.
Notice that the performance of AMGr is nearly indistinguishable between the two mesh sizes
considered, indicating that ε, and not h, is an important factor in performance. To further test
the influence of D and ε, we consider taking D to be not just the diagonally dominant part of
Aff , but to also include some off-diagonal structure. Knowing that choosing D = Aff leads
to an exact solver, we choose D to be the tridiagonal matrix such that E = Aff −D ≥ 0, but
Euf = 0. The results presented in Table I show that this choice leads to a slightly improved
ε when calculated exactly, but the same approximation as εG. The improved exact value is
reflected in the slight improvement in performance when the exact value is used, although no
real change is seen in the performance of the algorithm using the approximate εG. This again
indicates the importance of ε in the performance of relaxation for this algorithm.

We first test the adaptive AMGr setup cycle in same theoretical setting as in Section 3, that
of a singular matrix, A, whose Aff block can be dominated by a diagonal matrix, D. As test
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coefficient µ RQ(u) ν ε ρ(ε) εL ρ(εL)
K = 1 1 3.35× 10−2 1 9.19 0.86 9.19 0.86
K = 1 2 1.31× 10−2 1 6.08 0.75 6.08 0.75
K = 1 3 3.72× 10−3 1 5.10 0.72 5.10 0.72
K = 1 3 3.72× 10−3 2 5.10 0.54 5.10 0.54
K = 1 3 3.72× 10−3 3 5.10 0.39 5.10 0.39
K = 1 3 3.72× 10−3 4 5.10 0.39 5.10 0.39

K = 10−8 + 10x2 + 10y2 1 1.29× 10−2 1 8.58 0.84 8.58 0.84
K = 10−8 + 10x2 + 10y2 2 1.21× 10−2 1 5.92 0.75 5.92 0.75
K = 10−8 + 10x2 + 10y2 3 1.20× 10−2 1 5.10 0.72 5.10 0.72
K = 10−8 + 10x2 + 10y2 3 1.20× 10−2 2 5.10 0.54 5.10 0.54
K = 10−8 + 10x2 + 10y2 3 1.20× 10−2 3 5.10 0.38 5.10 0.38
K = 10−8 + 10x2 + 10y2 3 1.20× 10−2 4 5.10 0.39 5.10 0.39

Table II. Performance of adaptive AMGr setup routine for various coefficients, K, and numbers of
setup cycles, µ. The RQ of the resulting approximation, u, to r is reported, as well as the performance
of the resulting AMGr algorithms with both the exact ε and approximate εL, for given values of ν.

problems, we consider the discrete operators obtained by bilinear finite element discretization
of second-order elliptic operators, −∇ ·K∇u = f , subject to Neumann boundary conditions,
for different choices of K. For these examples, we fix the grid to be a 16×16 element mesh, and
choose Λ as in αAMGr. We then perform µ setup cycles with an initial guess of u such that
ui ∈ (0, 1) is chosen from a uniform distribution, and measure the Rayleigh Quotient of the
resulting approximation, u, to the true null-space component, r. The exact ε and approximate
εL are then computed and the resulting AMGr methods tested. Note that this approximate
choice of Λ instead of the true D allows us to break the assumptions of AMGr, by trying a
method such that Λ � Aff .

Results for these tests are shown in Table II. For K = 1, we see a steady reduction in
the Rayleigh Quotient of the approximate null-space component as we increase the number
of setup stages. The optimal ε also decreases as a better u is exposed. For the variable K
case, we see slower initial reduction in RQ(u) (although this initial slowness does not persist
- after 4 setup cycles, RQ(u) = 3.59 × 10−3, and after 5 cycles, RQ(u) = 2.83 × 10−4). As a
better approximation of the null space is achieved, the parameter ε improves, and the resulting
method performs better. In both of these cases, the importance of accurately estimating ε is
easily demonstrated. Because of the significant variation in K in the second example, λmin(Λ)
can be quite small, giving a very large value for εG. The poor performance of relaxation with
weighting determined by εG then prevents good convergence of the AMGr algorithm. For
example, for the variable-coefficient problem with µ = 3, εG = 1573, and the upper bound on
the convergence factor of AMGr with four relaxation sweeps is 0.999996. Instead of using the
simple Gerschgorin bound for these problems, we use the approximation, εL after at most five
steps of the Lanczos process. While computation of εL is more expensive than that of εG, we
see that even a few steps of the Lanczos process is enough to generate an approximation to
the true ε that is accurate to 3 digits.

Finally, we experiment with the choice of coarse grids for AMGr and αAMGr for
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coarse grid µ RQ(u) ν ε ρ(ε) εG ρ(εG)
standard coarsening 8× 8 3 8.55× 10−2 4 6.27 0.67 11.16 0.56

red-black coarsening 3 7.85× 10−2 1 1.85 0.48 1.89 0.49
red-black coarsening 3 7.85× 10−2 2 1.85 0.43 1.89 0.24

semi-coarsening 8× 15 3 7.78× 10−2 1 0.65 0.25 0.66 0.25
semi-coarsening 8× 15 3 7.78× 10−2 2 0.65 0.07 0.66 0.07

Table III. Performance of AMGr and adaptive AMGr for various choices of the coarse grid

the constant-coefficient diffusion problem, with Dirichlet boundary conditions. The theory
developed in Section 3 does not strictly apply in this case, but the algorithm itself is well
defined. Because these experiments are mainly aimed at examining the roles of coarse grids
and the ε they induce, we do not present a complete study of parameters µ and ν in Table III.
Choosing a standard multigrid coarse grid for this problem yields an exact ε of approximately
6.27, with performance similar to that observed above after just 3 setup cycles. Choosing a
denser coarse grid, such as the red-black checkerboard coarse grid, yields much improvement in
ε, with the matrix Aff being more diagonally dominant. With this improvement in ε comes a
similar improvement in the performance of the AMGr scheme. Choosing a coarse-grid of similar
density, that of semi-coarsening (removing every other line of nodes in one direction), gives
an even smaller ε, and better AMGr performance. Because these alternate coarsenings yield
stronger diagonal dominance (and not just dominance by a more general D), the estimates εG
are much better approximations to the true ε.

5. Conclusions

The reduction-based variants of the classical and adaptive AMG algorithms presented here
allow theoretical analysis of their performance based on the decomposition of a well-conditioned
Aff block. The convergence bound for AMGr depends only on the number of pre-relaxations
used and the parameter, ε, from the spectral bounds,D ≤ Aff ≤ (1+ε)D. The adaptive AMGr
setup scheme is shown to converge globally in the special case that nc = 2 and, in general,
locally. Numerical examples given demonstrate the convergence behavior of the αAMGr setup
phase and performance of AMGr.
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