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Abstract. Substantial effort has been focused over the last two decades on developing multilevel
iterative methods capable of solving the large linear systems encountered in engineering
practice. These systems often arise from discretizing partial differential equations over
unstructured meshes, and the particular parameters or geometry of the physical problem
being discretized may be unavailable to the solver. Algebraic multigrid (AMG) and mul-
tilevel domain decomposition methods of algebraic type have been of particular interest
in this context because of their promises of optimal performance without the need for ex-
plicit knowledge of the problem geometry. These methods construct a hierarchy of coarse
problems based on the linear system itself and on certain assumptions about the smooth
components of the error. For smoothed aggregation (SA) multigrid methods applied to
discretizations of elliptic problems, these assumptions typically consist of knowledge of the
near-kernel or near-nullspace of the weak form. This paper introduces an extension of the
SA method in which good convergence properties are achieved in situations where explicit
knowledge of the near-kernel components is unavailable. This extension is accomplished
in an adaptive process that uses the method itself to determine near-kernel components
and adjusts the coarsening processes accordingly.
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1. Introduction. Increasing demands for accuracy in computational simulation
have led to significant innovation in both computer hardware and algorithms for scien-
tific computation. Multigrid methods have demonstrated their efficiency in solving the
linear systems generated by discretizing elliptic partial differential equations (PDEs),
including Laplace’s and those of linear elasticity. Algebraic multigrid (AMG) methods
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offer this efficiency without reliance on knowledge of the grid geometry or of variation
in the coefficients of the differential operator. For these reasons, AMG algorithms are
often the method of choice for solving linear systems that arise from discretizations
over unstructured grids or with significant variation in the operator.

Over the last decade, smoothed aggregation (SA; cf. [21, 23, 22, 20, 9]) has
emerged as an efficient AMG solver for the algebraic systems obtained by discretizing
certain classes of differential equations on unstructured meshes. In particular, SA is of-
ten very efficient at solving the systems that arise from problems of three-dimensional
(3D) thin-body elasticity, a task that can tax traditional AMG techniques.

As with classical AMG [4, 18, 19], the standard SA method bases its transfer
operators on certain assumptions about the nature of algebraically smooth error, that
is, error that simple relaxation schemes, such as Jacobi or Gauss–Seidel, cannot effec-
tively eliminate. For SA applied to discretizations of elliptic PDEs, this assumption
usually takes the form of explicit knowledge of the near-kernel of the associated weak
form. This knowledge is easy to obtain for large classes of problems. For example, it
is simple to determine representative near-kernel components for finite element dis-
cretizations of second- or fourth-order PDEs, including many nonscalar problems. In
more general situations, however, this knowledge may not be readily available.

Consider the case where a matrix is provided without knowledge of how the orig-
inal problem was discretized or scaled. Seemingly innocuous discretization practices,
such as the use of scaled bases, can hamper algebraic multilevel solvers if these prac-
tices are not taken into account. Even the simplest problems, discretized on regular
grids using standard finite elements, can pose serious difficulties if the resulting matrix
has been scaled, without providing this information to the solver. Other discretization
practices leading to problematic linear equations include the use of exotic bases and
systems problems in which different local coordinates are used for different parts of
the model.

To successfully solve such problems when only the matrix is provided, we need
a process by which the algebraic multilevel solver can determine how to effectively
coarsen a linear system using only information from the system itself. The method we
propose here, which we call adaptive smoothed aggregation (αSA), is an attempt to
do just that. This modification of standard SA is based on the simple principle that
applying a linear iterative method to the homogeneous problem (Ax = 0) quickly
reveals error components that the method does not effectively reduce. While this
principle is easily stated in loose terms, the resulting algorithm and its implementation
can be very subtle. We hope to expose these subtleties in the presentation that follows.

This paper develops αSA in such a way that good convergence properties are
recovered even if explicit knowledge of the near-kernel is incomplete or lacking alto-
gether. This should facilitate solution in cases where the problem geometry, discretiza-
tion method, or coefficients of the differential operator are not explicitly known to the
solver. At the same time, we strive to keep iteration costs and storage requirements
low.

The setup phase for αSA can be succinctly described as an adaptive iterative pro-
cess performed on the method itself, starting from a given primitive method (possibly
even a simple relaxation scheme), with error propagation operator M0. We attempt
to recover error components that are not effectively reduced by M0. We proceed by
first putting M0 to the test: given a small number, n, of iterations and a random
initial guess, e0, compute

en ←Mn
0 e0.(1.1)
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We evaluate convergence of (1.1) and, if the method performs well in the sense that
en is much smaller than e0 in an appropriate norm, then the method is accepted
and the adaptive scheme stops. Otherwise, the resulting approximation, en, must, by
definition, be an error that cannot be effectively reduced by M0. The idea now is to
define a coarsening process that does effectively reduce this “algebraically smooth”
error (and other errors that are locally similar), while not corrupting whatever error
elimination properties the method may already have. Smoothed aggregation provides
a convenient and efficient framework for developing such an improved coarsening
process based on en, yielding an improved method with error propagation operator
M1. The whole process can then be repeated with M1 in place of M0, continuing in
this way to generate a sequence of improving methods, Mk.

The concept of using a multigrid algorithm to improve itself is not new. Us-
ing representative smooth vectors in the coarsening process was first developed in
the early stages of the AMG project of Brandt, McCormick, and Ruge (documented
in [15]), where interpolation (or prolongation) was defined to fit vectors obtained by
relaxation on the homogeneous problem. In [4], a variation of this idea was used for
recovering typical AMG convergence rates for a badly scaled scalar elliptic problem.
While the method there was very basic and used only one candidate, it contained
many of the ingredients of the approach developed below. These concepts were de-
veloped further in [14, 16, 17, 19]. The idea of fitting eigenvectors corresponding to
the smallest eigenvalues was advocated in [14] and [19], where an AMG algorithm
determining these eigenvectors through Rayleigh quotient minimization was outlined.
These vectors were, in turn, used to update the AMG interpolation and coarse-level
operators. A more sophisticated adaptive framework appropriate for the standard
AMG is currently under investigation [7].

Another method of the type developed here is the bootstrap AMG scheme pro-
posed recently by Brandt [3] and Brandt and Ron [5]. It differs somewhat from the
methods described here in that it starts on the fine level by iterating on a number of
different random initial guesses, with interpolation then constructed to approximately
fit the set of resulting vectors in a least-squares sense.

Various other attempts have been made to allow for a multilevel solver itself to
determine from the discrete problem the information required to successfully solve
it, without a priori assumptions on the form of the smooth error. These include the
methods of [13, 8, 6, 11, 12]. All of these approaches, however, require access to
the local finite element matrices of the problem in order to construct the multigrid
transfer operators based on the eigenvectors associated with the smallest eigenval-
ues of the aggregated stiffness matrices. Although these methods exhibit attractive
convergence properties, their need to construct, store, and manipulate coarse-level
element information typically leads to increased storage requirements compared to
those of classical AMG or standard SA. The method we develop here aims to achieve
similar good convergence properties to the element-based methods without the need
for element information or the attendant extra storage it demands.

This paper is organized as follows. In section 2, we briefly recall standard multi-
level methods, including smoothed aggregation, and introduce notation used through-
out the remainder of the paper. Readers who are unfamiliar with the fundamental
concepts assumed here may wish to further consult basic references on multigrid and
AMG (e.g., [10]) and on SA (e.g., [20]). Section 3 describes the basic principles
and ideas behind the adaptive methodology, and section 4 develops the particular
αSA scheme. Finally, section 5 presents computational examples demonstrating the
performance of the SA method based on these adaptive setup concepts.
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2. Preliminaries. For those unfamiliar with standard multilevel methods, we
describe here the principles of the multilevel methodology and give details of the
generalized SA multigrid method [20]. Concepts introduced here are those necessary
for the development of the adaptive methodology and its particular applications to
the SA multigrid algorithm. This section also introduces most of the notation and
conventions used in the following sections.

For many discrete linear problems arising from elliptic PDEs and elsewhere, the
matrix, A, is large, sparse, symmetric, and positive definite. (We assume these proper-
ties throughout this paper, although much of what we develop holds for more general
cases.) Thus, the solution of

Ax = b(2.1)

can be treated by simple iterative (so-called relaxation) methods that involve correc-
tions based on the residual, r = Ax− b. These methods take the form

x← x−Rr,(2.2)

where R is an appropriately chosen approximate inverse of A, usually based on a
simple matrix splitting. Common examples include pointwise Richardson (R = sI),
Jacobi (R = D−1, where D represents the diagonal of A), or Gauss–Seidel (R = L−1,
where L represents the lower-triangular part of A). These methods converge to the
exact solution of (2.1) for any initial approximation, x (cf. [24]). However, for these
simple choices of R, the error propagation operator, I − RA, typically has spectral
radius near 1, becoming closer to unity as the problem size increases and rendering
relaxation methods alone unacceptably slow for solving (2.1).

Multigrid attempts to rescue relaxation by projecting out the error components
that induce this slowness. To make such a correction process effective, the multigrid
designer must be able to characterize these slow-to-converge components. Notice
that, for a given approximation, x, to the solution, x∗, of (2.1), iteration (2.2) is
slow to converge when the error, e = x − x∗, yields a relatively small residual, r =
Ae ≈ 0. We call the error components for which this iteration is slow to converge
algebraically smooth to emphasize that such components need not, in general, possess
the geometric smoothness often assumed in designing classical geometric multigrid
methods. In particular, for problems resulting from PDE discretization over a given
mesh, the algebraically smooth components need not vary slowly between neighboring
grid points. Under certain assumptions on A and R, the vectors, v, that yield small
Rayleigh quotients, 〈Av,v〉

‖A‖〈v,v〉 � 1, are easily seen to be algebraically smooth (e.g.,
when R = sI, as in Richardson’s method). For this reason, algebraically smooth
vectors are often also referred to as the near-kernel of A. We use these two terms
interchangeably; however, we emphasize that the algebraically smooth vectors that we
are interested in may not, for all relaxation schemes, also be near-kernel components.

Once identified, algebraically smooth error can be reduced by a correction process
that complements the chosen relaxation scheme. In multigrid, this correction to the
algebraically smooth error is carried out by finding an approximation to the error
using a problem that has fewer degrees of freedom and, thus, is less expensive to solve.
Choosing the coarse space is a complex matter, some details of which are discussed
later in this section. In this paper, we focus attention on constructing an appropriate
mapping between coarse and fine spaces, and so the discussion here focuses on this
map. Let P (without subscript or superscript) denote a generic full-rank operator
such that the range of P approximately contains the algebraically smooth components
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associated with iteration (2.2), and the column dimension of P is significantly smaller
than the dimension of A. Such an operator, referred to as a prolongator, provides
a means of communicating information between coarse and fine levels and can also
be used to define the coarse-level version of (2.1). In particular, it can be used to
effectively eliminate error in the range of P from the fine-level approximation by
performing a correction of the form

xnew ← x− Py.(2.3)

An effective way to determine this approximation is to define it variationally, as the
correction that minimizes the energy of error associated with the updated approxi-
mation, xnew:

‖enew‖A = ‖e− Py‖A → min,(2.4)

where enew = xnew − x∗ and ‖ · ‖A = 〈A·, ·〉
1
2 denotes the energy (or A-) norm. This

approximation, y, is computable: it is the solution to the coarse-level matrix equation,

Acy = PT (Ax− b),(2.5)

where Ac = PTAP is then the variationally defined coarse-level matrix. The fine-
level update given in (2.3) is usually referred to as a coarse-grid correction; we adopt
this terminology here even though the coarse-level problems to be considered are not
necessarily associated with any geometric grids. A computationally efficient method
demands that the coarse-grid correction be computable at a small multiple of the
cost of the relaxation on the fine level. This is possible only when the dimension of
coarse-level matrix Ac (or the column dimension of P ) is significantly smaller than
that of fine-level matrix A, and the nonzero structure of P retains sparsity in Ac.

Thus, a variational two-level cycle can be defined by first relaxing on the fine level
(typically once or twice), then transferring the residual to the coarse level, defining
the right side of (2.5), solving for coarse-grid correction y, and then interpolating and
correcting the fine-level approximation according to (2.3). This becomes a multigrid
scheme by applying this procedure recursively to solve (2.5), using relaxation followed
by correction from yet coarser levels. To obtain a method that effectively reduces all
components of the error, it is crucial that the algebraically smooth error components,
for which relaxation is inefficient, be well approximated by vectors in the range of P .
This is commonly referred to as the complementarity principle and underlies all multi-
grid methods. The process of constructing the prolongation operator is referred to as
the coarsening process and typically involves first determining the nonzero structure
of P and then endowing it with appropriate values to guarantee good approximation
of the algebraically smooth error.

For many important problems and discretization techniques, the notion of alge-
braic and geometric smoothness coincide, and constructing P based on linear inter-
polation may result in optimal approximation of these geometrically smooth error
components. However, for even the simplest second-order scalar PDE problems dis-
cretized using unstructured meshes over complicated geometries, constructing P based
on linear interpolation may be problematic. To accomplish this task, algebraic multi-
grid (AMG) [4] was developed. Its basic premise is to determine coarse levels and
prolongation operators automatically by inspecting the entries of A.

Although classical AMG has been successfully used for many classes of problems,
its coarsening implicitly relies on geometric smoothness of the error, which means that
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it is not directly suitable for treating problems where algebraically smooth error is not
also geometrically smooth. A generalization of the classical AMG method, suitable
for such problems, was recently introduced in [7].

Generalized smoothed aggregation (SA [23, 20]), a variant of AMG, allows for any
specified components to be easily incorporated into the construction of the prolonga-
tor. However, this requires that these components be known a priori and supplied to
the method. For many classes of problems, these vectors are available; here, we focus
on the cases when this is not so. This paper introduces αSA, an extension of the SA
framework that allows the method to identify and incorporate algebraically smooth
components into prolongation to construct a scalable multilevel solver. The use of
SA as the underlying method provides a convenient way to handle problems featuring
more than one distinct algebraically smooth component, such as the systems of linear
elasticity.

We now briefly describe the standard SA method and the principles on which it
is founded. Assume that A is of order n = n1 and results from the discretization of
an elliptic second- or fourth-order PDE in Ω ⊂ Rd, where d ∈ {1, 2, 3}. Our aim is to
solve A1x = b1, obtained by symmetrically scaling the original system, Ay = b, by
its diagonal part, D:

A1 = D−1/2AD−1/2, b1 = D−1/2b.(2.6)

Guided by (2.5), a hierarchy of coarse-level operators is generated as

Al+1 = (I ll+1)
TAlI

l
l+1,(2.7)

where the prolongator, I ll+1, is defined as the product of a given prolongation smoother,
Sl, and a tentative prolongator, P ll+1:

I ll+1 = SlP
l
l+1(2.8)

for l = 1, . . . , L − 1. A simple and appropriate choice for the prolongation smoother
is Richardson’s method with a particular step size:

Sl = I −
4
3 λl

Al,(2.9)

where λl is an upper bound on the spectral radius of the matrix on level l; ρ(Al) ≤ λl.
Suppose we are given a smoothing procedure for each level l ∈ {1, . . . , L} system,
Alx = bl, of the form

x← (I −RlAl)x+Rlbl.(2.10)

Here, Rl is some simple approximate inverse of Al for l = 1, . . . , L−1, which we again
consider to be Richardson iteration (e.g., Rl = slI, where sl ≈ 1

ρ(Al)
). Assume for

simplicity that the coarsest level uses a direct solver: RL = A−1
L . To make use of the

existing convergence estimates, we assume that

λmin(I −RlAl) ≥ 0 and λmin(Rl) ≥
1

C2
Rρ(Al)

for constant CR > 0 independent of the level, l.
The SA iteration can formally be viewed as a standard variational multigrid

process with a special choice of transfer operators I ll+1. One iteration of SA for
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solving A1x1 = b1 is represented by x← AMG(x,b1) and given by setting AMG =
AMG1, where AMGl(·, ·), l = 1, . . . , L− 1, is defined recursively as follows.

Algorithm 1 (AMGl).

1. Presmoothing: Apply ν presmoothings to Alxl = bl of the form
xl ← (I −RlAl)xl +Rlbl.

2. Coarse-grid correction:
(a) Set bl+1 = (I ll+1)

T (bl −Alxl).
(b) Set xl+1 = 0 and solve the coarse-level problem

Al+1xl+1 = bl+1

by γ applications of xl+1 ← AMGl+1(xl+1,bl+1).
(c) Correct the solution on level l: xl ← xl + I ll+1xl+1.

3. Postsmoothing: Apply ν postsmoothings to Alxl = bl of the form
xl ← (I −RlAl)xl +Rlbl.

AMGL returns, simply, xL = A−1
L bL.

Note 2.1. Our selection of multigrid smoothing procedure (2.10) and prolonga-
tion smoothers Sl follows that of [20], where convergence estimates are obtained. We
turn to these results for heuristics later in this section. Our task now is to focus on
the construction of the tentative prolongation operators.

The construction of P ll+1 consists of deriving its sparsity structure and then speci-
fying the nonzero values. The structure of nonzeros in P ll+1 can be viewed as choosing
the support of spanning functions for a subspace of RNl to be treated by coarse-grid
correction. That is, the range of P ll+1 is simply the span of its columns; choosing
the nonzero structure for a column of P ll+1 defines the support of the basis vector
(function) corresponding to that column. This structure is specified by way of a
decomposition of the set of degrees of freedom associated with operator Al into an
aggregate partition,

⋃Nl+1
i=1 Ali = {1, . . . , Nl}, Ali ∩ Alj = ∅, 1 ≤ i < j ≤ Nl+1, for

l = 1, . . . , L − 1, where Nl denotes the number of nodes on level l. Note that the
number of aggregates on level l naturally defines the number of nodes on the next
level: Nl+1 = card({Ali}). Let nl denote the dimension of level l, and assume at least
one degree of freedom is associated with each node, so that nl ≥ Nl. Aggregates Ali
can be formed based only on the connectivity and strength of connection between the
entries of Al; cf. [23]. Figures 2.1 and 2.2 illustrate possible aggregates over 2D and
3D unstructured and refined meshes.

Although we illustrate these concepts in the example of a finite element discretiza-
tion, where the notion of a node may be most familiar to the reader, for us a node is
a strictly algebraic entity consisting of a list of degrees of freedom. In fact, the finite
element analogy is only possible on the finest level; the degrees of freedom on all other
levels have no explicit geometry associated with them. Thus, throughout this paper,
a node on level l + 1 > 1 is a set of degrees of freedom associated with the coarse
basis functions whose discrete supports contain the same aggregate on level l. Hence,
each aggregate, A, on level l gives rise to one node on level l + 1, and each degree of
freedom associated with that node is a coefficient of a particular basis function in the
coarse-level basis expansion associated with A.

The second step in constructing generalized aggregation tentative prolongators,
P ll+1, consists of endowing the sparsity structure derived from nodal aggregation with
appropriate values. Starting with a given matrix, B1, whose columns represent the
near-kernel of the fine-level operator, we construct tentative prolongators and coarse-
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Fig. 2.1 Possible aggregate configuration over a 2D locally refined unstructured mesh. Light-colored
mesh edges connect nodes belonging to the same aggregate, while black edges connect nodes
belonging to different aggregates.

Fig. 2.2 Possible aggregate configuration over a 3D unstructured tetrahedral mesh. Light-colored
mesh edges connect nodes belonging to the same aggregate, while black edges connect nodes
belonging to different aggregates. Only the aggregate surfaces are depicted.
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level representations of the near-kernel components simultaneously to satisfy

P ll+1Bl+1 = Bl, (P ll+1)
TP ll+1 = I.(2.11)

This construction of P ll+1 and Bl+1 is practical and parallelizable because it is achieved
by assigning each nodal aggregate a set of columns of P ll+1 with a sparsity structure
that is disjoint from all other columns. Thus, obtaining (2.11) amounts to solving a
set of local independent orthonormalization problems in which the basis given by the
fine-level near-kernel matrix, Bl, restricted to the degrees of freedom of an aggregate,
is orthonormalized using the QR algorithm. The resulting orthonormal basis forms
the values of a block column of P ll+1, while the coefficients representing the old basis
with respect to the new basis define Bl+1; cf. [23, 20]. For ease of discussion, we
assume that Bl consists of the same number of columns over each aggregate. In
section 4.2, we discuss how this assumption can be relaxed in practice.

Note 2.2. In this way, with B1, A1, and b1 given, the entire multigrid setup can
be performed. This construction of the SA multigrid hierarchy, using (2.11), (2.8),
and (2.7), and relying on a given fine-level near-kernel representation, B1, is called
the standard SA setup in this paper. For later reference, we outline the setup in
Algorithm 2 below. For details, see [20].

Algorithm 2 (standard SA setup). Given A1, B1, and L, do the following for
l = 1, . . . , L− 1:

(a) Construct {Ali}Nli=1 based on Al.
(b) Construct Bl+1 and P ll+1 using (2.11) based on {Ali}Nli=1.
(c) Construct the smoothed prolongator: I ll+1 = SlP

l
l+1.

(d) Construct the coarse matrix: Al+1 = (I ll+1)
TAlI

l
l+1.

With our choice of smoothing components and a coarsening procedure utiliz-
ing (2.11), the standard SA scheme can be proven to converge under certain assump-
tions on the near-kernel components alone. The following such result motivates the
need for standard SA to have access to the near-kernel components and serves to mo-
tivate and guide our development of αSA. We note that the result was proved under
the assumption that the aggregates used are of ideal size with mesh diameter of 3,
but can be generalized for the case of larger aggregates.

Let 〈u,v〉A denote the Euclidean inner product over the degrees of freedom corre-
sponding to an aggregate A, let ‖·‖A be the associated norm, and denote the A1-norm
by |||u||| = 〈A1u,u〉1/2. Let B1 denote an n1 × r matrix whose columns are thought
to form a basis for the near-kernel components corresponding to A1.

Theorem 2.3 (Theorem 4.2 of [20]). With Ãli denoting the set of fine-level
degrees of freedom corresponding to aggregate Ali on level l, assume that there exists
constant Ca > 0 such that, for every u ∈ Rn1 and every l = 1, . . . , L−1, the following
approximation property holds:

∑
i

min
w∈Rr

‖u−B1w‖2Ãli
≤ Ca

9l−1

ρ(A1)
〈A1u,u〉.(2.12)

Then

|||x∗ −AMG(x,b1)||| ≤
(
1− 1

c(L)

)
|||x∗ − x||| ∀x ∈ Rn1 ,

where A1x∗ = b1 and c(L) is a polynomial of degree 3 in L.
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Since the use of (2.11) is assumed, condition (2.12) reflects an assumption on all
tentative prolongators P ll+1 and can be equivalently restated as

∑
i

min
w∈Rr

‖u− P 1
2P

2
3 . . . P

l
l+1Bl+1w‖2Ãli

≤ Ca
9l−1

ρ(A1)
〈A1u,u〉(2.13)

for every u ∈ Rn1 and every l = 1, . . . , L − 1. Thus, in the context of SA, condition
(2.12) can be viewed as an alternative formulation of the weak approximation property
of Bramble et al. [2]. Note that the required approximation of a fine-level vector
is less stringent for coarser levels. Also note that convergence is guaranteed even
though no regularity assumptions have been made. Although this convergence bound
naturally depends on the number of levels, computational experiments suggest that
the presence of elliptic regularity in standard test problems yields optimal performance
(i.e., convergence with bounds that are independent of the number of levels).

That polynomial c(L) in the convergence estimate has degree 3 is an artifact
of the proof technique used in [20], where no explicit assumptions are made on the
smoothness of the coarse-level bases; instead, only the smoothness guaranteed by
application of the simple prolongation smoother, Sl, is considered.

Notice that this convergence result hinges on the selection of B1. In particular, B1
and the coarse operators, Bl+1 and P ll+1, 1 ≤ l ≤ L−1, that it induces must guarantee
that the left side of (2.13) is small for any vector u for which 〈A1u,u〉 is small. Since
the standard SA method requires that matrix B1 be given as input, with the columns
of B1 representing a basis of (a superset of) the true kernel of the unconstrained weak
form from which A1 is obtained by discretization, the construction of P ll+1 in (2.11)
guarantees that all coarse-level representations, Bl, form a basis for (a superset of)
the near-kernel of Al, l > 1. In general, B1 must be chosen such that the induced
prolongation operators, P ll+1, can approximate any low-energy component, e, of the
error with an accuracy inversely proportional to 〈A1e, e〉. The purpose of this paper
is to enrich a given incomplete (possibly even empty) set of near-kernel components,
with approximations computed at runtime in such a way that good convergence can
be recovered. The adaptive method that we develop for this purpose can then be
viewed as an iterative attempt to satisfy (2.13) heuristically (see Note 4.2 below).
Our B1 is computed only approximately, which means that coarse-level Bl obtained
by (2.11) alone may not be the optimal representation of the near-kernel. To remedy
this, we carry out the setup computation also on the coarse levels to improve on the
initial guess for the coarse-level candidates given by (2.11).

3. The Adaptive Multigrid Methodology. The aim of our adaptive algorithm
is to automatically construct an efficient multilevel method. We achieve this by
computing a small number of vectors that represent all error components that our
method is slow to resolve. Such components are usually referred to by the terms
algebraically smooth, near-nullspace, near-kernel, or, in the case of linear elasticity,
rigid body modes. Here, we simply call them candidates because they are generally
not fully representative of the true near-kernel until the final stages of the process,
and because we use them here as generators for the subspace from which we extract
the information needed to construct the coarse spaces in our multigrid method.

Several general concepts seem key to the development of an effective adaptive
process. We discuss the more important ones here before we describe our particular
development of αSA.



ADAPTIVE SMOOTHED AGGREGATION (αSA) MULTIGRID 327

Let Relaxation Expose Its Own Weakness. The principle of complementarity
between relaxation and coarse-grid correction on which multigrid is based requires
that the error components not efficiently reduced by relaxation be represented in the
range of interpolation. In the absence of explicit information about the problem to be
solved, we can gain information about the nature of errors that the relaxation does
not efficiently reduce by applying the method itself to a problem with known solution.
The homogeneous equation,

Ax = 0,(3.1)

serves us well for this purpose. Typically, relaxation applied to this equation quickly
yields an error, x, that is nearly the slowest to vanish. What is at work here is that
this is just the power method for computing the dominant eigenvector of the iteration
matrix. Thus, a few relaxations on (3.1), starting perhaps from a random initial guess,
are enough not only to determine whether coarsening is even needed (by measuring
the energy convergence factors), but also to produce a candidate that is at least a
crude representative of troublesome errors.

Use the Candidate to Enrich Prolongation. Once we have computed a candi-
date, we want it to be near the range of the prolongator, so that a coarse-grid correc-
tion can eliminate it. The best way to make this approximation exact is by ensuring
that the candidate is exactly in the range of the prolongator. SA greatly facilitates
this process because the tentative prolongator is constructed through localizing any
given candidate by restricting it to mutually disjoint aggregates. The candidate can
then be recovered as a sum over all aggregates of the individual columns of the result-
ing tentative prolongator. This exactness means that the variational two-level scheme
given by (2.3)–(2.5) would exactly eliminate errors in the direction of this candidate.
In SA, however, the final prolongator is constructed by applying smoothing to the
tentative prolongator. The candidate may no longer be exactly in the range of the
smoothed prolongator, but the appropriately smoothed candidate is in this range and
it should be at least as good a candidate as the original. In any case, this smoothing
is important for achieving scalable multilevel convergence rates.

It is important to acknowledge the role played by the underlying multigrid method
in allowing the use of each candidate as a representative of many errors with similar
local character. Namely, the process of incorporating a candidate in the range of the
prolongator results in localization of the candidate and defines a coarse space rich
enough to accurately approximate not just the candidate, but also a whole subspace
of error components that have a local character similar to that of the candidate. This
approximation property is analogous to how local finite element bases of piecewise
polynomials are used to approximate low-energy (geometrically smooth) components
of the PDE itself.

Improve the Candidates with the Emerging Cycle. After just a few relaxation
steps, algebraic smoothness of the candidate may already be sufficient to produce
coarsening that is effective in a two-level mode, but it may not yet be enough to
define accurate interpolation between the coarser levels needed for a V -cycle. More
precisely, we expect that, after a few relaxation steps, convergence slows down to yield
a convergence factor that approximates the spectral radius of the error propagation
matrix. The candidate that reflects this slow convergence may be smooth enough that
the induced interpolation approximates all smooth components with accuracy that
is sufficient to guarantee optimal two-level multigrid convergence. However, V -cycles
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may require more accuracy than just a fixed number of decimal places. Numerical and
theoretical results suggest that at least an O(h2) approximation to the spectral radius
of the error propagation matrix may be necessary for typical second-order elliptic
problems. How can the candidate be improved to that degree? The answer again is
to use the method itself. As a fine-level candidate becomes available, a prolongation
operator can be constructed that defines the next coarser-level problem. A coarse-
level representation of the candidate is obtained as a byproduct of this construction
and can be improved by relaxing it on the coarse level. The prolongation provides a
means of using the updated coarse-level candidate to improve the fine-level candidate
on a coarser scale. Thus, it is the evolving V -cycle, instead of relaxation by itself, that
is used to improve the candidate. But this must be done with care. A straightforward
application of this principle to (3.1) would yield a zero candidate when the current
candidate is in the range of interpolation because (3.1) is then solved exactly. It is
important to recognize that our true goal is not really to solve (3.1) but to find the
maximal eigenvector of the error propagation matrix for relaxation. Note that this
gives the coarse level a dual role: it must develop its own fast solver (for (2.5)), but
it must also improve the fine-level candidate.

Let the V -cycle Expose Its Own Weakness. Many problems, including most
scalar second-order elliptic PDEs discretized on quasi-uniform meshes, can be treated
by AMG and SA using a single near-kernel component as a candidate. However,
several near-kernel components may be required for other applications, such as for
elasticity and other systems of PDEs and even for scalar equations with reduced
ellipticity or higher-order equations. We seek a set of candidates that is or becomes
rich in the sense that they combine to locally represent all troublesome components.
How, then, after we have computed the first candidate and the V -cycle that it induces,
can we compute a second candidate that is locally distinct from the first? Consider,
again, the first principle: relaxation applied to the homogeneous equation not only
signals when coarsening is needed, but it also produces the first candidate. We take
our cue by applying the first V -cycle to the homogeneous equation, which signals when
more coarsening is needed. This also produces a new candidate that must be distinct
from the first one locally, on average, because it would otherwise be eliminated quickly
by the current V -cycle. In fact, this distinction is just in the right sense because the
new candidate represents error that is not quickly attenuated by the method. Note
that using this fixed V -cycle constructed in the first adaptive sweep is different from
using the evolving V -cycle in the current adaptive sweep: while both are applied
to (3.1), the object of using the fixed V -cycle is to expose a new candidate that
it cannot effectively reduce, while the objective of using the evolving V -cycle is to
simultaneously improve this new candidate and improve itself by using the candidate
to enrich the first V -cycle’s interpolation. Note, also, that recursion demands that we
apply the fixed V -cycle on coarser levels in order to improve the fine-level candidate
as a representative of error not reduced by this cycle. Note, finally, that we can iterate
on this whole process to introduce several candidates that are mutually distinct in
the correct sense.

Maintain Accuracy of Coarsening for All Candidates. SA easily handles multi-
ple candidates by restricting all of them to each aggregate, thereby allowing coarsening
to pay attention to new candidates without corrupting the accuracy of the prolongator
with respect to the previous candidates. To ensure that the candidate information
is used to produce good coarse-level bases, SA uses a local orthogonalization process
with a drop tolerance to eliminate local dependencies within every aggregate. One
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might thus be tempted to compute several candidates simultaneously, starting per-
haps with several random initial guesses. However, it is not at all straightforward to
design generally reliable measures to resolve possible dependencies; handling multiple
approximate candidates simultaneously risks numerical redundancy on coarser levels,
which might lead to spurious near-kernel components and inflated complexity. In con-
trast, using the V -cycle to compute its own troublesome components one at a time
means that these candidates should be separate in the right sense globally and, on
average, locally, thus aiding the construction of the prolongation operators. Also, the
quality of each computed candidate has an impact on the speed with which further
candidates are recovered, so it is important to be reluctant to add new candidates
before the current ones are fully improved and exploited. It is likely to be much
more robust to have the algorithm prevent redundancy by introducing candidates
individually and fully improving them deliberately.

Other Principles. There are several other issues that need to be considered for
the design of an effective adaptive strategy. Although we do not explicitly address
these principles further, we list them here:

1. The scheme should be optimal in the sense that candidates and coarsening
processes should be updated as soon as it is necessary and permissible to do
so.

2. Since A is SPD, it is advisable to make use of the energy minimization prin-
ciple whenever possible (e.g., in measuring convergence).

3. Appropriate measures should be used for making decisions at several stages
(e.g., continue to improve the current candidate if the convergence factors for
the homogeneous equation are poor and continuing to worsen; otherwise, if
the factors have stalled at poor values, add a new candidate and focus on
improving it).

4. Do not return from the coarse level until an acceptable solver has been de-
veloped for it (because it would otherwise be difficult to determine if poor
fine-level V -cycle performance was then a result of an inadequate coarse-level
solver or poor quality of prolongation).

4. Adaptive Smoothed Aggregation. Before describing the algorithm, we em-
phasize our notational conventions. The transfer operators and coarse-level problems,
as well as other components of our multigrid scheme, change as our method adapts.
Whenever possible, we use the same symbols for the updated components. Thus,
symbol Bl may denote a single column vector in one cycle of the setup procedure or
perhaps a two-column matrix in the next step of the setup. The intended meaning
should be clear from context.

4.1. Initialization Setup Stage. The adaptive multigrid setup procedure consid-
ered in this paper can be split into two stages. If no knowledge of the near-kernel
components of A1 is available, then we start with the first stage to determine an ap-
proximation to one such component. This stage also determines the number of levels,
L, to be used in the coarsening process. (Changing L in the next stage based on
observed performance is certainly possible, but it is convenient to fix L—and other
constructs—early in the setup phase.)

Let ε > 0 be a given convergence factor tolerance.
Algorithm 3 (initialization stage).
1. Set l = 1 and select a random vector, x1 ∈ Rn1 .
2. With initial approximation x1, relax µ times on A1x = 0, denoting kth iter-
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ation by xk1 :

xµ1 ← (I −R1A1)µx0
1, x1 ← xµ1 .

3. If 〈A1x
µ
1 ,x

µ
1 〉 ≤ ε〈A1x

µ−1
1 ,xµ−1

1 〉, then set L = 1 and stop (problem A1x =
b1 can be solved fast enough by relaxation alone, so only one level is needed).

4. Otherwise, do the following:
(a) Set Bl ← xl.
(b) Create a set, {Ali}Nli=1, of nodal aggregates based on matrix Al.
(c) Define tentative prolongator P ll+1 and candidate matrix Bl+1 using can-

didate matrix Bl and relations (2.11) with structure based on {Ali}Nli=1.
(d) Define the prolongator: I ll+1 = SlP

l
l+1.

(e) Define the coarse matrix: Al+1 = (I ll+1)
TAlI

l
l+1. If level l + 1 is coarse

enough that a direct solver can be used there, skip to step 5; otherwise,
continue.

(f) Set the next-level approximation vector: xl+1 ← Bl+1.
(g) Make a copy of the current approximation: x̂l+1 ← xl+1.
(h) With initial approximation xl+1, relax µ times on Al+1x = 0:

xl+1 ← (I −Rl+1Al+1)µxl+1.

(i) If ( 〈Al+1xl+1,xl+1〉
〈Al+1x̂l+1,x̂l+1〉 )

1/µ ≤ ε, skip steps (f)–(i) in further passes through
step 4.

(j) Increment l← l + 1 and return to step 4(a).
5. Set L← l + 1 and update the finest-level candidate matrix:

B1 ← I1
2I

2
3 . . . I

L−2
L−1xL−1.

6. Create the V -cycle based on B1 using the standard SA setup of Algorithm 2,
with the exception that the aggregates are predetermined in step 4.

This initialization stage terminates whenever a level is reached in the coarsening
process where a direct solver is appropriate. It does not involve level L processing
because it is assumed that the coarsest level is handled by a direct solver, making the
stopping criterion in step 4(i) automatically true. Note that the candidate matrix is
actually a vector in this initial stage because we are computing only one candidate
and that this stage provides all of the components needed to construct our initial
V -cycle solver, AMG1.

If the criterion tested in step 4(i) is satisfied, we are assured that the current coarse
level l+1 can be easily solved by relaxation alone. At that point, we could choose not
to coarsen further and use relaxation as a coarsest-level solver. However, it is possible
that the general stage of the algorithm described below adds more candidates. In
case a new candidate approximates the low-energy modes of the problem better than
the candidate obtained in the initial step, the coarse-level matrix may no longer be
easily solved by relaxation alone. Thus, we choose to coarsen further, until we are
sure that the coarsest problem can be handled well. This offers an added benefit of
producing, at the end of the initial stage, a complete aggregation that can be reused
in the general stage. Note that if step 4(i) is satisfied, then the approximate solution
of the homogeneous problem may be zero. In such a case, we restore the saved original
vector, x̂l+1. We choose to skip steps 4(f)–(i) in further coarsening once step 4(i) is
satisfied. This amounts to using standard SA coarsening from level l+1 down, which
guarantees that the candidate computed on level l is exactly represented all the way
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Fig. 4.1 Initialization stage, Algorithm 3.

to the coarsest level. Additional modifications to Algorithm 3 are, of course, possible.
For instance, the computation of xµ1 in step 2 may be terminated before reaching the
specified number of iterations whenever 〈A1xk1 ,x

k
1〉 = 0 for some k = 1, . . . , µ− 1. In

that case, we would update µ← k in step 2. Figure 4.1 illustrates Algorithm 3.
Note 4.1. The initialization stage described in Algorithm 3 is used only if no

knowledge of the near-kernel components is provided. In many situations, however,
some knowledge may be available and should be used. In such cases, the initialization
stage can be omitted and the initial B1 can be assumed to consist of the given set
of vectors. The initial V -cycle would then be constructed exactly as in Algorithm 2
prior to running the main adaptive setup.

As an example, consider a problem of 3D linear elasticity discretized by a standard
linear first-order finite element method over an unstructured mesh. In this case, if
the discretization package either generates the rigid body modes or supplies the nodal
geometry to the solver, then the full set of kernel vectors is presumably available [22]
and the adaptive process may be unnecessary. Otherwise, when the full set of rigid
body modes is unavailable, it is nevertheless often possible to obtain a subset of the
rigid body modes consisting of three independent constant displacements, regardless
of the geometry of the mesh. Such a subspace should be used whenever possible
to create B1 and to set up a V -cycle exactly as in the standard SA method. The
initialization stage would then be omitted.

Thus, the initialization stage given by Algorithm 3 should be viewed as optional,
to be done only if no information can be assumed about the system to be solved.
In view of Note 4.1, we can in any case assume that the initial B1 has at least
one column and that a tentative V -cycle is available. This means that we have
constructed aggregates Ali, transfer operators P ll+1 and I

l
l+1, and coarse operators

Al+1, l = 1, . . . , L− 1.

4.2. General Setup Stage. In each step of the second stage of the adaptive
procedure, we apply the current V -cycle to the homogeneous problem to uncover error
components that are not quickly attenuated. The procedure then updates its own
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transfer operators to ensure that these components are eliminated by the improved
method, while preserving the previously established approximation properties. Thus,
this stage essentially follows the initialization stage with relaxation replaced by the
current V -cycle.

One of the subtleties of this approach lies in the method’s attempt to update each
level of the evolving V -cycle as soon as its ineffectiveness is exposed. Thus, on the
finest level in the second stage, the current V -cycle simply plays the role of relaxation:
if it is unable to quickly solve the homogeneous problem (i.e., step 3 fails), then the
resulting error becomes a new candidate, and new degrees of freedom are generated
accordingly on level 2 (i.e., columns are added to B1). The level 2-to-L part of the
old V -cycle (i.e., the part without the finest level) then plays the role of the level 2
relaxation in the initial setup phase and is thus applied to the homogeneous problem
to assess the need to improve its coarser-level interpolation operators. The same is
done on each coarser level, l, with the level l-to-L part of the old V -cycle playing the
role of the level l relaxation step in the initial setup phase. The process continues
until adequate performance is observed or the maximum permitted number of degrees
of freedom per node is reached on coarse levels.

The general stage uses the current solver to identify new types of error that the
earlier sweeps of the setup cycle may have missed. It is important to note that we are
talking here about error type. It is not enough for the coarsening process to eliminate
only the particular candidate; typically, a fixed percentage of the spectrum of A1 is
algebraically smooth, so elimination of one candidate at a time would require O(n1)
setup cycles to achieve a quickly converging solver. Thus, to avoid this unacceptably
large cost, each setup cycle must determine interpolation operators so that the solver
eliminates a relatively large set of errors of each candidate’s type. Just as each rigid
body mode is used locally in standard SA to treat errors of similar type (constants
represent errors that are smooth within variables and rotations represent intervariable
“smoothness”), so too must each candidate be used in αSA. Moreover, a full set
of types must be determined if the solver is to attain full efficiency (e.g., for 2D
linear elasticity, three rigid body modes are generally needed). We thus think of each
candidate as a sort of straw man that represents a whole class of algebraically smooth
components. Efficient computation of a full set of straw men is the responsibility of
the adaptive process. However, proper treatment of each straw man is the task of the
basic solver, which is SA in this case.

We present a general prototype algorithm for the adaptive multigrid setup, as-
suming that a tentative V -cycle has previously been constructed (cf. Note 4.1). We
thus assume that a current hierarchy of nodal aggregates, {Ali}Nli=1, and operators,
P ll+1, I

l
l+1, Al+1, are available for all l = 1, . . . , L − 1. Consider, then, a method in

which, within each cycle of the adaptive setup, we attempt to update the current
V -cycle level by level. One cycle of this adaptive setup traverses from the finest to
the coarsest level; on each level l along the way, it updates Bl based on computing a
new candidate from the current multigrid scheme applied to the homogeneous prob-
lem on level l. Thus, on level l in the setup process, a solver is applied that traverses
from that level to level L and back. This gives us the picture of a backward full
multigrid (FMG) cycle, where the setup traverses from the finest to the coarsest grid
and each level along the way is processed by a V -cycle solver (see Figure 4.2). Now,
once this new candidate is computed, it is incorporated into the current multigrid
scheme and the previously existing V -cycle components are overwritten on level l+1
but temporarily retained from that level down. As a result, we redefine level by level
the V -cycle components. Once the new Bl (and I ll+1 in (2.8)) are constructed all the
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Fig. 4.2 Self-correcting adaptive cycling scheme given by Algorithm 4, with the solver cycles uncol-
lapsed.

way to the coarsest level, we can then use them to update the current B1 and, based
on it, construct a new V -cycle on the finest level.

As we apply our current method to the homogeneous problem, the resulting can-
didate, xl, tends quickly to an error that is among the slowest to converge in the
current method. Our goal in designing the adaptive algorithm is to ensure that xl is
approximated well by the newly constructed transfer operator. That is, we want to
control the constant Ca in the inequality

min
v∈Rnl+1

‖xl − P ll+1v‖2 ≤
Ca
ρ(Al)

‖xl‖2Al .(4.1)

The transfer operators must, therefore, be constructed to give accurate approxima-
tions to each candidate as it is computed. This can be guaranteed locally by requiring
that, over every aggregate A, we have

min
v∈Rnl+1

‖xl − P ll+1v‖2A ≤ CaδA(xl),(4.2)

where δA are chosen so that summing (4.2) over all aggregates leads to (4.1), i.e., so
that

∑
A
δA(x) =

〈Alx,x〉
ρ(Al)

.(4.3)

For now, the only assumption we place on δA(x) is that (4.3) holds. An appropriate
choice for the definition of δA(x) is given in Note 4.7.

Note 4.2 (relationship to theoretical assumptions). To relate condition (4.1) to
the theoretical foundation of SA, we make the following observation. If P ll+1 is con-
structed so that (4.1) is satisfied for the candidate xl, the construction of our method
automatically guarantees that

min
v∈Rnl+1

‖x1 − P 1
2P

2
3 . . . P

l
l+1v‖2 ≤

Ca
ρ(Al)

‖x̂l‖2A1
,(4.4)

where x1 = P 1
2P

2
3 . . . P

l−1
l xl and x̂1 = I1

2I
2
3 . . . I

l−1
l xl. Since it is easy to show that

‖x̂‖A1 ≤ ‖x‖A1 , we can then guarantee that (2.13) holds for the particular fine-level
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candidate, x1. Inequality (4.1) is easily satisfied for any component u for which ‖u‖A1

is bounded away from zero. We can thus focus on the troublesome subspace of com-
ponents with small energy. Our experience with the standard SA method indicates
that for the second- and fourth-order elliptic problems it suffices to ensure that the
components corresponding to the kernel of the weak form of the problem are well
approximated by the prolongation (the near-kernel components are then well approx-
imated due to the localization and smoothing procedures involved in constructing the
SA transfer operators). Further, as the set of candidates constructed during the setup
cycle is expected to eventually encompass the entire troublesome subspace, satisfac-
tion of (4.1) for all candidates would imply the satisfaction of (2.13) for any u ∈ Rn1 .
This, in turn, guarantees convergence.

Note 4.3 (locally small components). Each new candidate is the result of applying
the V -cycle based on the current B1, so it must be approximately A1-orthogonal to
all previously computed candidates. This is, however, only a global property that the
evolving candidates tend to exhibit. It may be that a candidate is so small on some
aggregate, relative to its energy, that its representation there can be ignored. More
precisely, we could encounter situations in which

‖xl‖2A ≤ CaδA(xl)(4.5)

for a particular aggregate, A, meaning that (4.2) is automatically satisfied no matter
what choice we make for P ll+1. We can, therefore, test for this condition for each
candidate on every aggregate. When the test is positive, we can simply remove the
candidate’s segment from consideration in construction of that aggregate’s transfer
operator. This elimination can help control coarse-level complexity since small can-
didate segments are prevented from generating additional columns of P ll+1 and I

l
l+1.

(This test could be used in the initialization as well as the general setup stage. How-
ever, the complexity is generally so low in the initial stage that the elimination is not
required there.)

Note 4.4 (reusing previously constructed components).To exploit the work done
in the earlier steps of the setup as much as possible, we consider a procedure that
reuses parts of P ll+1 that have already been computed. Thus, in each step of the
setup, we consider only adding a single new column to P ll+1. This has the advantages
that less work is required and that the storage used to hold the global candidates can
be reused as soon as they have been incorporated into P ll+1.

In this approach, to minimize the complexity of the transfer operators, we seek to
ignore locally those components of candidate xl that appear to be well approximated
by the current transfer operators. This includes the case when xl is locally small
in the sense of (4.5). To decide whether to ignore xl locally in the construction of
new tentative prolongator P ll+1, we test how well it is approximated by the current
tentative prolongator, P̃ ll+1. The following provides a test of how well the range of
P̃ ll+1 approximates xl over aggregate A:

‖xl − P̃ ll+1(P̃
l
l+1)

Txl‖2A ≤ CaδA(xl).(4.6)

(Since (P̃ ll+1)
T P̃ ll+1 = I, then P̃

l
l+1(P̃

l
l+1)

T is the L2 projection onto the range of P̃ ll+1;
thus, (4.6) is just approximation property (4.2) using the tentative prolongator in place
of the smoothed one.) If (4.6) is satisfied, then xl is assumed to be well approximated
by the current transfer operator and is simply ignored in the construction of the new
transfer operator on aggregate A. (Practical implications of this local elimination
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from the coarsening process are considered in Note 4.6.) If the inequality is not
satisfied, then we keep the computed vector, y = xl − P̃ ll+1(P̃

l
l+1)

Txl, which, by
construction, is orthogonal to all the vectors already represented in the current P̃ ll+1.
We then normalize via y ← y/‖y‖A so that the new P ll+1 has orthonormal columns:
(P ll+1)

TP ll+1 = I.
To obtain a practical method, several issues must be addressed. These issues

are discussed below, where we take advantage of the SA framework to carry out the
method outlined in Algorithm 4, as well as to control the amount of work required to
keep the evolving coarse-level hierarchy up-to-date. For instance, when using a coarse-
level V -cycle constructed by previous applications of the setup stage, we must deal
with the fact that the number of vectors approximated on coarse levels in previous
cycles is smaller than the number of vectors approximated on the fine levels in the
current cycle; hence the current multigrid transfer operators between these two levels
are invalid. Also, as suggested in Note 4.4, a candidate may occasionally be eliminated
locally over an individual aggregate. This results in varying numbers of degrees of
freedom per node on the coarse levels. (Recall that a coarse-level node is defined as
a set of degrees of freedom, each representing the restriction of a single candidate
to a fine-level aggregate.) To simplify notation, we assume for the time being that
the number of degrees of freedom per node is the same for all nodes on a given level
(i.e., no candidates are locally eliminated). It is important, however, to keep in mind
that we are interested in the more general case. A generalization to varying numbers
of degrees of freedom per node could be obtained easily at the cost of a much more
cumbersome notation. We briefly remark on the more general case in Note 4.6 below.

Note 4.5 (construction of temporary “bridging” transfer operators). An issue
we must consider is the interfacing between the emerging V -cycle on finer levels and
the previous V -cycle on coarser levels. Each setup cycle starts by selecting an initial
approximation for a new candidate on the finest level (cf. Figure 4.3). This approxi-
mation is then improved by applying the error propagation matrix for the previously
constructed V -cycle to it. The resulting candidate is used to enrich B1. This necessi-
tates an update of P 1

2 , I
1
2 , and A2 from (2.11) and (2.7) and introduces an additional

degree of freedom for the nodes on level 2. Since we now want to run the current
solver on level 2 to obtain an improved candidate on that level, we need to temporar-
ily modify P 2

3 and I2
3 because these transfer operators have not yet been updated to

reflect the added degrees of freedom on level 2. Once this modification has been made,
a V -cycle on level 2 can be run to compute the new candidate there. This candidate
is then incorporated into B2 and new P 2

3 and I2
3 are constructed, overwriting the

temporary versions, and the new A3 can be computed using (2.7). To perform the
V -cycle on level 3, we then must temporarily modify operators P 3

4 and I
3
4 for the same

reason we had to update P 2
3 and I2

3 above. Analogous temporary modifications to
the transfer operators are necessary on all coarser levels, as the setup cycle traverses
sequentially through them.

Thus, on stage l of a single cycle of the setup process, all transfer operators defin-
ing the V -cycle can be used without change, except for P ll+1 and, consequently, I

l
l+1

defined through (2.8). We can construct the temporary operator, P ll+1, by modifying
(2.11) as

P ll+1Bl+1 = B̂l,

where B̂l is formed by removing the last column from Bl, which consists of the k + 1
fine-level candidate vectors, including the newly added one (so that the first k columns
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represent the same candidates as in the previous cycle). Since tentative prolongator
P ll+1 produced in this way is based only on fitting the first k vectors in Bl, the coarse-
level matrix Al+1 resulting from the previous cycle of the αSA setup (described below)
can be used on the next level. Thus, all the coarse operators for levels coarser than l
can be used without change. This has the advantage of reducing the amount of work
to keep the V -cycle up-to-date on coarser, yet-to-be-traversed levels.

So far, we have considered only the case where all candidates are used locally.
In the interest of keeping only the candidates that are essential to achieving good
convergence properties, we now consider practical aspects of locally eliminating the
candidates where appropriate.

Note 4.6 (eliminating candidates locally as suggested in Note 4.4). When we
eliminate a candidate locally over an aggregate as suggested in Note 4.4, the con-
struction of the bridging operator above can be easily modified so that the multigrid
hierarchy constructed in the previous setup cycle can be used to apply a level l V -
cycle in the current one. Since the procedure guarantees that the previously selected
candidates are retained and only the newly computed candidate may be locally elim-
inated, the V -cycle constructed in the previous setup cycle remains valid on coarser
levels as in the case of Note 4.5. The only difference now is that aggregates may have
a variable number of associated candidates, and the construction of the temporary
transfer operator, P ll+1, described in Note 4.5 must account for this when removing
the column of Bl to construct B̂l.

Note 4.7 (selection of the local quantities δA(x)). Our algorithm relies on local
aggregate quantities δA(x) to decide whether to eliminate candidate x in aggregate
A, and to guarantee that the computed candidates satisfy the global approximation
property (4.1). This leads us to the choice

δA(x) =
(
card(A)
Nl

)
〈Alx,x〉
ρ(Al)

,(4.7)

where card(A) denotes the number of nodes in aggregate A on level l, and Nl is the
total number of nodes on that level. Note that

∑
A δA(x) =

〈Alx,x〉
ρ(Al)

for any x, so this
can be used in local estimates (4.2) to guarantee (4.1).

Having discussed the modifications that may be necessary, we are now ready to
give the algorithm for the general stage of αSA. Assume we are given a bound, K ∈ N,
on the number of degrees of freedom per node on coarse levels, convergence factor
tolerance ε ∈ (0, 1), and aggregate quantities δA(x) such that

∑
A δA(x) =

〈Alx,x〉
ρ(Al)

.
Then one step of the general setup stage proceeds as follows.

Algorithm 4 (one cycle of the general αSA setup stage).
1. If the maximum number of degrees of freedom per node on level 2 equals K,

stop (the allowed number of coarse-level degrees of freedom has been reached).
2. Create a copy of the current B1 for later use: B̂1 ← B1.
3. Select a random x1 ∈ Rn1 and apply µ iterations of the current V -cycle,

denoting the kth iteration by xk1 :

xµ1 ← AMGµ
1 (x

0
1,0), x1 ← xµ1 .

4. If 〈A1x
µ
1 ,x

µ
1 〉 ≤ ε〈A1x

µ−1
1 ,xµ−1

1 〉, then stop (A1x = b1 can be solved quickly
enough by the current method).

5. Update B1 by extending its range with the new column {x1}:

B1 ← [B1,x1].
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6. For l = 1, . . . , L− 2:
(a) Define a new coarse-level matrix Bl+1 and transfer operator P ll+1 based

on (2.11), using Bl and decomposition {Ali}Nli=1. In creating P ll+1, some
local components in Bl may be locally eliminated as suggested in Note 4.4.

(b) Construct the prolongator: I ll+1 = SlP
l
l+1.

(c) Construct the coarse operator: Al+1 = (I ll+1)
TAlI

l
l+1.

(d) Reorder the columns of Bl+1 so that its last is xl+1, and let B̂l+1 consist
of all other columns of Bl+1.

(e) Create a “bridge” transfer operator P l+1
l+2 to the coarser level with the old

Bl+1 by fitting all the vectors in Bl+1 except the last one; see Note 4.5.
(f) Set the new “bridging” prolongator: I l+1

l+2 = Sl+1P
l+1
l+2 .

(g) Make a copy: x̂l+1 ← xl+1.
(h) Apply µ iterations: xl+1 ← AMGµ

l+1(xl+1,0).
(i) If ( 〈Al+1xl+1,xl+1〉

〈Al+1x̂l+1,x̂l+1〉 )
1/µ ≤ ε, then skip (d) through (j) in further passes

through step 6.
(j) Update the coarse representation of candidate Bl+1:

Bl+1 ← [B̂l+1,xl+1].

7. Update the latest fine-level candidate:

x1 ← I1
2I

2
3 . . . I

L−2
L−1xL−1.(4.8)

8. Update B1 by extending the old copy with the newly computed x1:

B1 ← [B̂1,x1].

9. Create the V -cycle based on the current B1 using the standard SA setup de-
scribed by Algorithm 2.

Algorithm 4, which is illustrated in Figure 4.3, starts from a V -cycle on input
and produces an improved V -cycle as output. It stops iterating when either the
convergence factor for the fine-level iteration in step 3 is acceptable (as measured in
step 4) or the maximum number of iterations is reached. Note that, as with the initial
stage, this general stage does not involve level L processing because the coarsest level
is assumed to be treated by a direct solver. Also as in the initial stage, once a level
is reached where the problem can be solved well by the current method, any further
coarsening is constructed as in the standard SA.

Before presenting computational results, we consider several possible improve-
ments intended to reduce the necessary number of cycles of the setup and the amount
of work required to carry each cycle.

Note 4.8 (improving the quality of existing candidates). Many practical situ-
ations, including fourth-order equations and systems of fluid and solid mechanics,
require a set of multiple candidates to achieve optimal convergence. In the interest
of keeping operator complexity as small as possible, it is imperative that the number
of candidates used to produce the final method be controlled. Therefore, ways of
improving the quality of each candidate are of interest, to curb the demand for the
growth in their number.

When the current V -cycle hierarchy is based on approximating at least two can-
didates (in other words, the coarse problems feature at least two degrees of freedom
per node), this can be easily accomplished as follows.
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Fig. 4.3 One step of general setup stage, Algorithm 4.

Assume that the currently available candidate vectors are x1, . . . ,xk. Consider
one such candidate, say, xj, that we want to improve. We want to run a modified
but current V -cycle on the homogeneous problem, A1x = 0, using xj as the initial
guess. The modification consists of disabling, in the coarse-grid correction process,
the columns of the prolongator corresponding to the given candidate. That is, instead
of xl ← xl + I ll+1xl+1 in step 2(c) of Algorithm 1, we use

xl ← xl + I ll+1x̂l+1,

where x̂l+1 is obtained from xl+1 by setting to zero every entry corresponding to
fine-level candidate xj. Thus, the columns of I ll+1 corresponding to xj are not used
in coarse-grid correction.

In this way, we come up with an improved candidate vector without restarting
the entire setup iteration from scratch and without adding a new candidate. Since we
focus on one component at a time and keep all other components intact, this modified
V -cycle is expected to converge rapidly.

Note 4.9 (saving work). The reuse of current coarse-level components described
in Note 4.5 reduces the amount of work required to keep the V -cycle up-to-date. Ad-
ditional work can be saved by performing the decomposition of nodes into disjoint
aggregates only during the setup of the initial V -cycle and then reusing this decom-
position in later cycles. Yet further savings are possible in coarsening, assuming the
candidates are allowed to be locally eliminated according to Note 4.4. For instance,
we can exploit the second-level matrix structure

A2 =
[
Ã2 X
Y Z

]
,

where Ã2 is the second-level matrix from the previous cycle. Thus, A2 need not be
recomputed and can be obtained by a rank-one update of each block entry in Ã2.
In a similar fashion, the new operators P ll+1, Bl+1 do not have to be recomputed in
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each new setup cycle by the local QR decomposition noted in section 2. Instead, it is
possible to update each nodal entry in P̃ ll+1, B̂

l+1 by a rank-one update on all coarse
levels, where P̃ ll+1, B̂

l+1 are the operators created by the previous setup cycle.

5. Numerical Experiments. To demonstrate the effectiveness of the proposed
adaptive setup process, we present results obtained by applying the method to several
model problems. In these tests, the solver was stopped when the relative residual
reached the value ε = 10−12 (unless otherwise specified). Ca = 10−3 was used for test
(4.6) and parameter ε used in the adaptive setup was 0.1. The relaxation scheme for
the multigrid solver was symmetric Gauss–Seidel. While a Krylov subspace process
is used often in practice, we present these results for a basic multigrid V -cycle with
no acceleration scheme for clarity, unless explicitly specified otherwise.

All the experiments have been run on a notebook computer with a 1.6 GHz mo-
bile Pentium 4 processor and 512 MB of RAM. For each experiment, we report the
following. The column denoted by “Iter” contains the number of iterations required
to reduce the residual by the prescribed factor. The “Factor” column reports con-
vergence factor measured as the geometric average of the residual reduction in the
last 10 iterations. In the “CPU” column, we report the total CPU times in seconds
required to complete both the setup and iteration phases of the solver. In the col-
umn “RelCPU,” we report the relative times to solution, with one unit defined as the
time required to solve the problem given the correct near-kernel components. In the
“OpComp” column, we report the operator complexity associated with the V -cycle
for every run (we define operator complexity in the usual sense [19], as the ratio of
the number of entries stored in all problem matrices on all levels divided by the num-
ber of entries stored in the finest-level matrix). The “Candidates” column indicates
the number of kernel vectors computed in the setup iteration (a value of “provided”
means that complete kernel information was supplied to the solver, assuming standard
discretization and ignoring scaling). Parameter µmax denotes the maximal number of
tentative V -cycles allowed in computing each candidate.

In all the cases considered, the problem was modified either by scaling or by
rotating each nodal entry in the system by a random angle (as described below).
These modifications pose serious difficulties for classical algebraic iterative solvers
that are not aware of such modifications.

For comparison, we also include the results for the unmodified problem, with a
supplied set of kernel components. Not surprisingly, the standard algorithm (without
benefit of the adaptive process) performs poorly for the modified system when the
details of this modification are kept from the solver, as we assume here.

Problem 1: Scaled 3D Poisson Problem. We start by considering a diagonally
scaled problem,

A← D−1/2AD−1/2,

where the original A is the matrix obtained by standard Q1 finite element discretiza-
tion of the 3D Poisson operator on a cube and D is a diagonal matrix with entries
10β , where β ∈ [−σ,+σ] is chosen randomly. Table 5.1 shows the results for different
values of parameter σ and different levels of refinement. Using the supplied kernel
yields good convergence factors for the unmodified problem, but the performance is
poor and deteriorates with increased problem size when used with σ �= 0. In contrast,
the adaptive process, starting from a random approximation, recovers the convergence
properties associated with the standard Poisson problem (σ = 0), even for the scaled
case, with convergence that appears bounded independent of the problem size.
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Table 5.1 Misscaled 3D Poisson problems with 68,921 and 1,030,301 degrees of freedom; using ε =
10−8.

σ Candidates µmax Iter Factor CPU RelCPU OpComp

Poisson problem with 68,921 degrees of freedom
0 provided N/A 9 0.100 3.65 1.00 1.038
0 1 5 9 0.100 4.09 1.12 1.038
6 provided N/A 150 0.871 43.76 11.99 1.038
6 1 5 10 0.126 4.27 1.17 1.038

Poisson problem with 1,030,301 degrees of freedom
0 provided N/A 9 0.093 58.43 1.00 1.039
0 1 5 9 0.099 80.05 1.37 1.039
6 provided N/A 690 0.970 3,252.80 55.67 1.039
6 1 5 9 0.096 88.23 1.51 1.039

Table 5.2 Scaled 2D elasticity problems with 80,400 and 181,202 degrees of freedom. Iteration counts
marked with an asterisk indicate that residual reduction by 1012 was not achieved before
the maximum number of iterations was reached.

σ Candidates µmax Iter Factor CPU RelCPU OpComp

2D elasticity problem, 80,400 degrees of freedom
0 3 provided N/A 17 0.21 9.16 1.00 1.27
0 3 6 23 0.37 21.16 2.31 1.27
0 3 15 18 0.23 26.65 2.91 1.27
6 3 provided N/A 299 0.92 133.55 14.58 1.27
6 3 6 25 0.38 22.26 2.43 1.27
6 3 15 18 0.25 27.30 2.98 1.27

2D elasticity problem, 181,202 degrees of freedom
0 3 provided N/A 23 0.35 22.85 1.00 1.28
0 3 15 267 0.937 272.14 11.91 1.27
0 4 15 26 0.422 75.18 3.29 1.50
0 4 20 26 0.439 86.60 3.79 1.50
0 5 15 20 0.314 88.20 3.86 1.78
6 3 provided N/A 5, 000∗ 0.996 4,559.95 199.56 1.28
6 4 15 23 0.367 74.95 3.28 1.50
6 4 20 19 0.302 76.78 3.36 1.50
6 5 10 14 0.173 69.46 3.04 1.78

Problem 2: Scaled 2D Elasticity. Here we consider a diagonally scaled matrix
arising in 2D elasticity. Diagonal entries of D are again defined as 10β , with β ∈
[−σ,+σ] chosen randomly. The original matrix is the discrete operator for the plane-
strain elasticity formulation over a square domain using bilinear finite elements on
a uniform mesh, with a Poisson ratio of ν = 0.3 and Dirichlet boundary conditions
specified only along the “West” side of the domain. The results in Table 5.2 follow
a pattern similar to those for the Poisson problem. Note, however, that more than
the usual three candidate vectors are now needed to achieve convergence properties
similar to those observed with the unmodified problem for which the correct set of
three rigid body modes is provided by the user. For the scaled problem, however,
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Table 5.3 Rotated 2D elasticity problems with 80,400 and 181,202 degrees of freedom. Iteration
counts marked with an asterisk indicate that residual reduction by 1012 was not achieved
before the limit on the number of iterations was reached.

Rotated Candidates µmax Iter Factor CPU RelCPU OpComp

2D elasticity problem with 80,400 degrees of freedom
NO 3 provided N/A 17 0.21 9.16 s 1.00 1.27
NO 3 15 18 0.23 26.66 2.91 1.27
YES 3 provided N/A 1,329 0.99 587.80 64.17 1.27
YES 3 15 19 0.27 27.8464 3.04 1.27

2D elasticity problem with 181,202 degrees of freedom
NO 3 provided N/A 23 0.35 22.85 s 1.00 1.28
NO 3 15 18 0.23 66.49 2.91 1.28
YES 3 provided N/A 5, 000∗ 0.999 3,968.36 173.67 1.28
YES 3 20 135 0.885 170.23 7.45 1.28
YES 4 15 27 0.488 77.46 3.39 1.50
YES 4 20 21 0.395 79.29 3.47 1.50
YES 5 6 18 0.34 60.78 2.66 1.78
YES 5 10 15 0.233 72.66 3.18 1.78

supplying the rigid body modes computed based on the problem geometry leads, as
expected, to dismal performance of the standard solver.

Problem 3: Locally Rotated 2D Elasticity. This set of experiments is based
again on the 2D elasticity problem, but now each nodal block is rotated by a random
angle β ∈ [0, π],

A← QTAQ,

where Q is a nodal block-diagonal matrix consisting of rotations with random angles.
The results in Table 5.3 show that αSA can recover good convergence factors for both
the unmodified and the modified systems. Without the adaptive procedure, our basic
algebraic solver could not solve the modified matrix problem in a reasonable amount
of time.

Problem 4: Locally Rotated 3D Elasticity. This set of experiments demonstrates
performance of the method when a higher number of candidates is required. We con-
sider a 3D elasticity problem with local rotations. This is done to maintain locally
orthogonal coordinates but is otherwise a random rotation of the three degrees of free-
dom at each node. The model problem we start from is linearized elasticity discretized
using trilinear finite elements over a uniform mesh. Dirichlet boundary conditions are
specified on the “West” face of the cube, and the Poisson ratio is set to ν = 0.3. The
results in Table 5.4 show that, even for the modified system, the adaptive method
can again recover good convergence factors. Furthermore, our current method mim-
ics the convergence of SA for the unmodified problem with the supplied set of rigid
body modes. In this set of experiments, we can get close to the ideal iteration counts
using just six candidates. We see that using one extra candidate can improve conver-
gence properties and in some cases actually lower the overall cost of the total time
to solution. This is done at the price of a small increase in operator complexity. For
problems with multiple right sides, the more expensive setup would be performed only
once, and using the extra candidate may then be preferred.
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Table 5.4 Rotated 3D elasticity problems with 114,444 and 201,720 degrees of freedom.

Rotated Candidates µmax Iter Factor CPU RelCPU OpComp

3D elasticity problem with 114,444 degrees of freedom
NO 6 provided N/A 16 0.20 29.97 1.00 1.159
NO 6 15 20 0.27 189.11 6.31 1.159
NO 7 15 17 0.21 215.78 7.20 1.217
YES 6 provided N/A 587 0.97 913.49 30.48 1.159
YES 6 15 16 0.22 184.32 6.15 1.159
YES 7 10 15 0.20 171.73 5.73 1.217
YES 7 15 15 0.20 210.99 7.04 1.217

3D elasticity problem with 201,720 degrees of freedom
NO 6 provided N/A 16 0.20 50.33 1.00 1.153
NO 6 15 21 0.31 319.60 6.35 1.153
NO 7 10 17 0.216 297.95 5.92 1.209
NO 7 15 17 0.209 363.38 7.22 1.209
YES 6 provided N/A 739 0.97 1,924.62 38.24 1.153
YES 6 15 16 0.23 308.02 6.12 1.153
YES 7 10 15 0.20 301.98 6.00 1.209
YES 7 15 14 0.16 357.85 7.11 1.209

Figures 5.1 and 5.2 illustrate the difference between candidates computed for the
locally rotated problem and the original (unrotated) problem, respectively. While the
candidate representing the algebraically smooth error corresponding to the original
problem exhibits also smoothness in the geometric sense, for the rotated problem
such smoothness is observed only at the Dirichlet boundary, where the solution is
zero regardless of the rotation. For the sake of visualization, the candidates depicted
in Figures 5.1 and 5.2 have been computed by running a smaller problem with 86,490
degrees of freedom.

Problem 5: 3D Elasticity with Discontinuous Coefficients. The final example
demonstrates performance of the adaptive method for an elasticity problem featuring
discontinuities in the Young modulus. Here we consider a 3D elasticity problem in
which the Poisson ratio is fixed at 0.32, while the Young modulus is allowed to vary
randomly between the elements. We consider two cases: a case of coefficients varying
randomly with uniform distribution in the interval (1, 10σ) and the case where the
distribution is exponential; i.e., the Young modulus is computed as 10(σr), where r
is generated randomly with uniform distribution in (0, 1). Keeping with the usual
practice of employing Krylov method acceleration for problems with coefficient dis-
continuities, in this experiment we use our adaptive method as a preconditioner in
the conjugate gradient method. The iteration was stopped once the initial residual
was reduced by a factor of 108. Table 5.5 compares the results obtained by using
our adaptive scheme, starting from a random initial guess, to the results obtained
when the method based on a priori knowledge of the appropriate rigid body modes is
employed as a preconditioner. The table indicates that, using the adaptive procedure
without a priori knowledge of the problem geometry, we can essentially recover the
rates of the method based on the knowledge of the rigid body modes.

The topic of problems with discontinuous coefficients and the appropriate modi-
fications to the basic SA method will be studied in a future paper.
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Fig. 5.1 Candidate representing algebraically smooth error for the 3D elasticity problem modified
by applying random local rotations.

Fig. 5.2 Candidate computed for the 3D elasticity problem without the modification by local rotations
exhibits geometric smoothness.
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Table 5.5 3D elasticity problem, 201,720 degrees of freedom, with Young modulus featuring random
jumps in (1, 10σ).

σ Candidates µmax Iter Factor CPU RelCPU OpComp

Elasticity problem with uniformly distributed coefficient jumps

2 6 provided N/A 8 0.0734 24.22 1.00 1.15
2 6 10 13 0.2209 219.34 9.05 1.15
2 7 10 11 0.1866 266.29 10.99 1.21

3 6 provided N/A 8 0.0765 24.23 1.00 1.15
3 6 10 13 0.2154 218.57 9.02 1.15
3 7 10 11 0.1861 265.70 10.96 1.21

4 6 provided N/A 8 0.0768 24.56 1.00 1.15
4 6 10 12 0.2081 219.26 8.93 1.15
4 7 10 11 0.1648 264.38 10.76 1.21

Elasticity problem with exponentially distributed coefficient jumps

2 6 provided N/A 9 0.1146 25.99 1.00 1.15
2 6 10 16 0.3048 225.52 8.68 1.15
2 7 10 12 0.2141 267.72 10.30 1.21

3 6 provided N/A 14 0.2466 35.68 1.00 1.15
3 6 10 22 0.4179 237.56 6.76 1.15
3 7 10 16 0.3095 275.62 7.84 1.21

4 6 provided N/A 20 0.3948 49.99 1.00 1.15
4 6 10 30 0.5316 255.43 5.11 1.15
4 7 10 21 0.4040 289.39 5.79 1.21

5 6 provided N/A 32 0.5545 73.63 1.00 1.15
5 6 10 46 0.6695 292.35 3.97 1.15
5 6 20 36 0.5980 402.75 5.47 1.21
5 7 10 37 0.6020 324.19 4.40 1.21
5 7 15 27 0.4966 381.16 5.17 1.21

Note 5.1. The operator complexities in all of the test problems remain below
2. Moreover, these complexities improve somewhat in three dimensions, compared to
two dimensions, due largely to the increased speed of aggregation coarsening. It is
also worth mentioning that the increasing size of the coarse matrix block entries due
to the increasing number of candidates does not significantly impact the time needed
to perform one iteration of the solver, apparently due to the more efficient memory
access afforded by blocking.

6. Conclusions. This paper develops a new multilevel method to tackle problems
that, to date, have been very difficult to handle by AMG methods. At the expense
of a somewhat more costly setup stage and more intricate implementation, we design
a method that has, thus far, proved successful at solving such problems. We observe
that the convergence properties of the method seem very insensitive to modifications of
the algebraic system by scaling or nodal rotation. Moreover, the solver is flexible and
can benefit from extra information supplied about the problem. If such information
is lacking or incorrect, then αSA can act as a full black-box solver. Despite the
growing number of degrees of freedom per coarse-level node as the method evolves,
the overall cost of one step of the final iteration grows only modestly because of better
utilization of cache memory due to dense matrix operations on the nodal blocks.
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Operator complexity remains at reasonable levels and actually seems to improve with
increasing spatial dimension.

The construction of the tentative prolongator in the setup phase involves restric-
tion of the candidate functions to an aggregate and subsequent local orthogonalization
of these functions. It is therefore suitable for parallel processing as long as the ag-
gregates are local to the processor. Parallelization of the underlying SA solver is
in the testing stage. When it is completed, then αSA should also benefit from the
parallel speedup. The parallel version is also expected to gain better parallel scalabil-
ity by replacing the traditionally used Gauss–Seidel relaxation with the polynomial
smoothing procedures investigated recently in [1]. The performance of the parallel
implementation will depend on the quality of the parallel matrix-vector product.

Future development will concentrate on extending features of the underlying
method on which αSA relies and on developing theory beyond the heuristics pre-
sented here. Although most decisions are currently made by the code at runtime,
much remains to be done to fully automate the procedure, such as determining cer-
tain tolerances that are now input by the user. We plan to explore the possibility of
setting or updating these parameters at runtime based on the characteristics of the
problem at hand. A related work in progress [7] explores adaptive ideas suitable in
the context of the standard AMG method.
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[20] P. Vaněk, M. Brezina, and J. Mandel, Convergence of algebraic multigrid based on smoothed
aggregation, Numer. Math., 88 (2001), pp. 559–579.
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