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An important constraint on our ability to simulate physical processes numerically

is our ability to solve the resulting linear systems. Multiscale methods, such as multigrid,

provide optimal or near-optimal order solution techniques for a wide range of problems.

Current multigrid methods (both geometric and algebraic) rely on the use of effective

coarse-scale operators to achieve this efficiency. Classical geometric multigrid methods

construct these operators based on the geometry of a given problem and are, thus, most

effective when this geometry is known and simple. Algebraic multigrid methods are free

from most geometric constraints, instead relying on assumptions about the character

of the matrix that limit the applicability of such methods to a relatively small class of

problems.

In this thesis, we first study the applicability of multigrid methods to the problem

of flow through porous media, particularly motivated by the size of the linear systems

resulting from discretization. For such problems, it is well known how to construct

effective coarse-scale models for a correction-based multigrid method. For these robust

multigrid solvers, we consider whether sufficient information is contained in the multi-

grid hierarchy to allow for efficient approximation of solutions of these linear systems.

In particular, we examine important properties of the coarse-scale operators and the

solutions to these coarse-scale equations and demonstrate their relevance to both the

fine-scale and continuum-scale models.

Additionally, we consider the question of improvements to multigrid algorithms

in the form of adaptivity or self-correction. By utilizing the multigrid method itself

to expose slow-to-converge components, we may adapt the multigrid hierarchy in order



iv

to improve performance, resulting in enhanced efficiency for a new class of problems.

We present results for both the classical algebraic multigrid and smoothed aggrega-

tion frameworks illustrating typical multigrid efficiency with fewer assumptions on the

given matrix systems. We consider theoretical issues of this adaptive procedure in the

reduction-based algebraic multigrid setting.
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Chapter 1

Introduction

The focus of this thesis is on the numerical solution of the linear partial differential

equations (PDEs) resulting from the mathematical modeling of physical systems. We

assume that these PDEs have already been discretized in a sensible manner through

the use of finite differences or finite elements [8], and our primary focus is on efficient

solution of the linear systems, of the form Ax = b, that arise from such discretizations.

These systems are typically large (current problems of interest involve millions or even

billions of degrees of freedom (DOFs)), sparse (a fixed number of non-zero entries per

row or column, regardless of problem size), and ill-conditioned (with condition number

approaching infinity as problem size increases).

While these systems are sparse, in many cases they possess full inverses (though

with banded factors), resulting in significant computational expense for direct methods

of solution. Conventional iterative methods for these linear systems involve sparse,

or easily computed, approximations to this inverse that damp, but do not completely

eliminate, errors in an approximation to the solution, x = A−1b.

Classical, stationary iterative methods choose an approximate inverse to the ma-

trix A, B ≈ A−1, and iterate based on the residual equation. The residual equation

relates the error in a current approximation, x̃, to the residual, r = b − Ax̃. Writ-

ing b = AA−1b = Ax, we see that r = A(x − x̃) = Ae. Thus, an exact correc-

tion to a given approximation is of the form A−1r, leading to the iterative scheme,
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xk+1 = xk + Br = (I − BA)xk + Bb. Considering this in error propagation form, we

have

ek+1 = x− xk+1 = x− xk −Br

= ek −BAek = (I −BA)ek,

giving us the error propagation operator, I −BA. Thus, we can bound the `2 norm of

ek+1, as ‖ek+1‖ ≤ ‖I−BA‖ · ‖ek‖, so ‖ek+1‖ ≤ ‖I−BA‖k+1 · ‖e0‖ and if ‖I−BA‖ < 1,

the iterative method must converge.

Traditional choices of B, such as in the Jacobi, Gauss-Seidel, or SOR methods,

result in error propagation matrices, I − BA, whose norm is not bounded uniformly

below 1 with refinement in h, the discretization mesh size. As modern applications

demand highly refined meshes, these methods alone are not appropriate for solving

problems of interest.

Krylov subspace methods, such as Hestenes’ and Steifel’s conjugate gradient

method [55], rely on a different approach to the solution of Ax = b. In these methods,

the closest approximation to the solution of the linear system is found in a subspace

whose size is iteratively increased. The convergence of these methods is dependent on

the condition number of the matrix A, which again typically increases as h decreases.

To avoid the increase in iterations, it is common practice to modify the Krylov

subspace method in the hopes of reducing the difficulties in solving the given system.

Such preconditioning often takes the form of left preconditioning, where the system

Ax = b is multiplied on the left by a matrix, M−1, chosen to reduce the condition

number of the matrix to be iterated with, from κ(A) to κ(M−1A). The generalized

conjugate gradient algorithm [54] (a Krylov subspace method applied to M−1A) is

equivalent to applying conjugate gradient to the system M− 1
2AM− 1

2 y = M− 1
2 b, for

y = M
1
2x, where M is assumed to be symmetric and positive definite.

Preconditioned conjugate gradient methods have been shown to be more effec-
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tive than non-preconditioned Krylov methods for many problems of interest. For easily

inverted M (that is, when M−1r is easily computed), the additional cost of the precondi-

tioning in the Krylov iteration can easily pay dividends if it results in a more amenable

spectrum of M−1A. That is, if the condition number of M−1A (or M− 1
2AM− 1

2 ) is

significantly less than that of A, or if the spectrum is more clustered than that of the

original matrix, we can expect significantly fewer iterations to be needed. However, even

with very sophisticated preconditioners (such as the incomplete Cholesky factorization),

the condition number of the preconditioned system still increases as h decreases.

As an example of this situation, consider the case of a 2D Poisson problem,

−∆p = f

with Dirichlet boundary conditions on the unit square, discretized via finite differences

on an n×n regular grid (eliminating boundary conditions). The resulting matrix, A, is

an n2×n2 sparse array, with 5 non-zero entries in each row/column. The half-bandwidth

of this matrix is n when the unknowns are ordered lexicographically.

Direct methods are clearly not scalable for this problem. A naive Gaussian elimi-

nation approach would require O(n6) operations, although would not need pivoting (at

least in exact arithmetic) if boundary conditions are chosen to ensure positive definite-

ness (i.e., at least one Dirichlet or Robin boundary region exists). Elimination can, of

course, be done in a way to preserve the banded structure of this matrix, reducing the

operation count to O(n4).

Classical, stationary iterative approaches also scale poorly. The spectral radius of

the (stationary) iteration matrix can be computed and then used to estimate the number

of iterations needed to reduce the error to a particular level. As the matrix equation

approximates a continuous equation, one reasonable choice of permissible error would

be to allow errors in the solution of the linear system to be of the size of the error

already present in the discretization. In this regular setting, that error is O(h2), where
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h = 1
n+1 .

For the three most common iterative methods, this is easily done. Jacobi, Gauss-

Seidel, and SOR for this problem can all be analyzed in terms of a Fourier sine basis.

For Jacobi, the spectral radius of the matrix, A, is ρJ = 1 − 2 sin2
(

π
2(n+1)

)
. The

approximate number of steps, s, necessary to reduce a given error by a factor of ε is the

determined by ε = ρs
J . Based on asymptotic approximations for large n, we see that

s ≈ log
(

1
ε

)
2n2

π2 . Substituting ε ≈ 1
n2 yields the approximate number of Jacobi iterations,

s ≈ log(n2)2n2

π2 . Each iteration costs one matrix-vector multiply, or approximately 5n2

operations. Thus, the ultimate operation count for Jacobi is log(n2)10n4

π2 = O(n4 log(n)).

For Gauss-Seidel, Varga [83, p. 121] demonstrates that the spectral radius of

the iteration matrix is exactly the square of that of the Jacobi iteration matrix. The

approximate operation count for Gauss-Seidel is then log(n2)5n4

π2 = O(n4 log(n)), half of

that for Jacobi. Varga [83, pp. 123–125] also discusses a result of Young that gives the

optimal overrelaxation parameter, ωb = 2

1+
√

1−ρ2
GS

, and the convergence factor for the

resulting iteration as ρb = ωb−1. Using this, the needed number of SOR iterations can be

calculated, giving the total operation count of approximately log(n2)5n3

2π = O(n3 log(n)).

Since the original linear system is SPD, the conjugate gradient method (CG)

is a good representative of Krylov methods for this problem. Greenbaum [50, p. 51]

shows that one step of CG on a matrix, A, with condition number κ reduces the error

(measured in the A-norm) by a factor of at least
√

κ−1√
κ+1

. Thus, for large κ, the number of

CG iterations to reduce the error by a factor of ε can be approximated as log
(

1
ε

) √κ−1
2 .

For our model problem, ε ≈ h2 and κ = O(n2). So, the required number of CG

iterations is O(n log(n)), giving O(n3 log(n)) operations, and CG is (asymptotically) no

faster than SOR. However, the modified incomplete Cholesky factorization, as analyzed

by Gustafsson [51], can be shown to produce a preconditioned system with condition

number O(n), resulting in a preconditioned conjugate gradient (PCG) method that

requires only O(
√
n log(n)) iterations and O(n2.5 log(n)) operations.
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Considering these results graphically, as in Figure 1.1, we see that while non-

optimal methods can be very competitive for large mesh sizes, they must lose out as

h→ 0, regardless of the factor hidden in the O(·) notation.

Thus, none of these methods allows for solution of the model problem with an

optimal number of computations, proportional (or nearly so) to the total number of

degrees of freedom, N (O(N) or O(N logN) behavior).

However, we notice that for this simple model problem, the techniques of fast

Fourier transforms do allow solution of the same differential equation in O(N logN) op-

erations [33, §6.7]. This suggests that there is some advantage to considering multiscale

solution techniques for the linear system we are considering. Indeed, multiscale ideas

can lead to efficient solution schemes for this and many other linear systems. Originally

proposed by Fedorenko [46] and Bakhvalov [3], multigrid methods have seen a tremen-

dous growth in their applicability since the initial work of Brandt [14, 17]. In particular,

Bramble et al. [10, 11, 12] show that there is an optimal multigrid method for elliptic

partial differential equations discretized by finite elements, while local mode analysis,

such as in [16, 19], establishes multigrid optimality for discretizations of a particular

class of PDEs.

The name multigrid comes from the fact that the original algorithms were based

on a nested grid hierarchy, with intergrid transfer operators based on the geometry of

these grids. For this reason, these classical multigrid algorithms are often referred to as

geometric multigrid methods. While these methods perform well for PDEs with smooth

coefficients, it has been observed that performance of classical, geometric multigrid

methods breaks down when there is significant variation in the coefficients of the PDEs.

As discontinuous-coefficient diffusion is an important problem, Alcouffe et al. [2] and

Dendy [34] developed the black box multigrid method (BoxMG), by introducing the

idea of operator-induced interpolation. In this method, the intergrid transfer operators

are chosen based on the entries in A, assuming a regular tensor-product mesh. It can



6

10
0

10
2

10
4

10
6

10
8

10
10

10
−5

10
0

10
5

10
10

10
15

10
20

10
25

Problem Size

E
st

im
at

ed
 R

eq
ui

re
d 

S
ol

ut
io

n 
T

im
e 

(s
)

one minute

60 years

age of the universe

Cholesky
Band Cholesky
Jacobi
GS
SOR(ω

opt
)

CG−MIC(0)
Optimal

Figure 1.1: Scalability of Direct and Iterative Solution Techniques for the 2D Finite-
Difference Laplacian as Problem Size Increases



7

be shown that the scheme developed in [2] approximately preserves the continuity of

normal flux in the interpolation procedure [67].

As computational power has developed, so has the sophistication of discretiza-

tions. In particular, the finite element method allows discretization of a PDE on an

arbitrary domain with a nearly-arbitrary mesh. The multigrid methods discussed so

far are limited in their use of geometric properties of the mesh, either in the intergrid

transfer operators as in geometric multigrid or in the assumption of a logically rect-

angular mesh in the black box multigrid algorithm. Algebraic multigrid methods were

developed by Brandt, McCormick, and Ruge [23] to handle problems where regularity

of the mesh could not be assumed. Further developed by Ruge and Stüben [72, 73],

algebraic multigrid (AMG) has been shown to be quite efficient on a wide range of

matrices, including those resulting from irregular meshes and discontinuous coefficients.

An interesting variant on AMG is the smoothed aggregation (SA) method, as

developed by Vanek et al. [79, 80]. While classical AMG is developed based on the null

space properties of typical discretizations of elliptic operators, the intergrid transfer

operators used in SA are based on explicit knowledge of the near null space of the

discretized operator. These methods are particularly effective for problems such as

elasticity where the near null space is the span of several distinct vectors, all of which

can be easily incorporated into the interpolation and restriction operators.

The problem of flow in porous media is one for which multigrid methods, par-

ticularly the BoxMG and AMG algorithms, are ideally suited. Modeled via Darcy’s

law and mass conservation, the resulting equation for pressure in a single-phase flow

is simply a variable-coefficient diffusion equation. The main difficulty encountered in

this problem is the disparity between the scale of variation of the permeability and the

size of the domain. Typical simulations involve media with material properties (such

as permeability) that vary on a scale of millimeters, while the domain may be several

kilometers in length in each dimension. A fully-resolved, three-dimensional simulation
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in this case would require more than 1018 degrees of freedom, resulting in a linear system

that cannot be practically solved, even on the most powerful of modern computers.

There are many possible approaches to resolving this problem. At the simplest,

one can choose a rule for averaging the variations below an acceptable computational

scale independently of the permeability. These simple averages are typically insufficient

for arbitrary permeability tensors. Numerical homogenization, or upscaling, techniques

are used to seek a coarser discretization that preserves the effects of the fine-scale vari-

ation in the fully resolved problem. We consider the relationship between existing com-

putational techniques and classical theoretical results and show that the two are quite

closely linked. We also propose and examine an extension to the multigrid homogeniza-

tion techniques of Moulton et al. [67] and Knapek [60] making use of operator-induced

coarsening techniques (such as in BoxMG and AMG) to derive useful, multiscale basis

functions, and the corresponding coarse-scale models.

In many other practical settings, full details of the discretization, or even of the

continuum model, may not be available to the solver. The dependence of multigrid

on complementarity, however, requires knowledge of the modes that are slow to con-

verge under relaxation (and typically span the near null space of the discrete operator)

to ensure multigrid optimality. Adaptive multigrid methods attempt to recover these

modes iteratively and improve the complementarity of the coarse-grid correction and

relaxation processes through their use. We introduce these ideas of adaptivity into the

AMG and SA methods. Although much of this work is numerical, we also present new

theoretical results that, while incomplete, indicate the success of the adaptive frame-

work. Our research primarily focuses on the use of these components in the definition

of interpolation. Related work, addressing the question of their use in choosing the

coarse-grid points, is also underway.

Chapter 2 provides a brief introduction to the continuum models considered here.

We focus primarily on the problem of single-phase, saturated flow through porous me-
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dia (and the equivalent problem of discontinuous-coefficient diffusion) and discuss the

importance of the permeability coefficient, K, in the behavior of the solution. Dis-

cretizations of this equation are considered, and the finite element formulation we use

is discussed. We will also make use of a few examples from linear elasticity, and this

problem is also introduced here.

Chapter 3 discusses the aforementioned multigrid methods in more detail. Sec-

tion 3.1 discusses the basic multigrid concepts and the classical, geometric multigrid

methods. In Section 3.2, we discuss the details of the black box multigrid algorithm.

Of particular interest is the relationship between the physical concept of flux and the

multigrid operators used. Sections 3.3 and 3.4 review the fundamental components of

the AMG and smoothed aggregation methods, particularly focusing on the automatic

determination of coarse grids and of intergrid transfer operators.

Chapter 4 introduces the single-phase, saturated flow through porous-media prob-

lem in more detail, discussing both existing and new upscaling techniques in more detail.

Here, we show the equivalence between common computational approaches to the prob-

lem and the classical theory. We also demonstrate that the operator-induced coarsening

used in robust multigrid methods is appropriate for creating coarse-scale models that

provide useful global-scale approximations.

Chapter 5 focuses on adaptivity in algebraic multigrid techniques. Important

principles of adaptive multigrid methods are discussed in general, and then in specifics

as applied to the AMG and SA methods. A theory of convergence is presented in

the simplified AMGr framework, which indicates optimal performance of the adaptive

setting. Important implementation issues for these methods are also discussed.



Chapter 2

Continuum Models

This thesis focuses primarily on issues of solving linear systems accurately and

efficiently. These linear systems come from a variety of sources, including both model

problems and realistic applications. Here we describe the continuum problems we seek

to model, as well as our usual choice for discretization of finite elements.

2.1 The Diffusion Equation and Flow in Porous Media

Most of the results in this thesis are for the matrices that arise when discretizing

the diffusion equation,

−∇ · K(x)∇p(x) = Q(x),

including the special case of Poisson’s or Laplace’s equation, when K ≡ 1, ∆p = Q.

We primarily consider the two-dimensional case, although we briefly consider three

dimensions in Sections 4.3 and 5.4.

Just as Poisson’s equation can be used to model many different physical prob-

lems, the discontinuous-coefficient diffusion equation also has far-reaching applications.

We focus here on the simulation of fluid flow in porous media, important in the study

of oil reservoir performance and ground-water transport. This situation exhibits char-

acteristics of other, similar applications, such as single-group monoenergetic neutron

transport and electromagnetics, particularly in the dependence of the PDE coefficients

on the properties of the simulated materials.
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Saturated, single-phase flow in porous media may be approximated using Darcy’s

law. Assuming pointwise knowledge of the permeability of the media, K(x), fluid veloc-

ity is given by

u(x) = −K(x)∇p(x), (2.1)

where p(x) represents the pressure of the fluid, for x ∈ Ω ⊂ Rd, for d = 1,2, or 3.

In this case, K(x) is physically constrained to be a tensor-valued (allowing anisotropic

flow characteristics), pointwise-symmetric, and positive-definite operator [4]. The flow

is then fully characterized by imposing conservation of mass,

∇ · u(x) = Q(x), (2.2)

where Q(x) represents any external fluid sources or sinks in the system. Physically,

Q(x) is quite important, representing injection and production wells in a reservoir.

Mathematically, we simply require Q(x) ∈ H−1(Ω) (admitting useful models of these

wells as point- or step-function sources). We do not concern ourselves with particular

choices of Q, since we consider primarily characteristics of the matrix in the discretized

linear system and not the right-hand side.

Many of the difficulties encountered in solving this PDE exist only because we

consider the case of multi-dimensional flow. Indeed, the one-dimensional flow problem,

− ∂
∂xK(x) ∂

∂xp(x) = Q(x), may be solved exactly, as

p(x) = −
∫ x

0

∫ y
0 Q(t)dt+ c1

K(y)
dy + c2,

where the constants, c1 and c2, are chosen to match the boundary conditions of the

PDE. When Q ≡ 0, notice that there is no difference between this solution and that

with K replaced by its harmonic mean, K̂ =
(

1
x

∫ x
0

dy
K(y)

)−1
. In higher dimensions, no

analogue of this approach exists, and so we consider numerical approaches instead.

Generalizations of this system are possible and commonly arise from physical

situations of flow in porous media. For instance, we have chosen the permeability, K, to
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be dependent only on x. In some flow regimes, such as when the fluid pressure is greater

than the confining pressure of the media, the effect of the fluid pressure on permeability

cannot be ignored. In the case of unsaturated flow, the flux becomes dependent on the

saturation, S, and Equation 2.1 can be effectively replaced by an equation for the flux,

q(x) = D(S,x)∇S(x), where D(S,x) is the diffusivity coefficient and is itself dependent

on K(S,x). Conservation of mass is then imposed on this flux, ∇ · q(x) = Q(x), as in

Equation 2.2. In this thesis, we consider only the linear case of saturated, single-phase

flow.

2.2 Model and Realistic Permeability Fields

The solution of the system in Equations 2.1 and 2.2 is complicated by the nature

of K(x). Permeability is a property of the medium and can thus vary significantly

between media in the same simulation. A common example of this is in systems that

involve a mixture of rocks and sands or gravels, where the permeability of a mixture

of sand and gravel may be 6 orders of magnitude higher than that of sandstone or

limestone. Even within a single medium, such as sand, permeabilities can vary by 4

orders of magnitude or more, depending on the composition and fineness of the sand.

Thus, K(x) can be expected to vary significantly, both across the domain and within

small volume elements.

We consider several model problems, where the permeability field is chosen to

mimic characteristics of a physical problem, as well as synthetic data examples where

the permeability field is generated geostatistically, modeling a physical situation. The

results in Chapter 4 deal with both of these cases, while the focus in Chapter 5 is on

issues of solving linear systems and only model problems are considered.

The simplest model problem considered, aside from Laplace’s equation, is a two-

material media with jumps in the material properties between the media. This may

be viewed as an abstraction of the sand/shale problem common in flow through porous
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Figure 2.1: Square Inclusion Problem

media, where the domain is composed of a porous background medium (sand) with

relatively impermeable inclusions.

We consider variations in both the shape and permeability of such inclusions. A

simple example of a composite material, considered in both Chapters 4 and 5, is when

the inclusion takes a regular shape and/or pattern, as in Figure 2.1. In this two-medium

example, we consider choosing the permeability as piecewise constant,

K(x) =

 1 x ∈ Ω0,

λ x ∈ Ω1.

Similar examples are prevalent in the homogenization and upscaling literature, and we

introduce particular variations, including Bourgat’s examples [7], in Section 4.1.2.

Another sand/shale problem common in the literature may be modeled by choos-

ing a length scale for the impermeable inclusions and distributing them randomly

throughout the domain. That is, given the inclusion length scale, H, divide the do-

main, Ω, into a grid of size H, and choose a fixed percentage of the elements on this

scale (at random) to represent the impermeable media, as depicted in Figure 2.2, where

Ω is the unit square, H = 1
4 , and approximately 20% of the volume is chosen to represent

shale. A more difficult version of this problem occurs when H = h, i.e., the inclusion
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length scale is also the discretization mesh size. This is considered as an example in

Section 5.2.

Complete permeability fields for actual porous media are almost never available.

In practice, permeability is known only at a few data points within the physical domain

and geostatistical techniques must be used to generate a realization of the desired prop-

erties conditioned on the known values. We use one such program, gslib [38], to generate

geostatistical permeability fields with no prior data for conditioning. In particular, we

consider two fields chosen to mimic those used by He et al. [52]. The first field, pictured

in Figure 2.3, exhibits mild layering effects aligned with the grid, due to the relatively

close correlation lengths of K(x) of 0.5 in the x-directions and 0.1 in the y-direction.

The second field, as in Figure 2.4, has principle axes rotated 30◦ from the horizontal and

vertical, with a strong correlation in K of length 0.8 along the rotated horizontal axis,

compared with a correlation length of 0.04 along the rotated vertical axis. In both of

these cases, the permeability was chosen as piecewise constant on a 64× 64 mesh from

a log-normal distribution with variance (of log(K)) of 4, resulting in permeabilities in

the range [10−2, 102], where dark pixels in these figures correspond to low values of K

and light pixels to high values.
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2.3 Discretizations

The primary factor in any discretization of Equations 2.1 and 2.2 is the severe

variability of K(x) and its effect on the accuracy of the discretization. Many schemes

have been employed to account for this variation, in the contexts of finite differences,

finite volumes, and finite elements.

Finite difference and finite volume techniques typically rely on an averaging of

cell permeabilities to ensure the appropriate continuity of flux. In finite differences,

values of K(x) ∂
∂xi
p(x) are approximated on auxiliary nodes located at the midpoints

of the grid lines, using usual centered differences approaches. If K(x) is not given at

these nodes, an averaging of the nearest known values is needed, and is typically taken

to be the arithmetic or harmonic mean of cell-centered permeability data. Once these

values have been approximated, the divergence may be imposed, again using a centered

differences scheme.

Finite volume techniques typically place the unknowns at cell centers and focus

on the approximation of fluxes into and out of each cell. If these fluxes are explicitly

represented, Equation 2.2 is easily imposed by requiring balance between the integrated

sources and sinks on a cell,
∫
Q(x)dx, and the net flux along the boundary. Approxima-

tion of these fluxes may be done in many ways, but a simple, low-order technique is to

reduce the problem to one dimension, taking the cell-centered values as boundary values

and the known cell permeabilities as the diffusion coefficients for the one-dimensional

problem. This problem may be solved explicitly, as discussed in Section 2.1, and results

in the flux being proportional to the pressure gradient between the two nodes and to

the harmonic average of the cell permeabilities.

Both of these techniques may be extended to higher order, using longer range

differences or better approximations of the fluxes across cell boundaries, and such exten-

sions are commonly used in simulations of flow in porous media. However, we consider
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here discretizations via primal finite elements, due to their advantageous theoretical

properties, particularly when posed variationally, as in Chapter 4.

We consider a conforming, Galerkin finite element discretization of the second-

order PDE, −∇·K(x)∇p(x) = Q(x), with a nodal basis for our test/trial space. Writing

p(x) =
∑

i

piφi(x), we ask that, for every j,

∑
i

pi

∫
Ω

(K(x)∇φi(x)) · (∇φj(x)) dΩ =
∫

Ω
Q(x)φj(x)dΩ.

We consider the space spanned by {φi} to be piecewise-bilinear functions on a rect-

angular mesh in two dimensions and piecewise-trilinear functions on a cubic mesh in

three dimensions. K(x) is taken to be piecewise constant on each element of the mesh,

and each integral is evaluated exactly under this assumption. The resulting linear

system of equations may be written as Ax = b, where the matrix, A, has entries

aij =
∫
Ω (K(x)∇φi(x)) · (∇φj(x)) dΩ, and the vector, x, has values corresponding to pi.

2.4 Elasticity

In Section 5.4, we consider matrices arising from discretizations of a PDE model

describing linear elasticity. The basic equations of linear elasticity may be expressed as

the system of equations in u, the displacement of an elastic body:

(λ+ µ)∇∇ · u + µ∆u = f ,

where λ and µ are parameters of the material, known as Lamé coefficients.

We consider such problems only briefly, with a 2D discretization with bilinear

finite elements on the unit square and a 3D discretization with trilinear finite elements

on the unit cube. In both cases, we consider Dirichlet boundary conditions on one face

of the domain, fixing the displacements along that face, and some form of Neumann

boundary condition on the remaining faces.

Difficulty of the problem is controlled primarily by the material properties, λ and

µ, which can be thought of as controlling the relative importance of the Laplacian and
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grad-div terms in the equation. Another choice of parametrization is with the Poisson

ratio, defined as ν = λ
2(λ+µ) , and the Young modulus, E = µ(3λ+2µ)

λ+µ .

The linear elasticity problem becomes harder as ν → 1
2 , as in this limit the grad-

div term dominates the system and the effect of the Laplacian term is lost. In the

examples considered in Section 5.4, we fix ν = 0.3, resulting in a one-parameter system

in E. Most of the results presented are for fixed E; however, in Table 5.17, we also

consider the case of E chosen randomly between 1 and 10σ, for σ = 2, 3, 4, and 5.



Chapter 3

Background

While modern interest in multigrid methods dates back only about 30 years, the

basic principles of multiscale ideas have a longer history [16, §10]. Indeed, as early as

1935, Southwell [74, 75] proposed what he called block or group relaxation strategies

for resolving displacements (and, thus, stresses) in structural problems. In these works,

Southwell proposes a method where blocks of nodes corresponding to particular sub-

structures are relaxed as one, keeping their internal configuration, but moving as a unit

relative to the remainder of the grid. Stiefel [76] considers general relaxation methods,

including Southwell’s, and discusses ways of accelerating the relaxation process. Also

discussed is the property that (Gauss-Seidel) relaxation is, in general, least efficient at

resolving modes associated with small eigenvalues of the matrix, A.

In the 1960’s, two-level methods attracted notable attention. Fedorenko [45]

considered a two-level correction method where smooth error is resolved by considering

a restriction of the fine-grid equations to a sub-grid. He demonstrates numerically

that this method is more efficient than SOR, by a factor of approximately 3 for a

50× 50 mesh. Ahamed [1] applied Southwell’s techniques to vector potential problems,

commenting on the lack of adequate numerical methods for electromagnetic problems

and demonstrating solution of finite-difference Poisson problems with a few hundreds

of unknowns. Wachspress [84] considers non-symmetric matrices, with equations in A

and A∗, using a variational technique to arrive at a set of contracted equations for the
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fine-grid solution. This two-level method bears significant similarity to the geometric

multigrid discussed in Section 3.1. De la Vallee Poussin [32] shows that the method

outline by Stiefel is convergent, and demonstrates convergence independent of the size

of the jump in diffusion coefficient.

True multilevel techniques also originally appeared in the 1960’s. Fedorenko in-

troduced the idea for theoretical purposes in [46]. In fact, he proposed a multigrid

technique and then demonstrated that the number of iterations needed to reduce the

residual of the 2D Laplacian on a regular, rectangular grid of N points by a factor ε was

O
(
(N log

(
1
ε

))
. Bakhvalov [3] provided a more general result, applicable to second-order

elliptic operators with continuous coefficients. Both papers provide significant theoreti-

cal results, but these results obscure the true usefulness of multilevel techniques because

the cost estimates are quite high - on the order of 105N operations for a reduction in

the residual by a factor of 0.01 [16].

Multigrid methods as we consider them can be said to have taken form in the mid

1970’s, particularly through the work of Brandt [14]. In the intervening years, many

different variations and implementations have appeared in the literature. Here, we

present details of four significant flavors of multigrid. First, we introduce the classical,

geometric multigrid method in Section 3.1. This lays the foundation for the particular

variants that become important in the remaining chapters of this thesis. In Section 3.2,

we introduce the black box multigrid method, or BoxMG, introduced by Alcouffe et.

al. [2] and later improved by Dendy [34, 35, 36, 37]. While BoxMG has proven very

successful for structured domains with logically-structured grids, algebraic multigrid

(AMG) [23, 72, 73] is often the method of choice for irregular grids. In Section 3.3, we

discuss the details of AMG, particularly to motivate the work that appears in Section

5.2. Finally, we review the smoothed aggregation (SA) method [78, 79, 80], an algebraic

technique quite distinct from the classical AMG method, which is extended in Section

5.4.
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3.1 Multigrid

Geometric multigrid methods were first introduced by Brandt in 1973, with the

multi–level adaptive technique or MLAT [14]. While the presentation here differs from

the early descriptions of multigrid, the essential form of this basic method has not

changed significantly since that time. This is, perhaps, largely due to the simplicity of

the method and of the ideas that are central to it.

It has long been observed that, for many linear systems, convergence of stationary

iterative methods is slow (see, for example, Southwell [75]). Multigrid methods take

advantage of the fact that the slowness of these relaxation algorithms is due to a certain

structure of the slow-to-converge error. Consider, for example, performing the weighted

Jacobi iteration (with weight 0.8) on the 2D finite-difference Laplacian on a 33 × 33

grid, as shown in Figure 3.1. This behavior is typical of many stationary iterations

applied to elliptic operators, that oscillatory error is reduced quite quickly, while the

slow overall convergence is seen in smooth modes. While continuum elliptic operators

have immediate global propagation of information, these local processes result in finite

propagation speeds on the discrete grid.

Such disparity between the convergence of smooth and oscillatory errors cannot

lead to an efficient algorithm. In [15], Brandt claims

When much computational effort is invested for little real (physical)
effect - something must be wrong. It is wasteful to continue slowly
convergent relaxations; or to solve evolution problems with tiny time-
steps imposed only by requirements of numerical stability; or to have
mesh intervals far smaller than any local scale of the solution; etc. In
each such case a much more efficient way does exist.

Multigrid methods overcome this stalling behavior through the use of comple-

mentary processes. We know that relaxation quickly eliminates oscillatory error, and

thus we look for a process that efficiently eliminates smooth error. A key to optimal

performance is that the cost of any global computation is (at least) proportional to the
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Figure 3.1: Smoothing of Random Error by the Weighted Jacobi Iteration
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grid size. That is, if we could represent the error in an approximate solution on a coarser

grid, we can attempt to resolve it there where global computation is cheaper.

A difficulty then lies in the fact that we would like to have a process through

which we could represent the error in our solution on a coarser grid, but it is exactly

this quantity we do not know. This is resolved by considering the only indication of

the error in the algebraic equation, Ax = b, that is available, the residual. Given an

approximation, x̃, to the exact solution, x = A−1b, the residual is defined as

r ≡ b−Ax̃ = A(x− x̃).

So, although the error is unknown, it can be represented through the residual. The

error, e, in the solution of Ax = b solves the residual equation, Ae = r.

These two realizations are enough to recognize the basics of a two-grid solution

method. First, relax on the fine grid to eliminate oscillatory error components and

restrict the residual to a coarser grid. On that grid, solve the coarse-grid residual

equation, Acec = rc, for the coarse-grid error, ec, and then interpolate this correction

to the fine grid. Finally, it may be necessary to relax again on the corrected fine grid

approximation, to ensure that some oscillatory error was not introduced through the

coarse-grid correction step.

Such an algorithm is more efficient than a direct method applied to the fine grid if

there is a sufficient reduction in grid size for the coarse-grid problem. The cost of a single

sweep of fine-grid relaxation is typically O(N), and only a fixed, small number of these

sweeps are usually needed. If the reduction in the number of degrees of freedom is by a

multiplicative factor, say 1
c , then the reduction in the cost of a Cholesky factorization

would be by a factor of 1
c3

. Even for small c, this results in a significant decrease in

cost, and for many problems it is reasonable to have c = 2d, where d is the dimension

in which the original PDE was posed.

The true efficiency in a multigrid procedure, however, lies in further elimination of
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Figure 3.2: Standard Geometric Coarsening of a Tensor-Product Grid

work, pushing the factorization and direct solution down to an arbitrarily small system,

usually of size independent of N . This is possible only if we restrict the residual in such

a way that the coarse-level error equation has similar character as the original, fine-level

equations. In the setting of a geometrically regular grid and an isotropic operator, such

as the Laplacian, this is readily accomplished.

Consider the 2D Laplacian discretized on an n× n grid, for n = 2` + 1. Relaxing

several times with a simple pointwise smoother such as damped Jacobi or Gauss-Seidel

leaves error that is geometrically smooth (as in Figure 3.1). With this smoothness, the

remaining error can be accurately represented with fewer degrees of freedom (DOFs).

Omitting every other grid point in each direction, such as is depicted in Figure 3.2,

significantly reduces the total number of DOFs while retaining a dense enough grid so

as not to lose accuracy on the smooth vectors. Error thus coarsened still satisfies the

residual equation, although now the relevant operator is the
(
2`−1 + 1

)
×
(
2`−1 + 1

)
grid

Laplacian.

On this grid, we can repeat the relaxation process to eliminate components of the

error which are oscillatory relative to the coarse mesh size, then repeat the coarsening

process. Proceeding in this manner until a coarsest grid, of small size (independent of

n or `), is reached, we can solve exactly for the remaining error using a simple direct

solver such as Cholesky. These corrections must then be interpolated upward to the



25

relevant grids. Since the error on the finer grid is always smooth (relative to that grid),

a simple interpolation of the correction from the coarser grid is sufficient to get the

accurate representation that is sought. For this reason, a bilinear interpolant is used to

represent the correction.

The method is most easily specified in a recursive manner. As such, we number

grids and operators from 1, indicating the finest level (that is, the level on which the

problem was posed), to L ≤ `, the coarsest level. Assuming a
(
2` + 1

)
×
(
2` + 1

)
fine

grid, reduced by a factor of approximately 2 each time (a
(
2k + 1

)
×
(
2k + 1

)
grid is

reduced to a
(
2k−1 + 1

)
×
(
2k−1 + 1

)
grid as in Figure 3.2), this means the coarsest grid

can be as small as 2 × 2 or 3 × 3, where inversion of the discrete Laplacian is easily

accomplished. We denote a vector on grid k as x(k), a matrix operator on grid k as

A(k), and the intergrid transfer operators, Ik
k+1 (interpolation) and Ik+1

k (restriction).

Thus, we give the following, recursive definition of the multigrid algorithm.

Algorithm 1 (x(k)
MG = MGk(x

(k)
0 ,b(k),ν1,ν2,µ)).

(1) Relax ν1 times on A(k)x(k) = b(k), with x(k)
0 as the initial guess, to produce the

approximation x(k)
1 .

(2) Form the residual, r(k) = b(k) −A(k)x(k)
1 .

(3) Restrict the residual, b(k+1) = Ik+1
k r(k).

(4) If k + 1 6= L, call MGk+1, µ times, replacing the initial guess with the previous

result each time:

x(k+1)
0 = 0

for j = 1 to µ,

x(k+1)
j = MGk+1(x

(k+1)
j−1 ,b(k+1), ν1, ν2, µ).

x(k+1) = x(k+1)
µ .

If k + 1 = L, solve the level L system directly to obtain x(L).
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(5) Interpolate and add the correction, x(k)
2 = x(k)

1 + Ik
k+1x

(k+1).

(6) Relax ν2 times on A(k)x(k) = b(k), with x(k)
2 as the initial guess, to produce the

approximation x(k)
MG.

In this definition, we implicitly use the definitions of the coarse level matrices,

A(k), and intergrid transfer operators, Ik
k+1 and Ik+1

k . Due to the geometric context, we

may consider defining these operators based on the coarse-grid geometry. The standard

geometric MG definitions, as discussed above, give A(k) as the Laplacian discretized on

grid k, Ik
k+1 as bilinear interpolation (in 2D), and Ik+1

k as injection of values. These

choices are also possible in 1D and 3D, with linear and trilinear interpolation, respec-

tively.

An important question to answer is, of course, how the multigrid cycle converges.

While for large ν1, ν2, and µ the cycle might be viewed as a direct solver, it is much

more practical to consider small ν1, ν2, and µ and analyze it as an iterative method or

preconditioner. In fact, it is quite common to consider only the special cases of µ = 1

and µ = 2. When µ = 1, the cycle takes the form of a traverse downward to the coarsest

grid, followed by a return directly upward to the finest grid. For this reason, a multigrid

cycle with µ = 1 is often referred to as a V-cycle, from the usual depiction as in Figure

3.3. When µ = 2, the cycle takes the form of a downward traverse, followed by a single

step up, then down, then up two levels, and so on. When depicted graphically, as in

Figure 3.4, this appears in the shape of a W, thus giving the name of a W -cycle.

Brandt [16, 19] demonstrates through local mode analysis the convergence of these

cycles for the Laplacian and many other problems. This analysis considers the action of

the components of the multigrid cycle on the standard Fourier basis. Through it, quite

sharp bounds on the reduction of the Fourier modes can be obtained, translating into

sharp bounds on the asymptotic performance of the multigrid method.

Another form of analysis, due to Bramble et al. [9, 11, 12], considers the behavior
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of the multigrid V-cycle as a stationary linear iteration. Writing the multigrid iteration

in this way, they show that the A-norm of the error propagation matrix, I − BA, is

bounded by a constant less than one. While this guarantees convergence of the multigrid

method, the bound is not sharp. In particular, the bound depends on a number of

properties of relaxation and of the matrix, A, which themselves are not easily made

sharp, and the combination is then certainly not so.

Regardless of the analysis, one arrives at a bound of the form

‖enew‖ ≤ ρ‖eold‖.

This says that a reduction of the norm of the error by any fixed factor requires only a

constant number of multigrid cycles. From local mode analysis, it can often be shown

that, for a given PDE, ρ is independent of N . Thus, no matter what resolution the

finest grid has, only a fixed number of multigrid cycles are required to reduce the error

by a fixed factor.

Perhaps a more appropriate bound, however, is the effort required to reduce

the error by a factor proportional to the error in the discretization of the PDE. If we

discretize the symmetric PDE, Lu = f , appropriately, we can often realize the bound

‖u− ũ‖ ≤ c
n2 ‖u‖, for some constant c, where u denotes the solution of the continuous

problem and ũ the solution of the discretized problem on an n × n grid. In this case,

asking that the error in the discrete solution be of the same order as the error between

the exact discrete and continuous solutions means reducing the original, O(1) error by

a factor of 1
n2 . This reduction requires O(log n) steps.

To consider the total cost of multigrid, we must also analyze the cost of each

iteration. Considering the case where A is sparse, with a fixed number of non-zeros per

row regardless of N , a matrix-vector multiply costs O(N) operations. If this sparsity is

preserved on all coarse grids, each cycle of the multigrid algorithm on a grid k problem

of size N (k), MGk, costs O((ν1 + ν2)N (k) + µ × cost(MGk+1)) operations, with MGL
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costing a constant number of operations. Undoing the recursion, we see that for µ = 1,

the total cost of a cycle from the finest grid is O((ν1 + ν2)N), providing that coarsening

is accomplished rapidly enough. Thus, depending on the criterion for reducing error,

we can consider multigrid to be either an O(N) or O(N logN) solver.

In fact, one can also consider multigrid in a nested iteration context. By continu-

ation in N , we can have an initial guess on level k whose error is only a constant factor

times the discretization error for the level k problem. An analysis of this situation,

where only a fixed number of multigrid (V-)cycles is performed on each level shows

that the total cost of nested-iteration multigrid is, in fact, O(N) to reduce the error in

the discrete solution to the size of discretization error on a particular level. We do not

explicitly consider such iterations here, but it is important to realize that this is usually

possible.

While geometric multigrid can be quite effective, its performance is also quite

problem dependent, and, in many situations, this performance breaks down. The bi-

linear interpolation used is appropriate in the case when we expect small changes in

the fine-grid solution, x, between coarse and fine grids. For some problems, particu-

larly those with discontinuous coefficients, this is not necessarily the case. While the

continuum solution, p, is continuous for the discontinuous-coefficient diffusion operator,

−∇ · K∇, the gradient, ∇p, is not. The normal flux, (K∇p) · n, however, is continuous

across any interface with unit normal vector n. Bilinear interpolation preserves continu-

ity of ∇p, which is, in general, not continuous across an interface between values of K.

Thus, designing a multigrid method for the discontinuous-coefficient diffusion problem

requires a different definition for interpolation near the discontinuities in the diffusion

coefficients.

A similar breakdown occurs in the case of strong anisotropy or convection. In

these cases, interpolation that ignores the directionality of the operator cannot prop-

erly approximate error components whose smoothness shares this directionality. In the
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extreme anisotropic case, the operator is essentially one dimensional and interpolation

should follow suit. Similarly, in the case of a convection-dominated flow, information

should flow downstream and thus interpolation should be biased toward the flow. A

naive interpolation based solely on geometric location of the nodes cannot take these sit-

uations into account, and, thus, the definition of interpolation for an efficient multigrid

method for these problems must be reconsidered in the presence of such complexities.

Accurate interpolation is also difficult when the geometry is not regular. Simple

examples of situations that cause trouble for multigrid with predefined interpolation

schemes include non-regular mesh spacing in a tensor-product grid and non-regularly

shaped elements. In both of these cases, a simple bilinear interpolation based on the

assumption of equal mesh spacing can significantly over- or under-estimate the appro-

priate correction factor. In case of non-regular spacing, a solution can easily be seen

in allowing the interpolation to depend on the grid spacing, if it is known. For a non-

regular grid, however, achieving bilinear interpolation may require computation of a

unique interpolation stencil for each fine-grid node.

Instead of developing a new multigrid code for each unique complication, we

consider the approach that many of these situations can be handled by a more intelligent

algorithm. Such an algorithm was first introduced in 1981, by Alcouffe et al. [2]. It is

this algorithm that we discuss next, followed by further generalizations of the geometric

multigrid ideas that allow more extreme complications to be addressed automatically.

3.2 The Black Box Multigrid Method

Early multigrid studies focused primarily on fast algorithms for the isotropic

Poisson problem, −∆p = f . However, algorithms developed for this problem [16] were

quickly recognized to lack robustness. One particular variation of significant interest

is the variable-coefficient Poisson problem, −∇ · K∇p = f . Here, we consider the

coefficient, K(x), to vary significantly and discontinuously across the domain. K is
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allowed to be tensor valued, although for most applications it is constrained to be

symmetric and positive definite. Alcouffe et al. [2] first considered a multigrid algorithm

for this problem, which Dendy later extended in a series of papers also addressing non-

symmetry, systems of PDEs, periodicity, and singularity [34, 35, 36, 37].

The result of this work is the black box multigrid algorithm, also known as

BoxMG. The name reflects the idea that the method can be employed as a black-

box technique: the user need only provide the matrix, A, and right-hand side, b, for

solution of Ax = b. The overall form of the algorithm is the same as that in the geomet-

ric context, as outlined in Section 3.1. The differences between BoxMG and geometric

multigrid (and, indeed, between almost any two multigrid methods) are in the choice

of the relaxation method, coarse-grid selection procedure, intergrid transfer operators,

and coarse-grid operator definition.

The choice of a relaxation scheme is complicated by the assumption of jumps in

K. For a region where K is constant or varies slowly, pointwise relaxation is quick to

smooth the error. However, when K changes significantly across an interface, point-wise

relaxation on a given level may be slow to propagate changes in x(k) away from that

interface. This is acceptable in the view that the coarsest-level system, A(L)x(L) = b(L),

is solved exactly, resolving the interfaces on a coarse mesh, and under the assumption

that this solution suitably represents the interface when interpolated to the finer grids.

A similar slowing of smoothing is seen in the case of anisotropy, when K is tensor valued

and K1,1 � K2,2 in 2D (or vice-versa). In this case, the reduction factor of the oscillatory

modes (those in the upper half of the matrix spectrum) using pointwise Gauss-Seidel

relaxation approaches 1 as the anisotropy becomes stronger [16]. A better strategy in

this case is the use of line relaxation in the direction of the larger coefficient value. In

the anticipation of added robustness, it is then often useful to choose line relaxation

(line Gauss-Seidel) as the smoother in BoxMG. To avoid preselecting the direction of

any anisotropy in the PDE, a common practice is to perform an iteration of Gauss-
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Seidel on lines in x, followed by one on lines in y, as each relaxation sweep. In three

dimensions, this extends to successive solves along xy-, xz-, and yz-planes. Each of these

2D solves (for a plane Gauss-Seidel sweep) can be accomplished by an application of a

two-dimensional BoxMG cycle, thus preserving the multigrid optimality as relaxation

remains an O(N) process.

BoxMG assumes a fine grid with logically rectangular connections. In two di-

mensions, this implies that the discrete operator is structured based on a mesh around

quadrilateral elements. The non-zero structure of the matrix is limited to the 8 nearest-

neighbor connections as in a bilinear finite-element stencil. In three dimensions, this

concept is generalized to 27-point stencils, structured as in a regular division of Ω ⊂ R3

into cubes. As such, we can consider the operator to be posed on a regular, tensor-

product mesh in two or three dimensions. Thus, we refer to both coordinate directions

and cardinal directions when discussing the discretized operator, acknowledging that the

actual geometry of the discretization may not exactly correspond with these directions.

Using this structure, coarsening can easily be done geometrically, as in the case

of a regular grid structure. While the physical grid points may not lie in a regular

array, the assumption of a logically rectangular structure allows us to treat the matrix

as if they did. In the bilinear interpolation case, performance would suffer if the grid

had a significantly irregular structure. So, the disadvantage of this approach is that

any stretching, compression, and irregularity in the grid must be accounted for in the

interpolation operator. This is not a new inconvenience, however, as BoxMG is already

based on the premise that interpolation is not predetermined by geometry.

The major innovation in BoxMG is that the coefficients of interpolation, Ik
k+1, are

chosen to depend on the fine-grid operator, A(k). Complications, such as jumps in the

diffusion coefficient, K, or unequal grid spacings, are reflected in the matrix coefficients,

and thus it should be possible to choose an operator-dependent (or operator-induced)

interpolation in a manner to accommodate these situations. In fact, Dendy shows that
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Figure 3.5: Compass-Based Notation for the Stencil at Node (i, j)

it is possible to do so in the case of a symmetric, positive-definite operator, A(1) [34],

and also in more general situations [35, 36, 37].

The choice of interpolation in [34] is based on the desire to approximately preserve

the continuity of the normal flux, (K∇p) · n, across an internal boundary (grid line).

Moulton et al. [67] shows that this is, in fact, exactly the case for a 9-point bilinear

finite element discretization. For this reason, the BoxMG algorithm has proven to be

quite useful for problems with large jumps in K. We use BoxMG in this context in

Chapter 4.

In two dimensions, we can consider a row of the matrix in stencil notation, writing

the stencil using compass-based notation, as shown in Figure 3.5. It is important, how-

ever, to exploit the symmetry of the operator in order to achieve an efficient implemen-

tation of the method, as this can reduce the needed storage by a factor of approximately

0.5. A second representation of the matrix in terms of cells is also possible, where each

entry in the stencil is associated with an edge of the matrix graph and, thus, an element

that it crosses or is adjacent to. Reducing storage in this representation confuses the

notation, which is shown in Figure 3.6, where stencil entries are numbered according to

the node in the Northeast corner of the element they are associated with. Note that,

in both cases, the off-diagonal entries are negated, so that (in general) the values ref-
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erenced are positive. We derive the interpolation operator based on the compass-based

notation, although the element-based notation is typically used in the referenced papers.

Considering interpolation of a grid function x(k+1) from grid k + 1 to grid k, we

examine the interpolation to a node (i, j) on the fine grid, in four distinct situations.

Denote a coarse-grid node, (iC , jC), to be the closest node to (i, j), referring to the

particular node on grid k+ 1 that either corresponds to the fine-grid node, lies directly

to its west, lies directly south, or lies south-west of the fine-grid node. As always, inter-

polation is needed only for functions that are smooth on the fine-grid. This smoothness

is represented by a small residual, and thus an error interpolated to grid k satisfies an

equation with small right side. Thus, when considering an equation to represent this

error, we present it with a zero right side. It is possible to consider the non-zero residual

in this context, which may be significant in certain situations [34].

There are exactly four possibilities for interpolation. The simplest is when (i, j)

corresponds to a coarse-grid node. In this case, the value of x is preserved:

(Ik
k+1x

(k+1))(i,j) = x(k+1)
(iC ,jC).

The case of the fine-grid node lying between two coarse-grid nodes occurs in

two variations, along horizontal lines and along vertical lines. In these situations, the

interpolation formula is arrived at by collapsing the grid k operator stencil. When the
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fine-grid node lies on a horizontal line between coarse-grid nodes (iC , jC) and (iC+1, jC),

averaging the stencil for (i, j) vertically to arrive at an equation involving only these

three nodes’ values gives

(
−SNW

i,j − SW
i,j − SSW

i,j

)
x(k+1)

iC ,jC
+
(
−SN

i,j + SO
i,j − SS

i,j

)
x(k)

i,j

+
(
−SNE

i,j − SE
i,j − SSE

i,j

)
x(k+1)

iC+1,jC
= 0.

This equation can be rearranged to express x(k)
i,j in terms of the coarse-grid values,

arriving at the definition of interpolation as

(
Ik
k+1x

(k+1)
)

i,j
=

(
SNW

i,j + SW
i,j + SSW

i,j

)
x(k+1)

iC ,jC
+
(
SNE

i,j + SE
i,j + SSE

i,j

)
x(k+1)

iC+1,jC

−SN
i,j + SO

i,j − SS
i,j

.

Similarly, for a fine-grid node lying on the vertical line between coarse-grid nodes (iC , jC)

and (iC , jC+1), averaging the stencil in the horizontal direction derives the interpolation

formula to be

(
Ik
k+1x

(k+1)
)

i,j
=

(
SSE

i,j + SS
i,j + SSW

i,j

)
x(k+1)

iC ,jC
+
(
SNE

i,j + SN
i,j + SNW

i,j

)
x(k+1)

iC ,jC+1

−SE
i,j + SO

i,j − SW
i,j

.

The fourth and final case is when a fine-grid node is embedded in the center of

a coarse-grid element. In this orientation, the analogous situation would be to average

the stencil based on the four nearest coarse-grid neighbors. It is, however, much simpler

to consider determining the value based on the homogeneous fine-grid matrix equation.

That is, consider interpolation to the four fine-grid neighbors of this node first, then use

these values to interpolate to node (i, j). This results in the interpolation formula

(
Ik
k+1x

(k+1)
)

i,j
=
(
SSW

i,j x(k+1)
iC ,jC

+ SS
i,j(I

k
k+1x

(k+1))i,j−1 + SSE
i,j x(k+1)

iC+1,jC

+ SW
i,j (I

k
k+1x

(k+1))i−1,j + SE
i,j(I

k
k+1x

(k+1))i+1,j

+SNW
i,j x(k+1)

iC ,jC+1 + SN
i,j(I

k
k+1x

(k+1))i,j+1 + SNE
i,j x(k+1)

iC+1,jC+1

)
/
(
SO

i,j

)
,

which, when the formulae for Ik
k+1x

(k) above are substituted, explicitly defines interpo-

lation to these nodes based on their four nearest coarse-grid neighbors.
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When considering the Laplacian, we chose the coarse-grid operator simply as the

coarse-scale discretization of the continuum operator. The fine-scale fluctuations in K

may cause difficulty in directly discretizing the variable-coefficient PDE on a coarse

grid, however. Instead, considering the original PDE to be discretized in a variational

context (such as a finite-element discretization), we can make a very different choice.

Posing the symmetric matrix equation, Ax = b, as a minimization problem, we

define the functional, F (y) = 1
2〈Ay,y〉−〈b,y〉, so that x = argmin

y
F (y). A coarse-grid

correction is then chosen to reduce F (y) optimally, for a given approximation, y. That

is, we look to minimize F (y+ If
c w) over all choices of w on the coarse grid (here we use

the generic interpolation operator, If
c , to denote interpolation from some coarse grid to

some fine grid). Doing so, the optimal choice of w then satisfies the equation((
If
c

)T
A
(
If
c

))
w =

(
If
c

)T
(b−Ay) .

Notice that the right side of this equation has the form of a restriction of the current

fine-grid residual, b − Ay, with the restriction operator chosen as the transpose of

interpolation. Also, notice that the coarse-grid operator is a symmetric reduction of

the fine-grid operator. This minimization viewpoint is applicable for any symmetric

fine-grid operator, given the functional formulation. Thus, the choices of restriction as

the transpose of interpolation and the RAP (restriction-A-prolongation) form of the

coarse-grid operator are often called a variational formulation. The RAP form of Ac

with R = P T is also referred to as a Galerkin formulation, borrowing from the finite-

element theory to which it is quite similar.

The simplicity of the BoxMG algorithm has allowed it to be extended to a number

of additional situations. For non-symmetric problems, interpolation is often based on

the symmetric part of the operator (which, in the case of reaction-convection-diffusion

models, is dominated by the diffusion terms), whereas restriction is chosen by consid-

ering the transpose of the fine-grid operator [35]. Systems can easily be handled by
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generalizing the definitions above so that the matrix entries are themselves block ma-

trices connecting co-located degrees of freedom [36]. In Chapter 4, we make use of this

algorithm for singular problems, with periodic or full-Neumann boundary conditions.

In [37], it is shown that this complication can be addressed through a simple adjustment

to the solution of the coarsest-scale problem, for example, making it non-singular by

adding a condition on the mean of the coarse-grid solution.

While the BoxMG algorithm has proven very useful for logically structured grids,

many discretizations lack this regularity. The main ideas of the method could be ex-

tended based on a known geometry of a discretization, but it is not practical to require a

new implementation for each new geometry. In fact, the geometry may not be available

to the solver or may not even be known. For this reason, Brandt et al. [23] intro-

duced the algebraic multigrid algorithm, which uses the same idea of operator-induced

interpolation, but allows for more general grid geometries to be addressed automatically.

3.3 Algebraic Multigrid Methods

Algebraic multigrid (AMG) methods were first introduced by Brandt et al. [22]

for the solution of geodetic problems. This early motivation called for a departure from

geometric multigrid methods because of the inherent discreteness of the problem and

the lack of useful information about its geometry (as grid locations are the unknowns

in geodetic computations). The usefulness of AMG extends far beyond this particular

application, however, as the algorithm has proved effective for problems with discontin-

uous coefficients, such as those for which BoxMG was designed, and also for problems

with irregular or unknown geometry.

While the term algebraic multigrid now covers many different algorithms, a sig-

nificant number of these are variations on the classical algorithm, which was first intro-

duced in the early 1980’s [22, 23] and most often linked to the version implemented by

Ruge and Stüben [72, 73]. Here, we present the Ruge-Stüben algorithm, which we refer
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to simply as AMG. The terms AMG and algebraic multigrid have come to mean both

the Ruge-Stüben algorithm and the entire class of multigrid methods that are algebraic

in approach. We follow this convention as the intent is usually clear by context. In

the next section, we detail the smoothed aggregation multigrid method, an algebraic

multigrid method that differs significantly from that presented by Ruge and Stüben. In

Chapter 5, we discuss some generalizations of both of these algorithms.

As the AMG algorithm uses only information from the matrix, A, a description

of it requires certain notation to account for the lack of geometric intuition. Each row,

i, in the matrix is identified with an unknown (as always) and a node in the matrix

graph, numbered i. The connections in the matrix then represent weights on the edges

of the graph (if aij = 0, there is no edge between nodes i and j). Node (row) i is said

to strongly depend on node (row) j if −aij ≥ θmax
k 6=i
{−aik}. Likewise, node i strongly

influences node j if −aji ≥ θmax
k 6=j
{−ajk}. Here, θ is a predetermined threshold value,

0 ≤ θ ≤ 1, often chosen to be 0.25. The negative signs in the equation reflect the

origin of AMG in finite-difference and finite-element applications, where A is often an

M-matrix (and so has negative off-diagonals). An alternate definition of strong influence

and dependence uses |aij | instead. Notice also that these definitions are adjoints: if i

strongly depends on j, then j strongly influences i and vice-versa.

The major differences between AMG and geometric multigrid methods are in

the choice of the coarse grids and intergrid transfer operators. While geometric multi-

grid makes use of additional information, AMG makes these choices based solely on

the matrix, A, in the equation, Ax = b. This is possible as relaxation processes are

well understood for a large class of matrices. In particular, it is known [18] that point

relaxation schemes slow down when the residual in the equation becomes small when

compared with the error. Since relaxation and coarse-grid correction must be comple-

mentary, we seek to define interpolation so that all such errors are in its range. We also

look to define coarse-grid operators so that this smooth, fine-level error can be easily
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and accurately resolved on the coarse level.

The key to the efficiency of any multigrid process lies in the complementarity of

the relaxation and coarse-grid correction processes. For this reason, any discussion of

the classical AMG algorithm begins with the defining property of algebraic smoothness

that the residual is, on average, small after a few sweeps of relaxation: (Ae)i ≈ 0 for

each point i. Considering pointwise relaxation, such as Gauss-Seidel, and a symmetric

positive-definite operator, such errors are typically associated with the small eigenvalues

of the operator, and this is often what is meant when discussing algebraically smooth

errors. Also central is the assumed property that such errors vary slowly along strong

connections in the matrix. This additional assumption is generally applicable for dis-

cretizations of scalar elliptic PDEs, for which AMG was originally designed. Other

problems, such as systems of PDEs, may require other assumptions on the nature of

algebraically smooth errors. In any case, awareness of this assumption is important in

analyzing the performance of AMG, particularly when it is poor.

To construct interpolation to approximate a general algebraically smooth error,

e, we use the premise of a small residual (that, for example, ‖Ae‖ � ‖A‖ · ‖e‖A) to

conclude that, for a given row, i, (Ae)i ≈ 0 or

aiiei ≈ −
∑
j 6=i

aijej . (3.1)

Now, suppose that a coarse set of points that forms a subset of the fine DOFs has been

chosen (one strategy for which is discussed below). Then, the fine-level DOFs can be

represented as {1, 2, . . . , N} = C ∪F , where C is the set of coarse-level points and F is

the set of remaining fine-level points (so C ∩ F = ∅). Since A is sparse, we introduce

“neighborhood” notation: Ni = {j : aij 6= 0}, Ci = C ∩Ni, and Fi = F ∩Ni. Equation

(3.1) can then be rewritten as

aiiei ≈ −
∑
j∈Ci

aijej −
∑
k∈Fi

aikek. (3.2)



40

Were the last sum not present in Equation (3.2), this expression could be used to define

interpolation because it would give the F -point value, ei, approximately as a sum of

the Ci-point values. The aim is therefore to “collapse” the connections from point i to

points k ∈ Fi onto the points {j ∈ Ci} ∪ {i}. That is, we want to set aik, k ∈ Fi, to 0

while adjusting aij , for j ∈ Ci, and aii in some way to compensate for the inaccuracies

this elimination introduces. The main assumption needed to collapse the stencil is that

the values of algebraically smooth e at Fi points can be written in terms of its values

at points in Ci ∪ {i}:

ek ≈
∑
j∈Ci

ωi
kjej + ωi

kiei, for k ∈ Fi. (3.3)

Then, we could substitute this expression into the latter sum in Equation (3.2) to

obtain an expression for ei in terms of ej , j ∈ Ci, which is exactly the aim. Note

that Equation (3.3) is a special form of interpolation from Ci ∪ {i} to Fi. This special

interpolation formula is used in reducing the stencil connections to determine the final

interpolation formula, so this overall process is sometimes called “twice-removed” or

“iterated” interpolation.

Now, in classical AMG algorithms, the {ωi
kj} in Equation (3.3) are determined

from {akj} based on the additional assumption that e is constant along strong connec-

tions. So, first we must ask the question as to whether the connection between i and

k is important. If k does not strongly influence i, then its value is not helpful in inter-

polation as it is not a strong interpolation point. The set of such k is denoted Fw
i , and

referred to as the set of weak connections. These connections are not simply discarded;

rather, their values are collapsed onto the diagonal. That is, ωi
kj = 0 for j 6= i, and

ωi
ki = 1. Notice that this approach is, in fact, quite stable. If the classification of k ∈ Fi

misidentifies a strong influence as a weak one, it replaces the value ek with ei, which

(because of the assumption about smooth error and strong connections) are, in fact,

approximately equal.
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The remaining k ∈ Fi \Fw
i ≡ F s

i all strongly influence i. Adding the requirement

that a node k ∈ F s
i is also strongly dependent on some j ∈ Ci, then we can hope to

determine the value at point k based on the coarse-grid neighbors it has in common with

i. Since the strength of k’s connection to a point j ∈ Ci is proportional to the matrix

coefficient akj , the value ek can be approximated by the average of these ej weighted

by their coefficients. That is,

ek =

∑
j∈Ci

akjej∑
l∈Ci

akl

.

An important property of this intermediate interpolation formula is that it is an average;

if e is constant for all j ∈ Ci, then it takes the same value at k. For problems such

as the Laplacian, where the smoothest mode is the constant vector (up to boundary

conditions), it is quite important to ensure the accuracy of interpolation for this mode.

Combining these approximations yields an overall interpolation formula for i ∈ F :

ei =
∑
j∈Ci

wijej , with

wij = −

aij +
∑
k∈F s

i

 aikakj∑
l∈Ci

akl


aii +

∑
m∈F w

i

aim

.

The effectiveness of this interpolation operator is now very dependent on the

quality of the coarse grid. This is apparent from the assumption that each point k ∈ F s
i

has a strong dependence on some j ∈ Ci. In addition, we need the coarse grid to satisfy

an often contradictory condition that it must be small enough that there is a real benefit

to coarsening. This is typically expressed by saying that the size of C must be less than

a fixed factor of N (as we saw in the geometric case, this is necessary for each cycle to

have O(N) cost), where we typically seek a factor of 1
2d or smaller (when the fine-grid

matrix comes from a problem in Rd). At the same time, we do not want the coarse

grid to be too small, as that would limit the correction to only a very small-dimensional
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space.

These opposing views are best expressed through two heuristics that are often

used to describe the AMG coarsening process:

• For each point i ∈ F , every point j that strongly influences i should either be a

coarse-grid point in the set Ci or be, itself, strongly influenced by at least one

point in Ci.

• The set C should be a maximal subset of {1, . . . , N}, where no point in C

strongly depends on another point in C.

The first heuristic clearly addresses the concern that a node k ∈ F s
i must strongly

depend on something in Ci. The second heuristic leads to a sort of independence in

C, attempting to guarantee that the size of C is significantly less than N . It also

ensures that the coarse grid is not too small, as of all subsets, C, that have no pairs of

strongly-connected nodes, we look to take the largest of them as the coarse grid.

Once we have chosen the coarse points, C, and interpolation operator, P , we

must still choose a restriction operator, R (for transferring the residuals to the coarse

level), and a coarse-level operator, Ac (for defining the coarse-level correction equation).

Assuming that A is a symmetric positive-definite matrix, it is natural to define these

operators by the Galerkin conditions (cf. [73] and the previous discussion): R = P T

and Ac = RAP .

AMG is a generalization of classical geometric multigrid. It is an efficient solver

for many problems, including those involving discretizations on stretched or irregular

grids, or discretizations of many problems with anisotropic or variable coefficients. There

are, however, still many problems for which AMG is not entirely effective as a black-

box solver, including problems with highly anisotropic or highly variable coefficients,

and those coming from the discretization of certain systems of PDEs such as Stokes or

nearly incompressible linear elasticity. Simply put, the further the algebraically smooth
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components of a problem are from being locally constant along strong connections, the

more the performance of AMG suffers without additional changes to the algorithm.

Many variations on the Ruge-Stüben have been proposed since its first introduc-

tion. These involve either an alternate choice of interpolation, perhaps to fit different

smooth components or take a different stencil, or an alternate choice of the coarse grid.

Much recent work has been devoted to choosing the coarse grid, particularly for imple-

mentations in parallel, or problems that do not have the classical ellipticity upon which

to rely. In Chapter 5, we consider a generalization of the interpolation definition. A

new idea for choosing coarse-grid points is discussed in the remarks on future work in

Chapter 6.

3.4 Smoothed Aggregation Multigrid

While many algebraic multigrid methods can be viewed as adaptations of the

Ruge-Stüben algorithm, this is not the case for smoothed aggregation (SA). First in-

troduced as a two-level algorithm for accelerating a given relaxation scheme [77], this

method demonstrates significant improvement to the aggregation multigrid method.

For this reason, we first consider some details of the aggregation multigrid method,

followed by the extension to smoothed aggregation. In this context, we assume that A

is symmetric and positive definite, coming from the discretization of an elliptic second-

or fourth-order PDE.

Aggregation methods originated in economics, where similar products are con-

sidered together instead of individually. This procedure allows significant reduction in

the problem size, while maintaining accurate representation of the global dynamics. If

detail within a product aggregate is required, solution of a much smaller set of equations

(corresponding only to products within a class) is necessary. In multigrid terminology,

the coarse grid is selected as a collection of subsets of the fine grid. A node on the coarse

grid is associated with several fine-grid nodes; each coarse-grid node is an aggregate of
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fine-grid ones. Interpolation is typically then chosen as piecewise constant over each ag-

gregate. Following the notation of Mı́ka and Vaněk [64], the fine grid, U = {u1, . . . , uN},

is partitioned into aggregation classes {Aj}N
(2)

j=1 , where N (2) is the size of the first coarse

grid, such that

(1) ∀ui ∈ U,∃j such that ui ∈ Aj .

(2) Aj ∩ Ak = ∅ if j 6= k.

(3) If up, uq ∈ Aj , then ∃ui ∈ U such that up, uq ∈ Ni.

The restriction operator, R, is then defined as

Rij =

 1 for uj ∈ Ai,

0 for uj /∈ Ai.

For symmetric matrices, A, the remaining operators are given variationally, with in-

terpolation given by P = RT and the coarse-grid matrix by the Galerkin condition,

Ac = RAP . Mı́ka and Vaněk show that, using these operators, the two-level multigrid

process is convergent [64]. They also show that a more efficient version of this method

can be arrived at by amplification of the coarse-grid correction by an easily computed

factor [65].

Vaněk further extended this method by noticing that improved convergence could

be obtained with an intuitive modification of the interpolation operator, P [77]. In

unsmoothed aggregation, columns of P correspond to step functions over the aggregates.

Thus, the range of P includes only piecewise-constant vectors. While the exact null space

of a differential operator is usually in this range, many algebraically smooth vectors are

not well represented by their projections onto a piecewise-constant basis. In SA, the

interpolation operator from unsmoothed aggregation is left multiplied by the weighted

Jacobi operator, I − ωD−1A. One can view this process as smoothing the columns of

the interpolation operator; instead of a column of P corresponding to a step function



45

over an aggregate, the columns of P now have smooth shape. The effect on the range

of interpolation is significant.

With this modification, the performance bound of the two-level, non-smoothed

aggregation method discussed in [64, 65] can be improved [77]. Choice of the weighting

parameter, ω, is, of course, very important in the actual performance of the method.

This importance is reflected by its appearance in the performance bound, but a good

choice of ω is obscured by the other, matrix-dependent parameters that appear in this

bound. The algorithm can be naturally extended to a multilevel one, as was done in

[78], and similar performance bounds can be determined. The use of overcorrection,

as in [65], is again important in the overall performance of the algorithm, giving, at

low additional cost, an optimal reduction of error in the direction of the coarse-grid

correction. How to best choose ω is still obscured by the proofs that the smoothed

aggregation method converges both without and with overcorrection. While this theory

provides no insight, in a series of numerical examples Vaněk chooses ω = 0.63 and shows

good numerical convergence rates [78].

An important extension of this algorithm, due to Vaněk et al. [79, 80], allows the

application of the smoothed aggregation method to systems of PDEs and to higher-order

problems. In this generalization, the fine-grid problem is assumed to have a near null

space spanned by r vectors. An aggregation multigrid approach for this situation would

ask for each of these r vectors to be in the range of interpolation. Accommodating

this requires multiple columns of interpolation over each aggregate, which is clearly

allowable.

Given r vectors that span the near null space of A, these vectors are partitioned

into subvectors over each aggregate. These local representations of the near null space

are then orthogonalized via the QR factorization. The Q factor for a given aggregate

spans the same local space as the original r vectors restricted to that aggregate. The

tentative prolongation operator, P , is then formed by assembling these local factors;
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the first r columns contain the Q from the first aggregate in the rows corresponding to

that aggregate and zeros elsewhere. Similarly, columns (j − 1)r + 1 through jr contain

the Q from the jth aggregate on rows corresponding to nodes in that aggregate, and

zeros elsewhere. Reordering the rows of A, such that those corresponding to degrees of

freedom in each aggregate are grouped together, P has the block form

P =



Q1 0 · · · 0

0 Q2 · · · 0
...

...
. . .

...

0 0 · · · QN2


.

This operator is then left-multiplied by the weighted-Jacobi smoothing matrix to form

interpolation. Restriction and the coarse-grid matrix are then formed using the varia-

tional conditions.

This method can be extended to a multilevel method because the QR factor-

izations used in creating the tentative prolongation also produce sufficient information

about the coarse-grid near null space. Notice the block structure in P , that the only

nonzeros on the rows corresponding to a given aggregate come from the QR factoriza-

tion. Thus, if P is applied to a block vector in which rows (j−1)r+1 through jr contain

the R factor, the resulting vector matches the original r vectors’ values on the fine grid.

This block vector (with r columns and r times the number of aggregates rows) gives

the near null space of the Galerkin coarse-grid operator of non-smoothed aggregation,

P TAP . The fine-grid vectors are taken to be algebraically smooth, however, and so

the weighted-Jacobi smoothing applied to these vectors does not significantly change

them. Similarly, while weighted Jacobi smoothing does significantly change the inter-

polation, it does not change the coarse-grid representations of the near null space. So,

the coarse-grid problem can again be solved by aggregating the coarse-level nodes and

using the coarse-level near null space representation to apply the smoothed aggregation

methodology.
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The generalized SA method can then be summarized as follows. Given the fine-

grid matrix, A(1) ≡ A, and right-hand side, b(1) ≡ b, a hierarchy of coarse problems is

generated by the Galerkin recurrence:

A(k+1) = (Ik
k+1)

TA(k)Ik
k+1, (3.4)

where the interpolation operator, Ik
k+1, is defined as the product of a given smoother,

Sk, and a tentative interpolation operator or prolongator, P k
k+1:

Ik
k+1 = SkP

k
k+1, (3.5)

for k = 1, . . . , L− 1. Given also a smoothing procedure for each level k ∈ {1, . . . , L− 1}

system, A(k)x(k) = b(k), of the form

x(k) ← (I −R(k)A(k))x(k) +R(k)b(k),

where R(k) is some simple approximation to the inverse of A(k) (e.g., R(k) = skI, where

sk ≈ 1
ρ(A(k))

) for l = 1, . . . , L−1, we have all of the ingredients necessary for a multigrid

scheme, as in Algorithm 1.

To make use of the existing convergence estimates, we assume that

λmin(I −R(k)A(k)) ≥ 0 and λmin(R(k)) ≥ 1
C2

Rρ(A(k))
,

with a constant CR > 0 independent of the level.

A good choice for Sk is described in [79] and scrutinized in more generality in [27].

For our purposes, it suffices to assume that the prolongation smoother, Sk, corresponds

to the Richardson iteration for the level k problem, with the particular choice of damping

suggested in [79]:

Sk = I − 4
3 λk

A(k),

where λk = 91−kλ̄ and λ̄ is a bound on the spectral radius of the fine-level matrix:

ρ(A(1)) ≤ λ̄. Starting with the given matrix, B1, whose columns represent the near



48

kernel of the fine-level operator, we construct the tentative prolongators and the coarse-

level representation of the near kernel components simultaneously to satisfy

P k
k+1B

k+1 = Bk, (P k
k+1)

TP k
k+1 = I. (3.6)

Obtaining (3.6) amounts to solving a set of local independent orthonormalization prob-

lems in which the basis given by the fine-level near kernel matrix, Bk, restricted to the

degrees of freedom of an aggregate, is orthonormalized using the QR algorithm. The

resulting orthonormal basis forms the values of a block column of P k
k+1, while the coeffi-

cients representing the old basis with respect to the new basis define Bk+1, as described

above.

With these choices of smoothing components and a coarsening procedure utilizing

(3.6), the standard smoothed aggregation scheme can be proven to converge under

certain assumptions on the near kernel components alone. The following such result

motivates the need for standard smoothed aggregation to have access to the near kernel

components.

Let 〈u,v〉A denote the Euclidean inner product over the degrees of freedom corre-

sponding to an agglomerate A, and ‖·‖A be the associated norm. Denote the A(1)-norm

by |||u||| = 〈A(1)u,u〉1/2. Let B1 denote an N × r matrix whose columns are thought

to form a basis for the near kernel components corresponding to A(1).

Theorem 1 (Theorem 4.2 of [79]). Let Ãk
i denote the set of fine-level degrees of

freedom corresponding to aggregate Ak
i on level k, and assume that there exists a con-

stant, Ca > 0, such that for every u ∈ IRN and every k = 1, . . . , L − 1, the following

approximation property holds:

∑
i

min
w∈IRr

‖u−B1w‖2
Ãk

i

≤ Ca
9k−1

ρ(A(1))
|||u|||2. (3.7)

Then

|||x̃−MG(1)(x,b(1))||| ≤
(

1− 1
c(L)

)
|||x̃− x||| ∀x̃ ∈ IRN,



49

where A(1)x = b(1), and c(L) is a polynomial of degree 3 in L.

Since the use of (3.6) is assumed, condition (3.7) reflects an assumption on all

tentative prolongators, P k
k+1, and can be equivalently restated as

∑
i

min
w∈IRr

‖u− P 1
2P

2
3 . . . P

k
k+1B

k+1w‖2
Ãk

i

≤ Ca
9k−1

ρ(A(1))
|||u|||2 (3.8)

for every u ∈ IRN and every k = 1, . . . , L − 1. Thus, in the context of smoothed

aggregation, condition (3.7) can be viewed as an alternative formulation of the weak

approximation property [13]. Note that the required approximation of a fine-level vector

is less stringent for coarser levels. Also, convergence is guaranteed even though no regu-

larity assumptions have been made. Although the convergence bound naturally depends

on the number of levels, computational experiments suggest that the presence of elliptic

regularity for standard test problems yields optimal performance (i.e., convergence with

bounds that are independent of the number of levels).

This generalized smoothed aggregation method has a clear advantage over the

Ruge-Stüben algorithm when applied to problems with higher-dimensional near null

spaces, such as the biharmonic or second-order systems like elasticity. Vaněk et al. [80]

demonstrate numerical performance of the method on a number of elasticity problems

with quite reasonable convergence factors per iteration, under the assumption of a known

discretization geometry. This comes, however, with a high setup cost. In practice, both

the Ruge-Stüben algorithm and SA can be used to solve problems such as discretizations

of linear elasticity models with reasonable performance.

The main drawback of the SA method is the need for knowledge of the near

null space. For problems such as elasticity, detailed knowledge of the discretization is

needed to represent the translations and rotations which make up the so-called rigid

body modes. Without control of the discretization, this information may not be avail-

able. In fact, if local rotations of the discretization matrix are employed (such as if the

matrix is rescaled for a block-Jacobi-preconditioned conjugate gradient method), these
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components may not even be easily recovered. We consider this situation in Chapter 5,

where effective solvers are designed without assuming the availability of this information.



Chapter 4

Multigrid and Upscaling for Flow in Porous Media

Modeling the flow of a single-phase, saturated fluid may be done with Darcy’s

law and conservation of mass, as in Equations 2.1 and 2.2:

u(x) = −K(x)∇p(x),

∇ · u(x) = Q(x).

Here, we consider methods of upscaling to cope with the large linear systems that arise

from discretizing these equations on the fine scales needed to capture the appropriate

physical behavior of the fluid.

4.1 Background

Regardless of the method chosen to discretize Equations 2.1 and 2.2, the result

is a linear system of the form Ax = b that we seek to solve. The primary difficulty in

solving such systems is the large size of the matrix, A, due to the fine mesh necessary

to capture fluctuations in K(x), which, in many physical examples, is highly variable,

often over a wide range of spatial scales. For this reason, it is difficult to perform

computation on a mesh that fully resolves all of the spatial scales in the permeability

and, hence, the solution. For example, a typical reservoir simulation involves a three-

dimensional physical domain several kilometers long in each direction. The primary

material properties of porosity and permeability can, however, vary on the scale of
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millimeters. Thus, simply representing the computational domain may require O(1018)

degrees-of-freedom (DOFs).

An alternate approach is clearly necessary in order to make any progress in such

a simulation. The primary concern in evaluating possible methods must be that of

accuracy versus computational cost. Many of the apparent possibilities offer very low

cost, but similarly low accuracy. Likewise, there is no shortage of high-accuracy, high-

complexity methods, although these are typically not feasible. Indeed, the high cost of

a fully resolved simulation is the reason we investigate these alternative techniques.

In practice, there is very little need or interest in having access to a complete,

accurate, fine-scale approximation of the primary variable, p(x). Rather, macroscopic

properties of the flow, such as total flux, breakthrough time, or extreme pressures, are

the important characteristics for simulation. While this suggests a coarse-scale simu-

lation, the fine-scale material properties may significantly influence these macroscopic

properties. We are, thus, constrained to consider methods that somehow utilize the full

fine-scale specification of the permeability.

We consider approaches of upscaling the fine-scale permeability and the fine-scale

PDE. That is, we look to define a coarse-scale permeability (or PDE) that captures the

essential features of the fine-scale variation, but does so on a scale that is computation-

ally tractable. A permeability determined by such techniques is known in the literature

as the equivalent, effective, upscaled, or homogenized permeability. We also consider

techniques of representing the PDE itself on a coarser scale, regardless of the the proper-

ties of upscaled permeabilities, but which achieve the goal of accurately approximating

the properties of interest using fewer DOFs.
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4.1.1 Two-scale Asymptotic Theory of Homogenization

This question of upscaling can be posed mathematically: find an appropriately

averaged form of the PDE,

−∇ · K(x)∇p(x) = Q(x), (4.1)

of the same form, but with constant (homogenized) coefficient, K̂. Supposing that the

symmetric and positive definite tensor, K(x), varies with two spatial scales, x and y =
x
ε

for small ε, we can introduce a classical, two-scale asymptotic analysis of Equation 4.1

subject to periodic boundary conditions [5]. The explicit introduction of the second

length-scale is indicative of a separation of the scales in K into a slowly varying scale

(x) and a fast scale (x
ε ). This two-scale behavior of the coefficient necessarily introduces

two-scale behavior into the solution, p, and so we write p(x) ≡ p(x, x
ε ) ≡ p(x,y). Now,

expanding p in powers of ε, we can perform the standard asymptotic analysis. In what

follows, we assume that variation of K is negligible on the slow scale and that K is

periodic in the fast scale. That is, K(x,y) ≡ K(y).

Writing

p = p0(x,y) + εp1(x,y) + ε2p2(x,y) + . . .

and formalizing ∇ = ∇x + 1
ε∇y, we separate powers of ε in the resulting two-scale

equations, −∇ · K(y)∇p(x,y) = Q(x), as

O

(
1
ε2

)
: A1p0(x,y) = 0, (4.2)

O

(
1
ε

)
: A1p1(x,y) +A2p0(x,y) = 0, (4.3)

O (1) : A1p2(x,y) +A2p1(x,y) +A3p0(x,y) = Q(x), (4.4)

splitting the operator, −∇ · K(y)∇, into

O
(

1
ε2

)
: A1 = −∇y · K(y)∇y,

O
(

1
ε

)
: A2 = −∇y · K(y)∇x −∇x · K(y)∇y,

O (1) : A3 = −∇x · K(y)∇x.
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While we could proceed further in this expansion, the first three terms are suffi-

cient for recovery of the homogenized (upscaled) operator. Equation 4.2 asks that

−∇y · K(y)∇yp0(x,y) = 0,

with periodic boundary conditions (in y) on p0(x,y). The unique solution to this

problem is p0(x,y) = p0(x), i.e., the leading term of the asymptotic expansion of p(x,y)

depends only on the slow scale, x.

Equation 4.3, for p1(x,y), then becomes

−∇y · K(y)∇yp1(x,y) = (∇y · K(y)∇x +∇x · K(y)∇y) p0(x)

= ∇y · K(y)∇xp0(x).

Introducing functions χj , for j = 1, 2, to be the periodic (in y) solutions of

A1χj = A1yj =
∑

i

∂

∂yi
kij(y), (4.5)

gives us the general solution of Equation 4.3,

p1(x,y) = −
∑

j

χj(y)
∂p0

∂xj
(x) + p̃1(x),

where p̃1(x) is any function independent of y. Trying to solve Equation 4.4 for p2(x,y)

leads to the homogenized equation for p0(x), due to the periodic boundary conditions

(in y) on p2(x,y). Since the solution to the equation, A1φ = f , φ periodic in y, exists

(and is unique up to an additive constant) if and only if
∫∫

f(y)dy = 0, the solution,

p2(x,y), to Equation 4.4 exists only if∫∫
A2p1(x,y) +A3p0(x)dy =

∫∫
Q(x)dy = |Y |Q(x), (4.6)

where |Y | is the area of the subdomain parametrized by y. Applying the divergence

theorem, ∫∫
∇y · (K(y)∇xp1(x,y))dy =

∫
(K(y)∇xp1(x,y)) · ds,
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and this boundary integral is zero by periodicity. Notice then that∫∫
A2p1(x,y)dy = −

∑
i

∂

∂xi

∫∫ (∑
l

kil(y)
∂p1

∂yl
(x,y)

)
dy

=
∑
i,j

∂

∂xi

∫∫ (∑
l

kil(y)
∂χj

∂yl
(y)

)
dy
∂p0

∂xj
(x),

and, thus, we can rewrite Equation 4.6 as

−
∑
i,j

∂

∂xi

(
1
|Y |

∫∫ (
kij(y)−

∑
l

kil(y)
∂χj

∂yl
(y)

)
dy

)
∂p0

∂xj
(x) = Q(x),

or as −∇x · K̂∇xp0(x) = Q(x), with

k̂ij =
1
|Y |

∫∫ (
kij(y)−

∑
l

kil(y)
∂χj

∂yl
(y)

)
dy.

If we also define a weak form of the operator A1,

a1(φ, ψ) =
∑
i,j

∫∫
kij(y)

∂φ

∂yj

∂ψ

∂yi
dy, (4.7)

we can express the homogenized permeability, K̂, as

k̂lm = − 1
|Y |

a1(χm − ym, yl). (4.8)

By Equation 4.5, a1(χm−ym, ψ) = 0 for any ψ periodic in y. Thus, a1(χm−ym, χl) = 0,

and we can also express K̂ as

k̂lm =
1
|Y |

a1(χm − ym, χl − yl). (4.9)

Since K(y) is symmetric (by our original assumption), bilinear form a1(·, ·) is also sym-

metric and Equation 4.9 implies the symmetry of K̂. Similarly, one can establish the

positive-definiteness of K̂ [5].

4.1.2 Bourgat’s Examples

This method was implemented by Bourgat [7] and tested for a number of model

problems discretized by triangular finite elements in two dimensions. Three particular
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Figure 4.1: Bourgat’s Shape-Variation Inclusion Problems

questions and related examples are considered in detail, which we also look at in Section

4.3.

In a periodic structure problem, such as the sand/shale examples of Section 2.2,

it may happen that the media is known to be composed of two materials, but the

exact geometry of the structure is unknown, even if some other properties (such as the

volume of each material present) are known. A simple model of this phenomenon may

be created by varying the shape of an inclusion within a homogeneous background, such

as in Figure 4.1, where the area of Ω1 is fixed to be 1
4 for all three shapes. A scalar

permeability, K(x), may then be given as, for example,

K(x) =

 1 x ∈ Ω0,

10 x ∈ Ω1.

(4.10)

Bourgat’s calculations of the homogenized permeabilities for these three cases show that

there is shape dependence in the homogenized permeability.

To test the dependence of the homogenized coefficients on the magnitudes of

permeability, consider fixing the geometry of the structure, as in Figure 2.1, but allowing

the permeability to vary. If scalar K(x) is given as

K(x) =

 1 x ∈ Ω0,

λ x ∈ Ω1,

with λ varying between 0 and∞, the homogenized permeability can be compared against

simple averages of the fine-scale K, such as the arithmetic and harmonic means.
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Figure 4.2: Bourgat’s L-Shaped Inclusion Problem

In both these examples, the given fine-scale permeability tensor is diagonal (in

fact, scalar) and symmetric with respect to lines x = 1
2 and y = 1

2 . A theorem of Bourgat

and Dervieux [7] implies that the homogenized tensors must then also be diagonal. To

test a case where such symmetry is broken, Bourgat considers the L-shaped inclusion,

shown in Figure 4.2. Even with a simple scalar permeability, such as in Equation 4.10,

the homogenized tensor is shown to be full.

These three simple problems demonstrate quite a range in the behavior of the

homogenized permeabilities. Thus, we also consider them as tests of our upscaling

method.

4.2 Upscaling Techniques

Bourgat shows that it is possible to compute the homogenized coefficient, K̂,

numerically using a sufficiently fine mesh on a periodic cell. In practice, however, we

are interested in determining equivalent operators (and recovering macroscopic solution

features of the flow) in situations where this theory does not strictly apply. While the

assumption of periodic cells may be reasonable in some material science applications,

it is not realistic in the case of flow in an aquifer or reservoir. For this reason, we
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distinguish between the theory of homogenization, as discussed above (and in [5, 58]),

and numerical methods of upscaling. While homogenization refers to the theoretical

process of determining the appropriately averaged operator through analytic techniques,

upscaling is the process of numerically determining a coarse-scale discrete operator or

function with relevant macroscopic properties.

4.2.1 Local Techniques

The earliest investigations into upscaling were focused on the applicability of

explicit averages in the determination of effective permeabilities. Cardwell and Parsons

[28] show that the effective permeability must lie between the arithmetic and harmonic

averages of a given permeability distribution. These bounds are, in fact, sharp: the

effective permeability of a layered medium is simply the arithmetic average of the layered

permeabilities for flow aligned with the layers, because the flux through each layer is

proportional to the permeability and height of that layer; the effective permeability of

flow perpendicular to the layering is the harmonic average of the layered permeabilities,

as can be determined by reducing the problem to a one-dimensional flow.

Warren and Price [85] examine these averages as well as the geometric mean, and

conclude that the geometric mean gives the best match to the effective permeability

when K(x) is generated from a known probability density function. This agrees with

much other work, as reviewed in [86, §3.1.1]. As we have already seen, this result does

not apply in many situations, including when the media is regularly structured. In

general, we do not expect any simple average to predict the effective permeability in all

situations.

Another local technique is the renormalization technique, first introduced by King

[59]. Based on effective media theory, this technique utilizes successive upscaling of two

by two blocks on which the permeability is known, where the permeability is assumed

to be constant on each cell of a regular mesh. The block permeability is determined by
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posing the problem as a network of resistors, while imposing pressure on two opposing

sides of the domain and no-flow boundary conditions on the remaining two sides.

The resistance problem is posed by considering each cell of constant permeability,

K, to be composed of a network of four resistors of resistance
1

2K
, each attached in

series to one edge and the cell midpoint. Four such cells are then considered in unison,

discarding inputs from two opposing edges of a 2 × 2 block (the no-flow boundary

conditions), and constant pressures given on the remaining two edges. The network

then consists of a circuit of resistors arranged in both parallel and serial, from which

the equivalent resistance of the circuit may be computed. The equivalent permeability

of the cell can then be recovered by similar means.

This method has the distinct advantages that it is cheap and also accurate in some

geometrically structured cases. Indeed, in the case of layered media, it predicts exactly

the arithmetic mean for flow parallel to the layers and the harmonic average for flow

perpendicular to the layers. The calculation of the equivalent permeability of a 2 × 2

block requires only a small number of operations, and larger blocks may be upscaled

recursively. A significant disadvantage, however, is that the method only produces

diagonal tensors, due to the imposed local boundary conditions. For this reason, the

renormalization method is not appropriate for simulations of many composite media,

including the simple example shown in Figure 4.2.

In general, local upscaling techniques for determining equivalent permeabilities

have many drawbacks outweighing their low costs. The increased accuracy of the non-

local techniques discussed below typically more than compensates for the significant

increase in computation required. Recall that our measure of interest is that of accuracy

per computational cost, and thus we must compare these methods based on both criteria

and seek a balance between the two.
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4.2.2 Laplacian Methods

A large group of nonlocal techniques are commonly called Laplacian methods,

due to their reliance on the solution of local diffusion problems. In these techniques, a

block to be upscaled is considered in isolation from the remainder of the domain, and

local boundary conditions are imposed on the block in such a way as to induce a flux

across the subdomain. Comparison of this flux to the local pressure gradient then yields

an upscaled permeability.

In the “simple Laplacian” approach, the imposed boundary conditions are Dirich-

let along two edges and homogeneous Neumann boundary conditions on the remaining

two edges (e.g., to compute the permeability in the x-direction, constant pressures are

prescribed along the lines x = x0 and x = x1 and no-flow conditions are imposed along

y = y0 and y = y1). Computing the flux through any fixed vertical line, x = xf for

x0 ≤ xf ≤ x1, and knowing the difference in the pressures prescribed at x0 and x1 al-

lows for computation of the component of the upscaled permeability in the x-direction.

These boundary conditions may then be rotated 90 degrees and the procedure repeated

to compute the y-component of the upscaled permeability. This approach was used by

Warren and Price [85] to compare with the geometric mean.

While this technique does offer significant improvement over the local, additive

techniques above, it still suffers from some of the same failings. In particular, the

upscaled permeability is constrained to be a diagonal tensor due to the boundary con-

ditions imposed on the subdomain problems. Indeed, these boundary conditions may

not even be relevant to the global flow problem whose simulation is of interest. Wen

and Gómez-Hernández [86] outline a number of modifications of this technique used to

improve upon these negative features.

The “simple Laplacian extended” technique takes advantage of the fact that an

iterative method, such as conjugate gradient, is usually used to solve the subdomain
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flow problems. To improve the efficiency of the simple Laplacian technique, after each

step of the iterative solution method, the necessary flux of the approximate solution is

computed, and, from this, the upscaled permeability component. The solution iteration

is not carried out to solution of the linear system for the pressures, but rather only until

the permeability is resolved, typically in many fewer iterations.

Considering the problem of multi-phase flow, White [87] proposes using the global

single-phase flow solution to determine local upscaled permeabilities. That is, the global

single-phase flow problem is solved for the global pressure, with various sets of boundary

conditions. For each solution, the local flux-pressure relationship, q = −K∇p, is then

used to give two equations for the three entries in the symmetric tensor K (in two di-

mensions), assumed now to be constant on each subdomain. An overdetermined system

for K on each subdomain is then formed by coupling the underdetermined systems from

each set of boundary conditions. This system may then be solved in a least-squares

sense. Such an approach allows for full tensors and, thus, may be much more accurate

than the simple Laplacian technique. It is, however, significantly more expensive (sev-

eral times the cost of solving the fine-scale single-phase flow problem), and is therefore

only useful when considering situations such as multi-phase flow.

While this technique is considerably more expensive than is practical, a simpli-

fication of it is much more attractive. A main disadvantage of the simple Laplacian

method is the effect of imposing local boundary conditions and so, in the “Laplacian

with skin” method, the flow equation is solved for each subdomain over a region that

includes both the subdomain and a surrounding buffer region. In this way, the subdo-

main is insulated from the imposed boundary conditions, yet a global solve is avoided.

The same overdetermination as used in the global solve case may also be used to further

buffer the effects of the boundary conditions.



62

4.2.3 Periodic Laplacian

Durlofsky presents a similar method [39], which utilizes two sets of periodic

boundary conditions instead of Dirichlet and Neumann boundaries. This approach has

the advantage that the resulting upscaled permeability may be tensor-valued, and is

constrained to be symmetric and positive definite. Indeed, it must have these features,

as we show in the following theorem, as it is simply an implementation of the classical,

periodic theory as in [5]. Durlofsky demonstrates that the method is also reasonably ro-

bust in situations where this classical theory does not apply, such as fractally-generated

permeability fields.

In [39], it is argued that a form of periodic boundary conditions is more appro-

priate within the Laplacian scheme. In particular, if the local pressure near point x0

satisfies

p = p0 + G · (x− x0),

then the local fluid velocity, u, satisfies

u = −K ·G.

Extending this to the subdomain, flows there are induced with known, approximately

constant pressure gradients, G. The flux, u, for these flows is then computed and

K is recovered. Thus, on each subdomain, we look to solve −∇ · K∇p = 0 subject

to boundary conditions that give an appropriate pressure gradient. Considering a 2D

square subdomain mapped to [0, 1]2, Durlofsky introduces the subdomain coordinates,

(y1, y2), and solves for p(y) using boundary conditions

p(0, y2) = p(1, y2)−G1,

p(y1, 0) = p(y1, 1)−G2,

(4.11)

to induce the pressure gradient. The average fluid velocity of the solution to the sub-

domain problem is then calculated and used to compute the effective permeability, K∗,
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as

〈u1〉 = −(k∗11G1 + k∗12G2),

〈u2〉 = −(k∗21G1 + k∗22G2),
(4.12)

where 〈u1〉 and 〈u2〉 are computed by integrating −u · n, for outward normal vector,

n, across a boundary of the subdomain. The four components of the tensor can be

recovered by solving the PDE for two independent vectors, G, typically taken to be ( 1
0 )

and ( 0
1 ).

Theorem 2. Let K∗ be defined as in Equation 4.12, where p(x) solves −∇ · K∇p = 0

with boundary conditions as in Equation 4.11 and u = −K∇p, and let K̂ be defined by

k̂lm = − 1
|Y |a1(χm − ym, yl), as in Equation 4.8. Then

K∗ = K̂.

Proof. To relate the classical theory to Durlofsky’s method, first recast the periodic

problem,

−∇y · K(y)∇yp(y) = 0, (4.13)

p(0, y2) = p(1, y2)−G1

p(y1, 0) = p(y1, 1)−G2,

(4.14)

as a problem with homogeneous periodic boundary conditions. To do this, we consider

explicitly the case G1 = 1, G2 = 0; the case G1 = 0, G2 = 1 follows analogously. Writing

q(y) = p(y)− y1, q(y) must then satisfy the desired homogeneous boundary conditions

from Equation 4.14. Substituting p(y) = q(y) + y1 into Equation 4.13, we have

−∇y · K∇yq(y) = ∇y · K∇yy1,

so q(y) = −χ1(y) and p(y) = y1 − χ1(y). Similarly, for the case G1 = 0, G2 = 1,
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p(y) = y2 − χ2(y). Durlofsky then computes the fluxes,

〈u1〉 =
∫

(K(y)∇yp(y)) · n1dy2,

〈u2〉 =
∫

(K(y)∇yp(y)) · n2dy1,

where the integrals are taken along the so-called outflow boundary, i.e., 〈ui〉 is evaluated

along yi = 0. Here, ni is taken to be the unit normal out of the domain from line yi = 0,

although it does not matter which line these integrals are evaluated along because mass

is conserved. To see this conservation, consider differentiating the integral over y2 with

respect to y1:

∂

∂y1

∫ 1

0
(K(y)∇yp(y)) ·

(−1
0

)
dy2

= − ∂

∂y1

∫ 1

0

(
k11

∂p

∂y1
+ k12

∂p

∂y2

)
dy2

= −
∫ 1

0

∂

∂y1

(
k11

∂p

∂y1
+ k12

∂p

∂y2

)
dy2

=
∫ 1

0

∂

∂y2

(
k21

∂p

∂y1
+ k22

∂p

∂y2

)
dy2

=
(
k21

∂p

∂y1
+ k22

∂p

∂y2

)∣∣∣∣y2=1

y2=0

= 0,

using the properties that (K∇yp) · n is continuous, ∇y · K∇yp = 0, and p is periodic

in y2. The analogous result holds for the integral with respect to y1, and so the fluxes

parallel to the edges of the subdomain are constant and can also be expressed as

〈u1〉 =
∫∫

(K(y)∇yp(y)) · n1dy,

〈u2〉 =
∫∫

(K(y)∇yp(y)) · n2dy.

Notice, now, that n1 =
(−1

0

)
= −∇y1 and that n2 = −∇y2, so we can again rewrite
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〈u1〉 and 〈u2〉:

〈u1〉 = −
∫∫

(K(y)∇yp(y)) · ∇y1dy,

〈u2〉 = −
∫∫

(K(y)∇yp(y)) · ∇y2dy.

Recalling the definition of a1(·, ·) from Equation 4.7, we have

〈u1〉 = −a1(p(y), y1),

〈u2〉 = −a1(p(y), y2).

When p(y) = y1 − χ1(y) (i.e. G1 = 1, G2 = 0),

〈u1〉 = a1(χ1 − y1, y1),

〈u2〉 = a1(χ1 − y1, y2),

and, when p(y) = y2 − χ2(y) (i.e. G0 = 0, G2 = 1),

〈u1〉 = a1(χ2 − y2, y1),

〈u2〉 = a1(χ2 − y2, y2).

Now, considering Equation 4.12 in these two cases, we recover

k∗11 = −a1(χ1 − y1, y1),

k∗12 = −a1(χ2 − y2, y1),

k∗21 = −a1(χ1 − y1, y2),

k∗22 = −a1(χ2 − y2, y2).

Noticing that Durlofsky’s calculation is on a unit cell, so that |Y | = 1, this is in exact

agreement with the the periodic theory, as in Equation 4.8.

Corollary 1. The tensor, K∗, recovered from Equation 4.12 is symmetric and positive

definite.
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In [39], these subdomain problems are discretized and solved with a nonconform-

ing finite element technique. Desiring a continuous approximation of the flux, this is

an appropriate choice of finite elements. Mixed finite elements were again considered

in that study, but discarded due to the lack of an efficient solver. In [40], mixed finite

elements were also considered, along with a control volume finite element formulation.

While a conservative scheme, the control volume discretization was found to be more

efficient only for mild heterogeneity. In the case of highly variable permeability fields,

the mixed finite element discretization considered gave more accurate approximations to

the flow variables than the control volume scheme. In [52], the nonconforming method

is again used, but now extended to more general geometries. In particular, the problem

of upscaling is considered using a flow-based partitioning into subdomains. When sub-

domains are chosen based on the global flow pattern, an improvement in accuracy over

a uniform partitioning with the same number of subdomains is found.

4.3 Multigrid Upscaling

All of these non-local techniques require a certain amount of fine-scale computa-

tion on each subdomain, typically two or more fine-scale solutions over each subdomain.

Thus, the primary cost of these methods is in the multiple solves of subdomain-scale

PDEs.

Multigrid methods for solving these problems typically exhibit the optimal be-

havior discussed in Section 3.1. That is, the cost of solution of a subdomain problem

is proportional to the number of degrees of freedom in the subdomain. This principle

also applies at the fine scale: multigrid solution of the fully-resolved problem requires

time proportional to the total number of degrees of freedom. When the problem is

subdivided, however, each fine-scale node belongs to a subdomain, and so solution of

the complete set of subdomain problems has cost the same order as the solution of

the original, fine-scale problem. In fact, the solution of the complete set of subdomain
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problems can cost more than the solution of the fine-scale problem, because multiple

problems must be solved on each subdomain. This is clearly efficient only in the case

of a truly periodic media, where solution of a single subdomain problem may be used

to upscale a much larger part of the fully-resolved system.

Due to the strong dependence of the macroscopic properties of interest on the

fine-scale structure of the porous media, a certain amount of fine-scale computation

is inevitable. Allowing this (to maintain hope of accurate results), we look instead to

perform a minimal amount of computation on the fine scale.

The goal of coarsening in a multigrid process is to create coarse-scale problems

that accurately capture features of the fine-scale solution not resolved by relaxation on

the fine grid. As fine-scale relaxation is (usually) a local process, the unresolved features

typically represent larger-scale features of the solution, including the macroscopic prop-

erties that we are interested in. For this reason, we examine the multigrid coarse-grid

operators in an upscaling context. If these operators adequately represent the phenom-

ena of interest, then the only fine-scale computation necessary is the Galerkin product

to form the first coarse-grid operator.

A key aim of the upscaling procedure, however, must be to preserve significant

fine-scale influence in the coarse-scale operator. Variational multigrid methods can

preserve this information in their variational approach, because a coarse-scale operator

is a restricted version of the fine-scale operator. Consider the equivalent minimization

form satisfied by the solution of Ax = b when A is symmetric and positive definite:

x = argmin
y∈RN

(
1
2
〈Ay,y〉 − 〈b,y〉

)
.

In a coarse-level correction step, we ask for the correction, ec, to the fine-grid approxi-
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mation, x̃, to satisfy

ec = argmin
wc∈RNc

1
2
〈A(x̃ + Pwc), x̃ + Pwc〉 − 〈b, x̃ + Pwc〉

= argmin
wc∈RNc

(
1
2

(〈Ax̃, x̃〉 − 〈b, x̃〉) +
(

1
2
〈P TAPwc,wc〉 − 〈P T (b−Ax̃),wc〉

))
.

Thus, the optimal coarse-grid correction of form Pec comes when ec satisfies

P TAPec = P T r.

Using this choice for the coarse-scale operator, some properties of the fine-scale operator

are preserved on the coarse scale. When P is itself chosen in an operator-induced fashion

(as is the case in BoxMG and AMG), this coarse-scale operator reflects sufficient fine-

scale information to be useful in an upscaling context.

Notice that the variational coarse-grid operator is still symmetric and positive

(semi-)definite. If the fine-grid operator, A, has row sums of zero (as is the case in finite-

element discretization of −∇ · K∇p with periodic or Neumann boundary conditions),

P TAP will also have zero row sums if P preserves constant vectors. That is, if A1 = 0

and P1c = 1, then P TAP1c = 0, so the sum of the elements in any row of P TAP must

be zero.

4.3.1 Periodic Multigrid Upscaling

Moulton et al. [67] and Knapek [60] both consider the 2D problem and analyze

the coarse-scale stencil as a symmetric, zero-row-sum, sparse operator to determine the

effective coarse-scale permeability. In [67], this is done through a local flux analysis,

whereas [60] uses a basis function approach, which we follow here.

Coarsening variationally, the form of the coarse-grid operator depends on the

choices of coarse grids and interpolation, and both [60, 67] utilize the coarsening routines

of BoxMG [34]. These routines assume a 9-point fine-grid operator from discretization

on a rectangular mesh is given. Coarsening preserves the rectangular mesh structure and
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interpolation is chosen so that the variational coarsening preserves the 9-point structure

in all the coarse-grid operators (see Section 3.2). Additionally, interpolation has the

property that P1c = 1.

Discretizing Equation 4.1 subject to periodic boundary conditions with the usual

nodal bilinear finite elements, the coarse-scale matrices produced by BoxMG inherit

many of the properties of the fine-scale discretization. Symmetry and positive semi-

definiteness are preserved, as are the 9-point sparsity pattern and the zero row sums.

In fact, these matrices have the same properties as a diffusion operator discretized on

the coarse-scale.

The question of upscaling is then one of determining which continuum operator

corresponds to the coarse-grid matrix. Under the assumption that the fine-scale system

is upscaled to the point of homogeneity (that is K(x) ≡ K̂, a constant), this can be

determined from the matrix entries. Assuming enough points exist on the coarse scale

such that the operator remains a 9-point operator on the periodic domain, it can be

represented in the basis of the 9 non-trivial bilinear finite element stencils: I, ∂x, ∂y, ∂xx,

∂xy, ∂yy, ∂xxy, ∂xyy, and ∂xxyy. The zero-row-sum property of the stencil requires that

the coefficient of I be zero, since it is the only basis function with a non-zero row sum.

Symmetry of the homogeneous operator requires that the East and West coefficients be

equal, as well as the North and South, the Northwest and Southeast, and the Northeast

and Southwest. These four conditions imply that the coefficients of ∂x, ∂y, ∂xxy, and

∂xyy are all zero as well. The remaining coefficients may then be solved for based on

the stencil entries, resulting in the upscaled equation, −∇ · K̂∇p̂+ ∂xyÊ∂xyp̂, with

K̂ =

 hx
hy

(SE + SNE + SNW ) SNE − SNW

SNE − SNW hy

hx
(SN + SNE + SNW )

 ,
where the stencil notation is as in Figure 3.5. Although derived with a different ap-

proach, this expression for K̂ is in perfect agreement with the results of Moulton et al.
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[67]. That the higher-order coefficient,

Ê = −hxhy

6
(
SN + SE − SNE − SNW

)
,

is non-zero reflects that the multigrid upscaling process is not directly aimed at de-

termining the effective permeability. Rather, coarse-scale matrix equations are chosen

such that their solution has a particular relevance to the fine-scale linear system. This

additional term in the coarse-scale model can be thought of as a regularization term,

introduced to maintain desirable properties of the fine-scale operator as it is coarsened,

while still appropriately representing the upscaled behavior in which we are interested.

Using the work of Dvořák [41], Moulton et al. [66] demonstrated that the peri-

odic boundary condition multigrid upscaling technique can be used to generate upper

and lower bounds of the true homogenized permeability. In fact, the variational finite

element setting naturally shows that the upscaling technique described here provides

an upper bound on the effective permeability. A lower bound is possible through the

solution of an auxiliary problem of similar form. While no such result has been obtained

for the case of Neumann boundary conditions, the discussion of which follows, there is

no obvious impediment to extending Dvořák’s results to this case. It is useful in analysis

of the numerical results in the following section to consider that the computed upscaled

permeabilities may be upper bounds of the true homogenized permeability.

4.3.2 Neumann Boundary Conditions

Extending the periodic boundary condition multigrid upscaling technique to other

boundary conditions is possible with a similar analysis. Any symmetric, positive semi-

definite, zero-row-sum 9-point operator may, in fact, be considered as the weak form,

aij =
∫

(K̂∇φj) · (∇φi) + Ê(∂xyφj)(∂xyφi)dΩ, (4.15)

where φi and φj are nodal bilinear basis functions for the underlying grid. Here, K̂ and

Ê are assumed to be piecewise constant on each coarse-scale element, but we do not
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assume to have coarsened to the point of homogeneity in the stencil.

Computing the nodal stencils associated with the weak form in Equation 4.15,

we again look to recover piecewise-constant values of K̂ and Ê that generate the same

stencil. Labeling the element Northeast of node (i, j) as element (i+ 1
2 , j + 1

2) and the

permeability tensor in that element as

K̂(i+ 1
2
,j+ 1

2
) =

 K̂i+ 1
2
,j+ 1

2
11 K̂i+ 1

2
,j+ 1

2
12

K̂i+ 1
2
,j+ 1

2
12 K̂i+ 1

2
,j+ 1

2
22

 ,
we recover the relations that

K̂i+ 1
2
,j− 1

2
11 + K̂i+ 1

2
,j+ 1

2
11 = 2

hx

hy

(
SE

i,j +
1
2
(
SNE

i,j + SNW
i+1,j

)
+

1
2
(
SNE

i,j−1 + SNW
i+1,j−1

))
,

K̂i+ 1
2
,j+ 1

2
12 = SNE

i,j − SNW
i+1,j ,

K̂i− 1
2
,j+ 1

2
22 + K̂i+ 1

2
,j+ 1

2
22 = 2

hy

hx

(
SN

i,j +
1
2
(
SNE

i,j + SNW
i+1,j

)
+

1
2
(
SNE

i−1,j + SNW
i,j

))
.

Thus, a closed form expression for the off-diagonal coefficient, K̂i+ 1
2
,j+ 1

2
12 , is available,

but recovery of the diagonal coefficients, K̂i+ 1
2
,j+ 1

2
11 and K̂i+ 1

2
,j+ 1

2
22 , requires solution of a

recurrence relationship, necessitating examination of the stencils near boundary cells.

It is here that the effect of the higher-order regularization term is most pro-

nounced. In order for the strong form of Equation 4.15, −∇ · K̂∇p + ∂xyÊ∂xyp = f ,

to be well-posed, it requires two sets of boundary conditions. The natural boundary

conditions (in the finite element sense) are Neumann,
(
K̂∇p

)
· n = g1 on ∂Ω (where

n is the unit normal vector to ∂Ω), and a second-order condition, Ê∂xyp = g2 on ∂Ω.

These conditions are consistent with a symmetric, zero-row-sum boundary stencil, and

so we use them to determine the initial conditions for the recurrence relationships for
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K̂11 and K̂22 as

K̂i+ 1
2
, 1
2

11 = 2
hx

hy

(
SE

i,0 +
1
2
(
SNE

i,0 + SNW
i+1,0

))
,

K̂i+ 1
2
,ny− 1

2
11 = 2

hx

hy

(
SE

i,ny
+

1
2

(
SNE

i,ny−1 + SNW
i+1,ny−1

))
,

K̂
1
2
,j+ 1

2
22 = 2

hy

hx

(
SN

0,j +
1
2
(
SNE

0,j + SNW
1,j

))
,

K̂nx− 1
2
,j+ 1

2
22 = 2

hy

hx

(
SN

nx,j +
1
2
(
SNE

nx−1,j + SNW
nx,j

))
.

We now compare this algorithm to both the periodic case and the homogenized

coefficients, as computed by Bourgat, for the examples discussed in Section 4.1.2. A

limitation of the BoxMG code restricts us from coarsening down to a single element (a

grid of 2 × 2 nodal values), and so we consider a periodic tiling of these permeability

distributions. To avoid potential complications from the boundaries, we consider a 3×3

periodic tiling of the permeability fields and measure the upscaled permeability in the

center element after coarsening a 3 · 2`× 3 · 2` element grid down to a 3× 3 element grid

(although, when the upscaled permeabilities are diagonal, all elements give the same

permeability).

For the shape-variation problems (as in Figure 4.1), with permeability

K(x) =

 1 x ∈ Ω0,

10 x ∈ Ω1,

the Neumann boundary condition multigrid upscaling method performs the same as

the periodic version. For a triangulation of the unit square with 2048 triangles, Bour-

gat reports homogenized permeabilities of 1.548 for the square, 1.573 for the lozenge

shape (rotated square), and 1.516 for the disk. Interestingly, while there is some shape-

dependent variation in the permeability, that dependence is also rather weak. Using our

multigrid upscaling method, we recover upscaled permeabilities of 1.598 for the square,

1.608 for the lozenge, and 1.563 for the disk, discretizing each problem on a 768× 768

element rectangular fine grid and coarsening to a 3× 3 element coarse grid. Refinement
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of the grid produces little change in these results, with upscaled permeabilities of 1.598

for the square, 1.612 for the lozenge, and 1.563 for the disk on a 1536 × 1536 element

fine grid.

An interesting advantage of this approach is that we may also calculate Êi+ 1
2
,j+ 1

2 ,

for each element, (i+ 1
2 , j+ 1

2), from the matrix coefficients and the recovered tensor, K̂.

While relations such as those for K̂ could be derived to express Ê, a simpler approach

is to use the recovered values of K̂i+ 1
2
,j+ 1

2 , as in

Êi+ 1
2
,j+ 1

2 = hxhy

(
SNE

i,j +
1
6
hy

hx
K̂i+ 1

2
,j+ 1

2
11 +

1
6
hx

hy
K̂i+ 1

2
,j+ 1

2
22 − 1

2
K̂i+ 1

2
,j+ 1

2
12

)
.

Computing Ê in the center element of the 3 × 3 element coarse grid, we recover

−0.0708hxhy for the square, −0.097hxhy for the lozenge, and−0.0829hxhy for the disk

when coarsening from a 768×768 element fine grid. For a 1536×1536 element fine grid,

the recovered values of Ê are −0.0708hxhy for the square, −0.0976hxhy for the lozenge,

and −0.0827hxhy for the disk. While these numbers appear small when considering

hx and hy of size 1
768 or 1

1536 , the stencil of the fourth-order operator, ∂xyÊ∂xy, has a

natural scaling of 1
hxhy

relative to that of the second-order operator, −∇·K̂∇, and, thus,

these small coefficients still realize a significant change in the discrete operator. That

these coefficients are not converging to zero indicates the multigrid coarse-grid operators

from which K̂ and Ê are recovered are not equivalent to classical homogenization.

The simple geometry in Figure 2.1 allows analysis of the effects of variation in a

scalar, but discontinuous permeability,

K(x) =

 1 x ∈ Ω0,

λ x ∈ Ω1,

where λ is allowed to vary between 0 (corresponding to an impermeable material) and∞

(corresponding to a perfect conductor). Figure 4.3 shows the variation in the upscaled

permeability computed with the Neumann BC multigrid upscaling method, as compared

with homogenization results like Bourgat’s (computed using an implementation of the
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periodic Laplacian method, as in Section 4.2.3, equivalent to Bourgat’s computations

(Theorem 2)), as well as the arithmetic and harmonic means that we know to bound

the effective permeability [28].

Notice that both the upscaled and homogenized permeabilities do lie between the

arithmetic and harmonic means. Also, the upscaled permeability (which is identical

to that computed in the periodic boundary condition case) tracks very well with the

homogenized permeability. Here, the upscaled permeability is computed on a 768× 768

mesh, with a 3× 3 tiling of the geometry of Figure 2.1. The homogenized permeability,

for comparison, was computed on a 256 × 256 mesh consisting of just the domain in

Figure 2.1, without any periodic extension.

While both of these cases have scalar upscaled permeabilities, the L-shaped do-

main in Figure 4.2 violates the necessary symmetry, and so has a homogenized perme-

ability given by the full tensor,

K̂ =

 1.915 −0.101

−0.101 1.915

 ,
when the piecewise constant permeability is specified as in Equation 4.10. Noting that

any symmetric 2× 2 matrix, A, with a11 = a22 can be diagonalized by Q = 1√
2

[−1 1
1 1

]
,

we see that the homogenized permeability, K̂, represents anisotropic diffusion aligned

with the principal axes obtained by a rotation of 45◦ from the usual coordinate system,

K̂ =

 1.915 −0.101

−0.101 1.915

 = Q

 2.016 0

0 1.814

QT .

The Neumann BC multigrid upscaling method also generates tensors that can

be diagonalized by Q, and so, in Table 4.1, we report the entries of the upscaled per-

meability, K̂, as well as those of the diagonalized tensor, QT K̂Q. Notice here that the

multigrid upscaling method converges to a solution that is near to, but slightly different

from that reported by Bourgat [7] in scaling, but that exactly matches the principal
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Figure 4.3: Predicted Effective Permeability vs. Jump in Permeability
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Fine grid size K̂11 = K̂22 K̂12 = K̂21 (QT K̂Q)11 (QT K̂Q)22

12× 12 1.5649 -0.0853 1.6501 1.4796
24× 24 2.0864 -0.1760 2.2624 1.9103
48× 48 1.8619 -0.1401 2.0021 1.7218
96× 96 1.9719 -0.1588 2.1307 1.8131

192× 192 1.9207 -0.1509 2.0716 1.7697
384× 384 1.9467 -0.1552 2.1019 1.7916
768× 768 1.9339 -0.1532 2.0870 1.7807

1536× 1536 1.9403 -0.1542 2.0945 1.7861
3072× 3072 1.9371 -0.1537 2.0908 1.7834

Table 4.1: Upscaled Permeability and Diagonalized Tensor for L-shaped Domain

axes of diffusion. Similar behavior is seen in the periodic upscaling case [67], where

the principal axes are again recovered exactly. Our Neumann BC upscaling method

predicts the same off-diagonal coefficient, but more accurate diagonal coefficients than

the periodic upscaling method.

One simple problem for which the Neumann BC multigrid upscaling method yields

unsatisfying results is that of an essentially one-dimensional permeability distribution,

such as the striped problem in Figure 4.4(a), with permeability given by

K(x) =

 1 x ∈ Ω0,

10−2 x ∈ Ω1.

The one-dimensional nature of this problem allows the homogenized permeability to

be easily calculated as diagonal, with the harmonic mean in the y-direction (across

the stripes) and the arithmetic mean in the x-direction (along the stripes). Even on

a very coarse grid (as coarse as 6 × 6 elements, so that the variations in K are just

represented), the Neumann BC multigrid upscaling technique accurately computes the

harmonic mean for the y-component. Values for the x-component, however, vary across

the coarse-scale elements, alternating between 10−2 and 1, regardless of the fine-grid

mesh size. Rotating this example by 90◦, to that in Figure 4.4(b), shows the same

behavior: the x-component of the upscaled permeability is computed correctly as the
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Figure 4.4: Striped Permeability Problem

harmonic mean, but the y-component alternates between the two fine-scale permeability

values instead of taking the value of the arithmetic mean. The recovered values of

Ê also demonstrate this alternating behavior, taking value −0.001634hxhy when the

stripe-aligned K̂ is predicted as 10−2, and 0.1634hxhy when the stripe-aligned K̂ value

is predicted as 1. It is an open question as to whether this is an effect of the recovery

formula used, the boundary coarsening in the BoxMG code, or a combination of the two.

These results compare unfavorably with the periodic BC multigrid upscaling method

which is exact for this problem [67], and are also not clear upper bounds for the effective

permeability, as suggested by the work of Dvořák [41], suggesting that further analysis

of this problem may be of interest.

An interesting observation about this problem is that if the correct value was

picked up from the starting condition,

K̂i+ 1
2
, 1
2

11 = 2
hx

hy

(
SE

i,0 +
1
2
(
SNE

i,0 + SNW
i+1,0

))
,

then the remaining cells would correctly calculate the arithmetic average. We thus

believe the difficulty in this case to be caused by the coarse-scale boundary conditions.

That is, it is possible that the coarsening used by BoxMG does not accurately produce



78

the natural boundary conditions assumed on the coarse-scale problem for our upscaled

permeability recovery. In fact, the precise details of the definition of interpolation in

BoxMG are somewhat more complicated than those presented in Section 3.2, and so it

is possible that some of the additional checks in the code do cause us some difficulty in

our recovery algorithm. These issues are the subject of current research.

4.3.3 Three-Dimensional Upscaling

A similar analysis can be performed in three dimensions, with analogous results.

The 27-point operator of a trilinear finite element discretization on a tensor-product

mesh may be considered as a linear combination of the 27 non-trivial trilinear FE

stencils. Assuming a zero-row-sum operator, the coefficient of the term corresponding

to the identity operator must again be zero. The symmetry condition can be used to

eliminate all stencils of first, third, and fifth order derivatives, leaving only the second,

fourth, and sixth order derivatives whose trilinear FE stencils are nontrivial in the

expansion. In the case of a fully upscaled problem (such as with periodic boundary

conditions), the upscaled 3× 3 tensor, K̂, can be directly recovered as

K̂11 =
−hx

hyhz

(
SE + SUW + SUE + SNW + SNE + SUNW + SUNE + SUSE + SUSW

)
,

K̂22 =
−hy

hxhz

(
SN + SUN + SUS + SNW + SNE + SUNW + SUNE + SUSE + SUSW

)
,

K̂33 =
−hz

hxhy

(
SU + SUN + SUS + SUW + SUE + SUNW + SUNE + SUSE + SUSW

)
,

K̂12 =
−1
hz

(
SNE − SNW − SUNW + SUNE − SUSE + SUSW

)
,

K̂13 =
−1
hy

(
SUE − SUW − SUNW + SUNE + SUSE − SUSW

)
,

K̂23 =
−1
hx

(
SUN − SUS + SUNW + SUNE − SUSE − SUSW

)
,

plus some higher-order terms. Here, the stencil entries, S, are not assumed to be

negative, and so we have not reversed their natural signs as we did in the 2D case.
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In the case of full Neumann boundary conditions, we again cannot expect to be

able to upscale to the point of homogeneity in the matrix. Thus, given a symmetric,

27-point, zero-row-sum coarse-scale operator, we interpret it as a discretization of the

symmetric, positive semi-definite PDE,

−∇ · K̂∇+ [∂xy, ∂xz, ∂yz] Ê


∂xy

∂xz

∂yz

− ∂xyzÊ
(2)∂xyz,

where K̂ and Ê are symmetric, 3× 3 coefficient matrices, and K̂, Ê and Ê(2) are taken

to be piecewise constant over each element of the coarse mesh.

Considering the cases of the off-diagonal coefficients, for example, the sum for

K̂i+ 1
2
,j+ 1

2
,k+ 1

2
12 from the periodic case can be interpreted locally. Suppose the matrix

entries in that sum correspond to edges passing through the elements Northwest of the

node (i, j, k) (both above and below this node), we derive

SNE
i,j,k − SNW

i+1,j,k − SUNW
i+1,j,k + SUNE

i,j,k − SUSE
i,j+1,k−1 + SUSW

i+1,j+1,k−1

= −hz

2
K̂i+ 1

2
,j+ 1

2
,k+ 1

2
12 − hz

2
K̂i+ 1

2
,j+ 1

2
,k− 1

2
12 .

Note that this is consistent with the periodic case, and that if we consider the natural

boundary conditions for k = 0, we find the starting condition,

SNE
i,j,0 − SNW

i+1,j,0 − SUNW
i+1,j,0 + SUNE

i,j,0 = −hz

2
K̂i+ 1

2
,j+ 1

2
, 1
2

12 .

A similar condition is found using the natural BCs, when k = nz−1. Similarly, we may

derive expressions for the other off-diagonal elements of K,

SUE
i,j,k − SUW

i+1,j,k − SUNW
i+1,j,k + SUNE

i,j,k + SUSE
i,j,k + SUSW

i+1,j,k

= −hy

2
K̂i+ 1

2
,j+ 1

2
,k+ 1

2
13 − hy

2
K̂i+ 1

2
,j+ 1

2
,k− 1

2
13 ,

SUN
i,j,k − SUS

i,j+1,k + SUNW
i+1,j,k + SUNE

i−1,j,k − SUSE
i−1,j+1,k − SUSW

i+1,j+1,k

= −hx

2
K̂i+ 1

2
,j+ 1

2
,k+ 1

2
23 − hx

2
K̂i− 1

2
,j+ 1

2
,k+ 1

2
23 ,
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with boundary conditions,

SUE
i,0,k − SUW

i+1,0,k − SUNW
i+1,0,k + SUNE

i,0,k = −hy

2
K̂i+ 1

2
, 1
2
,k+ 1

2
13 ,

SUN
0,j,k − SUS

0,j+1,k + SUNW
1,j,k − SUSW

1,j+1,k = −hx

2
K̂

1
2
,j+ 1

2
,k+ 1

2
23 .

Whether such a matching technique can recover the diagonal entries of K is still unre-

solved. We expect that it is possible; however, the matching would need to take four

adjacent elements into account, and so it is much more difficult to obtain the necessary

balances to cleanly recover the coefficients of interest.

The extension of the periodic multigrid upscaling method to Neumann boundary

conditions in two and three dimensions allow treatment of the underlying finite element

discretizations with their natural boundary conditions. Interpreting the coarse-scale

operator as a bilinear discretization again produces higher-order terms, not present in

the fine-scale discretization of the −∇ · K(x)∇ operator. From a multigrid point of

view, these terms produce a regularization effect, allowing efficient multigrid treatment

of many fine-scale operators whose upscaled characteristics alone introduce additional

complexity that would require sophisticated handling.

Consider, for example, the geometry shown in Figure 4.4. The homogenized

behavior of this operator is anisotropic, more so as the ratio between the permeability

in Ω0 and that in Ω1 increases. A direct discretization on coarse scales of such an

anisotropic problem would yield poor performance from a multigrid scheme using full

coarsening and pointwise relaxation because of the poor smoothing properties of the

pointwise relaxation, typically leading to the choice of either semicoarsening multigrid

or some form of line (or block) relaxation. Yet, when the striped configuration exists on

the fine-grid, pointwise relaxation has no difficulty resolving an appropriate correction

on full-coarsening based coarse grids. This is because the Galerkin coarsening used

produces these higher-order terms that cancel out the effect of the anisotropy while

yielding a relevant coarse-grid problem. The size of Ê appears to directly reflect this
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behavior, being largest when the upscaled coefficient is least accurate. The sign of Ê

typically also provides diagnostic information, with negative sign when the computed

permeability is greater than the homogenized permeability.

4.4 Coarse-Scale Models

An alternative to these approaches of generating upscaled effective permeability

data and then reposing the problem on the coarse scale is to consider an appropriate

basis for the coarse-grid problem. While the finite-element formulations discussed above

are all based on low-order (piecewise-linear) elements, there is no need to consider

such simple basis functions, especially given the desire to capture fine-scale fluctuations

of the permeability on some coarse grid. A more efficient approach is to consider a

discretization on a computationally feasible grid, with basis functions chosen to capture

the fine-scale variations in permeability that we are interested in.

The multiscale finite element method (MSFEM) [56, 57] provides one way of

generating such a basis. For a given partitioning of the domain, Ω, into subdomains,

nodal basis functions are constructed by solving the homogeneous flow through porous

media problem,

−∇ · K(x)∇φi(x) = 0,

over each subdomain neighboring the coarse-grid node, i. Boundary conditions for these

problems are determined based on the need for local support of the coarse-scale basis

functions, and on the fine-scale approximation sought.

In [56], these boundary conditions are posed based on the fine-scale structure in

the subdomain. We seek a nodal basis, so the basis function associated with point i

should have value 1 at that node and value 0 at all others. For each element adjacent

to i, the boundary conditions along the edges not adjacent to i are simply taken as

homogeneous Dirichlet conditions. For the edges adjacent to i, the flow in porous media
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problem is restricted to the one-dimensional edge (by projecting K onto that edge),

and the solution of this problem is used to determine the appropriate boundary data

for the subdomain problem. These two-point boundary-value problems have Dirichlet

boundary conditions of value 1 at point i and 0 at the opposite endpoint, and can be

solved analytically. In this manner, the subdomain problem may be posed with full

Dirichlet boundary data, and the set of nodal elements may be created. That such a

basis may provide a good approximation to the fine-scale solution is demonstrated in

[57].

Creating the basis in this manner, however, has a similar cost as the Laplacian

techniques discussed above. For each coarse-scale element, a fine-scale PDE must be

solved on this subdomain for each node on the boundary of the coarse-scale element.

Thus, for a quadrilateral coarse mesh, four fine-scale problems must be solved to com-

pute each coarse-scale basis function. In practice, a resonance effect was found between

the small-scale variation in K and the fine-scale mesh size, requiring an oversampling

technique that further increases this cost [56].

The techniques of wavelets and multiresolution analysis can also be applied to

derive an appropriately averaged operator [6, 48]. Gilbert [48] develops the upscaling

approach in the case of a one-dimensional flow problem where it can easily be related to

the classical theory. The multiresolution scheme is based on a combination of upscaling

(to reduce the fine-scale equation to a suitably coarse scale) followed by augmentation (to

arrive at an equivalent fine-scale operator). This upscaling algorithm follows the usual

Haar basis multiresolution technique of writing the fine-scale variables as averages and

differences and then reducing the fine-scale equations to a system in only the averages.

This reduction can be viewed as using a Schur complement to derive the coarse-scale

equations, and may be applied recursively until an operator on a suitably coarse scale

is derived. This coarsest-scale operator may then be augmented to the original fine

scale by considering the reduction process in reverse, with the ansatz of a homogeneous
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fine-scale operator.

While Gilbert [48] compares results for the one-dimensional problem with the

classical theory, this approach does not easily generalize to multiple dimensions due

to the denseness of the Schur complements in more than one dimension. That is,

when the two-dimensional (or, in general, multi-dimensional) Haar basis is used to

discretize the flow in porous media problem, the differences-differences block of the

operator (analogous to the block of F to F connections, Aff , in a multigrid context) is

banded, but has a full inverse, leading to a dense system for the averages when this block

is eliminated through a Schur complement. Beylkin and Coult [6] alleviate this difficulty

by using higher order wavelets (with more vanishing moments) in the discretization,

resulting in control of the sparsity of the reduced operator. The multiresolution LU

approach [49] used to compute the reduced operator is, in fact, quite similar to the

coarsening used in an algebraic multigrid method.

4.4.1 Multigrid Coarse-Scale Bases

In Section 4.3, we considered the coarse-scale operators constructed by a varia-

tional multigrid method, BoxMG, as bilinear (in 2D and trilinear in 3D) discretizations

of the coarse-scale PDE,

−∇ · K̂∇p(x) + ∂xyÊ∂xyp(x) = Q(x).

While appropriate for the upscaling framework considered there, we can also consider

these coarse-scale operators as discretizations of the fine-scale PDE, −∇ · K(x)∇p(x),

using multiscale finite-element basis functions.

Consider the fine-grid operator, A, to come from discretizing −∇·K(x)∇p(x) via

bilinear finite elements on a known meshing of Ω = [0, 1]2. Thus,

aij = eT
j Aei =

∫
Ω
〈K(x)∇φi,∇φj〉dΩ,
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where ei is the ith canonical unit vector and φi is the standard, nodal finite-element

basis function associated with node i.

Within the variational formulation, each multigrid coarse-grid operator can be

written as P TAP , where P represents the accumulation of interpolation operators from

a given coarse scale to the finest grid. In other words, if we consider the coarse grid to

be grid k (after k − 1 coarsenings), then P = P k−1
k · · ·P 2

3P
1
2 . The coarse-grid operator

is then also a finite-element discretization of the fine-scale PDE,

(P TAP )ij =
∑
k,l

pkjpli

∫
Ω
〈K(x)∇φl,∇φk〉dΩ

=
∫

Ω

〈
K(x)∇

(∑
l

pliφl

)
,∇

(∑
k

pkjφk

)〉
dΩ

=
∫

Ω
〈K(x)∇φ̂i,∇φ̂j〉dΩ,

where {φ̂i} are new basis functions associated with the nodes of the fine grid that exist

on the coarse grid [60].

That these are, in fact, nodal basis functions is not difficult to see. Considering

multigrid methods where the coarse grid is a subset of the fine grid (such as BoxMG

and AMG), interpolation is of the form P =
[

W
I

]
, where W represents the interpolation

from C to the fine-grid points, and the identity matrix is used to take coarse-grid values

to their nodal fine-grid equivalents. So, the nodal values of φ̂i =
∑

l

pliφl are simply the

values of Pei. At node l, this is simply (Pei)l = pli and so, if l ∈ C, then pli = δli, i.e.,

φ̂i(xl) = δli for i, l ∈ C, exactly as is required for nodal basis functions.

This viewpoint also allows us to visualize the coarse-scale basis functions and see

how fine-scale information is integrated into the coarse-scale operator. The coarse-scale

basis function, φ̂i =
∑

l

pliφl, is a fine-grid function that is piecewise bilinear (as it

is the sum of piecewise bilinear, fine-grid basis functions) and takes the nodal values

φ̂i(xl) = pli. Thus, it is the interpolant of the coarse-scale function whose finite-element

representation is the canonical, coarse-scale unit vector, ei, which is simply the coarse-
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scale nodal basis function, φi. So, we may generate the coarse-scale basis function

associated with node i by interpolating the coarse-grid vector, ei, up to the fine grid.

We first consider the case of a geometrically-regular permeability field, as pictured

in Figure 4.5, representing a periodic sand/shale structure. In this example, the black

regions represent zones of high permeability, K = 1000, against the background media

with K = 1. The periodic pattern is a 4 × 4 tiling of the unit cell with an inclusion

of high permeability on [ 5
16 ,

11
16 ]2, scaled back onto the unit cell. The fine scale for this

problem is h = 1
64 , and so this permeability field is represented exactly on the fine scale,

but not on the coarse scale, with H = 1
4 . Coarse-scale basis functions for this field

are shown in Figure 4.6. These plots represent the evolution of the coarse-scale basis

function as finer-scale information is added in. Thus, the surface in the upper left corner

shows a bilinear function on the coarse mesh. In the upper right surface, information

from interpolation to the 8× 8 mesh is included, and we can see that the basis function

already has significantly different character than the original bilinear hat function. As

the basis function is interpolated to the 16 × 16 and 32 × 32 grids on the bottom of

Figure 4.6, we see even more fine-scale structure appear. The finest-scale basis function,

shown in Figure 4.7, distinctly shows the effect of the high-permeability inclusions and

that this basis function accurately represents the fine-scale structure of the problem.

As regions of high permeability typically result in low pressure gradients, we see that

this basis function is ideally suited to resolving the expected features of a fine-scale flow

over this field.

The geostatistical fields of Figures 2.3 and 2.4 provide more complex fine-scale

structures to capture in the coarse-scale basis functions. For the mildly-layered field

(Figure 2.3), the basis function associated with the node at (1
2 ,

1
2) is located in a region

of relatively high permeability, and thus does not exhibit the same dramatic behavior

as that for the periodic problem above. Figure 4.8 shows the evolution of the basis

function from the standard bilinear on the 4× 4 grid up to the 32× 32 grid, where we
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Figure 4.5: Periodic Sand/Shale Permeability Field

Figure 4.6: Coarse-Scale Basis Functions for Periodic Sand/Shale Problem



87

Figure 4.7: Fine-Scale Basis Function for Periodic Sand/Shale Problem
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still see significant influence of the (random) fine-scale structure. Figure 4.9 shows the

full multiscale basis function as represented on the original fine grid. Here, we can see

the effects of the layering in fine-scale structure of the basis function that is primarily

aligned with the x-axis. Notice also the change of character in the basis function near

y = 0.25, corresponding to the lower permeability there.

The effects of the fine-scale heterogeneity in the strongly-layered media of Figure

2.4 are also well-represented within the multiscale basis function. On coarser levels, as

in Figure 4.10, we see that the bilinear basis function of the 4× 4 mesh begins to align

with the layering of the flow already on the 8× 8 grid and reflects noticeable fine-scale

structure on the 32× 32 grid. The full multiscale basis function, shown in Figure 4.11,

shows the macroscopic quality of aligning with the layering as well as representing the

fine-scale structure of K(x).

We begin to see a natural comparison between our method and the multiscale

finite element method (MSFEM) [56]. In the MSFEM, coarse-scale basis functions can

also be expressed as sums of the fine-scale basis functions, although they are determined

as solutions of fine-scale problems on the coarse-scale elements. Our method is, thus,

significantly less computationally expensive than the MSFEM, as it involves only the

computation of interpolation and coarse-grid operators, as opposed to the complete

solution of many fine-scale problems.

4.4.2 Multigrid Coarse-Scale Models

The multiscale information contained in the coarse-scale operator suggests that

we should consider its use as an approximation to both the fine-scale operator and the

continuum-scale PDE. In particular, we ask whether a solution of the coarse-scale prob-

lem provides accurate and relevant approximations to certain macroscopic properties

of the flow, such as maxima and minima of the pressure field and the Darcy-law flow

rate. Taking the fine-scale matrix as a starting point, we compare our technique to
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Figure 4.8: Coarse-Scale Basis Functions for Mildly-Layered Geostatistical Field
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Figure 4.9: Fine-Scale Basis Function for Mildly-Layered Geostatistical Field
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Figure 4.10: Coarse-Scale Basis Functions for Strongly-Layered Geostatistical Field
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Figure 4.11: Fine-Scale Basis Function for Strongly-Layered Geostatistical Field
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the results obtained by other upscaling techniques, noting that using a robust multigrid

scheme to compute the coarse-scale operators requires much less work than solving a

single problem over each subdivision of the domain.

We derive a coarse-scale model by first discretizing Equations 2.1 and 2.2 on

a scale fine enough to resolve the variations in K, using bilinear finite elements and

Neumann (natural) boundary conditions. The fine-scale matrix is then coarsened to a

given coarse (or computational) scale using a variational multigrid formulation, as in

BoxMG and AMG. Care must be taken to ensure sufficient representation of the fine-

scale boundary on the coarse mesh. To avoid overcoarsening near Dirichlet boundaries

(as can occur in correction-based multigrid schemes where little or no correction is

needed near the diagonally-dominant Dirichlet boundaries), we coarsen the Neumann

problem so that all rows of the fine-scale operator have the same zero-row-sum property.

It may, however, be necessary to add additional constraints on the coarse grid nodes to

ensure that any Dirichlet conditions on the flow are adequately represented.

Knowing that the coarse grid contains points upon which the Dirichlet boundaries

of the problem are represented, we coarsen these independently of the PDE. As Neu-

mann boundaries are coarsened naturally with the variational coarsening on the natural

boundary condition problem, care need only be taken in the coarsening of Dirichlet con-

ditions. The coarsening of the matrix entries for a Dirichlet condition is natural, as they

may be imposed nodally, by setting the diagonal to 1 and (symmetrically) zeroing off-

diagonal connections, but coarsening of the Dirichlet data must be done more carefully.

In particular, the Dirichlet data should be coarsened in order to ensure conservation of

global pressure gradients. Since we consider smooth Dirichlet data, we simply coarsen

the data nodally. However, in the presence of significant variation in the Dirichlet data,

an explicit averaging would likely be more appropriate, and would need to be carefully

chosen.

Once we have derived the coarse-scale model with appropriate boundary con-
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ditions, it can be easily solved with a correction-based multigrid scheme, such as the

method used to derive the coarse-scale model. The coarse-scale solution can be consid-

ered on the coarse grid, but little additional effort is required to interpolate it to the

finest grid (the original grid), where full use may be made of the multiscale information

contained in the coarse-scale basis functions and, thus, the coarse-scale solution. Once

the fine-grid representation of the coarse-scale solution has been computed, we may

compute its macroscopic properties for comparison with other techniques.

We consider the results of this upscaling on both geometrically regular and geo-

statistical permeability fields as compared to various coarse-scale discretizations of the

problem. In these examples, we consider a fine grid of 64 × 64 elements on the unit

square (so that h = 1
64) with a coarse grid of 16 × 16 elements. We impose no-flow

(Neumann) boundary conditions on the top and bottom of the domain (along y = 0

and y = 1) and pressure (Dirichlet) boundary conditions on the left and right edges. In

order to induce a flow across the domain, we set the pressure at the left edge (x = 0)

to 1 and at the right edge (x = 1) to 0. The results presented below use the BoxMG

method [34] for constructing the coarse-scale models analyzed.

4.4.3 Numerical Results for Structured Permeability Fields

As an initial test, we consider a fine-scale structure that can also be resolved

on the coarse scale, as in Figure 4.12. Here, the fine-scale permeability is given as a

2 × 2 tiling of the unit square with a high-permeability inclusion, where K = 1000, on

[14 ,
3
4 ]2. Cross-sections are considered both passing through and outside the inclusions,

as indicated by the dotted lines in Figure 4.12.

As this permeability can be resolved directly on the coarse scale, the appropriate

comparison is to a direct discretization with the permeability sampled from the center

of each coarse-scale element. Considering a fine-scale discretization on a 64×64 element

mesh coarsened to a 16×16 element mesh, all multigrid coarsening occurs within homo-
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Figure 4.12: Periodic Sand/Shale Permeability Field and Cross-Sections Considered

geneous regions. Thus, the multigrid-upscaled equations are the same as those directly

discretized on the coarse scale. Cross-sections of pressure in both x and y, passing both

through and outside the high-permeability inclusions are shown in Figure 4.13. Here, we

see that there is some loss of accuracy in the coarse-scale solution due to the curvature

in the fine-scale solution that cannot be represented on the coarse computational scale.

The 4×4 periodic example of Figure 4.14 provides a more challenging test because

the fine-scale structure cannot be exactly represented on the coarse scale. This field is

the same as that in Figure 4.5 that produced the coarse-scale basis function shown in

Figure 4.7. The fine-scale structure is created by tiling the unit square with an high-

permeability inclusion, where K = 1000, on [ 5
16 ,

11
16 ]2. As in the fully-resolved example

above, we again consider cross-sections both passing through the inclusions and that

pass only through the background media.

As the fine-scale structure of the permeability cannot be resolved directly on the

coarse-scale, a discretization on that scale, where the permeabilities are simply sampled

from the coarse-scale elements, is expected to perform poorly. Thus, we also consider

discretizing the problem, again with finite elements, but now choosing the permeability

used in discretizing over a coarse-scale element to be the harmonic average of the fine-
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Figure 4.13: Cross-Sections of Pressure for 2× 2 Periodic Permeability Example
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Figure 4.14: Periodic Sand/Shale Permeability Field and Cross-Sections Considered

scale permeability on the element. The choice of this average is motivated by the

one-dimensional result discussed in Section 2.1 and because it is often used in practice.

Figure 4.15 shows the pressure fields of the solutions along the line y = 5
32 , which

passes through four of the inclusions. While the coarse-scale solution resulting from

sampling matches the macroscopic features of the fine-scale solution, it does not match

the size of the inclusions, overestimating their width of 6
64 as 8

64 , because two coarse-

scale elements on this line have centers within the inclusion. The harmonic average

case simply smears out the effect of the the inclusions, resulting in a much smoother

gradient than is seen in the fine-scale solution. In contrast, the upscaled result matches

the fine-scale solution exactly.

Cross-sections along y = 3
16 show similar errors, as in Figure 4.16. The coarse-

scale solution from the sampled case fails to resolve any character of the flow, as it

chooses this line to lie within the inclusions. The harmonic mean now matches the

fine-scale solution better, although again has a smoother gradient than the fine-scale

solution exhibits. The fine-scale behavior outside the inclusions is smeared out when

the harmonic mean is used to average the fine-scale permeability. The upscaled solu-

tion, however, is again quite close to the fine-scale solution, in both macroscopic and
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Figure 4.15: Cross-Sections of Pressure for 4× 4 Periodic Permeability Example
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microscopic detail.

Cross-sections in y are somewhat more illuminating. Along x = 5
32 , we see in-

accuracies in all three solutions in Figure 4.17. The coarse-scale discretization with a

sampled permeability tracks the coarse-scale solution well macroscopically, accurately

predicting both its maximum and minimum values, but fails to resolve finer-scale details

such as the extent of the plateaus from within the inclusions and the curvature of the

troughs between these plateaus. The harmonic average does a very poor job of tracking

the fine-scale solution, only matching the largest-scale trend and even doing that rela-

tively poorly. It neither resolves the maxima and minima of the fine-scale pressure nor

accurately represents the local character of this cross-section. In contrast, the upscaled

solution matches the fine-scale solution quite well, except at the very bottoms of the

troughs where it undershoots the true value. This may be due to the inability of the

coarse-scale basis functions to accurately resolve the curvature in the fine-scale solution

at this point, as may be seen in the basis function of Figure 4.7, where the basis closely

matches a bilinear function, except with flat regions within the permeabilities.

Considering the line, x = 3
16 , which does not pass through the inclusions, we again

see inaccuracies in the approximations in Figure 4.18. As in the case of the cross-section

in x, the sampled coarse-scale problem predicts this line to be within the inclusions and

thus does a poor job of matching the fine-scale profile. The profile of the harmonic-

mean based solution is similar to that from the inclusion case. In this discretization, the

effect of the inclusions is smeared over a wider area, and so we again get a poor match

to the fine-scale solution. Here, the solution obtained by our upscaling approach on a

16 × 16 grid matches the fine-scale solution with a linear approximation that matches

the large-scale oscillation of the fine-scale solution, but fails to resolve the fine-scale

details of the curvature.

The misfit between the multigrid upscaling results and the fine-scale solutions in

Figures 4.17 and 4.18 may be considered with respect to the underlying minimization
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Figure 4.16: Cross-Sections of Pressure for 4× 4 Periodic Permeability Example
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problems of the finite element discretizations. Discretizing the diffusion equation,

−∇ · K∇p = Q,

on the 64× 64 element grid results in a minimization problem,

p = argmin
p̃∈V

∫∫ (
1
2
(K∇p̃) · ∇p̃−Qp̃

)
dx,

where V is the space of continuous, piecewise-bilinear functions on the 64× 64 element

grid. We, however, solve this minimization problem over an even smaller subspace of V

and, thus, expect a more significant mismatch to the exact solution. Notice, however,

that the errors are most significant in the background medium, where K is relatively

small, and we see no lost accuracy in regions of high permeability, which is consistent

with this minimization point of view.

4.4.4 Numerical Results for Geostatistical Permeability Fields

The geostatistical examples of Figures 2.3 and 2.4 have much richer fine-scale

features, and thus we expect the problem of accurately representing the details of these

fields on the coarse grid to be much more difficult than for the geometrically regular

cases considered above. Since each element represents distinct material properties, the

simple sampling approach is no longer appropriate. Instead, we consider direct coarse-

level discretizations based on arithmetic and harmonic averaging of the permeability.

We also consider the approach of Durlofsky, based on the periodic theory, of solving

subdomain problems to compute an upscaled permeability for each coarse-scale element

and then discretizing and solving the coarse-scale problem with these permeabilities.

For the weakly-layered field in Figure 2.3, these methods all capture, to some

extent, the macroscopic trends in the pressure field. Cross-sections of the pressure

along y = 5
32 , shown in Figure 4.19, show reasonable matches between the profiles of

the fine-scale solution and those of the coarse-scale approximations. Both the arithmetic
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and harmonic means capture the appropriate trend, although are noticeably off in exact

details of the fine-scale pressure. The upscaling approach based on periodic theory

actually does quite well at picking up these details, missing only a relatively small

portion over the interval [12 ,
3
4 ]. Our multilevel upscaling procedure, however, matches

the fine-scale pressure nearly exactly for this problem.

Cross-sections along x = 5
32 , depicted in Figure 4.20, show more variation between

the methods. The coarse-scale solution based on the arithmetic mean does a reasonable

job of approximating the fine-scale solution as a linear function, matching the gen-

eral trends, but certainly missing many of the finer-scale features. The harmonic-mean

approach yields a pressure that matches the fine-scale behavior only in its broadest

features. In contrast, the periodic theory approach yields a very good piecewise linear

approximation to the fine-scale solution, outdone only by the multilevel upscaling ap-

proach that, by virtue of its use of a multiscale basis, matches many of the fine-scale

features of this pressure cross-section.

This analysis may be quantified by considering qualities such as the prediction

of location and values of maxima and minima in the pressure. In fact, accurately

predicting such quantities is quite important in unsaturated or multiphase flow, where

the PDE coefficients depend on these pressures and inaccurate values may result in

non-physical simulation results. While tracking each local minima and maxima in the

pressure is important, we present results here for finding only the absolute maximum

and minimum pressures along the cross-section of x = 5
32 . The absolute extrema for the

y = 5
32 cross-section occur due to the Dirichlet boundary conditions and, thus, do not

provide interesting data.

The maximum pressure of the 512 × 512 fine-grid solution occurs at y = 0.043

with value 0.8688, while the minimum pressure occurs at y = 0.5176 with value 0.5971.

Errors in the computation of the value and location of these extrema for the four different

upscaling methods are given in Table 4.2. The arithmetic and harmonic means result in
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Figure 4.19: Cross-Sections of Pressure for Mildly-Layered Geostatistical Example
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Upscaling Technique Arithmetic Harmonic Periodic Multilevel

Mean Mean Theory Upscaling
Error in maximum pressure 2.8× 10−2 2.8× 10−2 7.3× 10−3 1.4× 10−3

Error in location of max. p 2.0× 10−2 4.3× 10−2 2.0× 10−2 2.0× 10−2

Error in minimum pressure 7.4× 10−3 5.1× 10−2 4.4× 10−3 2.0× 10−4

Error in location of min. p 4.5× 10−2 1.8× 10−2 4.5× 10−2 1.8× 10−2

Table 4.2: Errors in Computed Extreme Pressures for Mildly-Layered Geostatistical
Permeability Field

similar errors in the maximum pressure, while the arithmetic mean is somewhat more

accurate in predicting the minimum pressure. The periodic theory approach yields

even more accurate maximum and minimum values than these averages; however, the

multilevel upscaling approach yields the most accurate predictions of all four methods.

All four methods yield comparable errors in the location of these extrema.

The strongly-layered permeability field provides the most difficulty of these test

cases for all of the coarse-scale approximation methods. Figure 4.21 shows that both

explicitly averaged coarse-scale models predict the general shape of the fine-scale pres-

sure, but again miss details of a cross-section along y = 5
32 . Here, the arithmetic mean

is much smoother than the fine-scale solution, whereas the harmonic mean does a better

job of tracking the fine-scale variation. The periodic theory approach does a very poor

job of predicting the pressure along this line, with a profile that bears little relation to

that computed on the fine scale. Once again, the multilevel upscaling approach pro-

duces the best approximation to this cross-section and accurately captures most of the

fine-scale features.

Cross-sections along x = 5
32 show this even more dramatically, as in Figure 4.22.

Both the harmonic and arithmetic averages provide a believable approximation to the

fine-scale solution, particularly in the middle of this cross-section, but miss significant

features near the endpoints. The periodic theory gives a horrific approximation to

the fine-scale behavior that matches only some aspects of the changes in the fine-scale
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Figure 4.21: Cross-Sections of Pressure for Strongly-Layered Geostatistical Example
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Upscaling Technique Arithmetic Harmonic Periodic Multilevel

Mean Mean Theory Upscaling
Error in maximum pressure 5.5× 10−2 8.1× 10−2 2.7× 10−1 1.0× 10−3

Error in location of max. p 9.4× 10−1 6.6× 10−2 7.5× 10−1 3.9× 10−3

Error in minimum pressure 2.3× 10−3 7.0× 10−4 8.6× 10−2 1.4× 10−3

Error in location of min. p 7.8× 10−3 7.8× 10−3 3.0× 10−1 7.8× 10−3

Table 4.3: Errors in Computed Extreme Pressures for Strongly Layered Geostatistical
Permeability Field

solution (that the approximation increases and decreases where the solution does), but

does a very poor job of representing the structure of interest. The multilevel upscaling

method gives a much better approximation to the fine-scale solution, although still

misses some fine-scale details, such as the local maxima near y = 0.2.

To quantify this analysis, we again consider how well each approximation matches

the location and values of the global maximum and minimum along the cross-section

of x = 5
32 . The maximum pressure for the 512 × 512 grid fine-scale solution along this

cross-section is p = 0.9576 at y = 0.9336, and the minimum is p = 0.768 at y = 0.5703.

Errors in the computation of the value and location of these extrema for the four different

upscaling methods are given in Table 4.3. The arithmetic and harmonic means both

do a good job of predicting the minimum pressure, but fail to accurately approximate

the maximum, with the arithmetic mean locating the maximum pressure at the left

endpoint, and the harmonic mean locating the maximum at the right endpoint. The

periodic-theory approach predicts these features dismally, worse than even the simple

averages. Interestingly, the multilevel upscaling approach is comparable with the simple

averages in errors in the location and value of the minimum pressure, but significantly

more accurate in predicting the maximum.

Another important measure of the accuracy of the coarse-scale model is the ability

to predict certain macroscopic properties, such as the net flux into or out of the domain.

For both of the geostatistical examples, we measure the net flux out of the domain by
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integrating (K∇p) · n along the outflow boundary, where n is the outward unit normal

vector along this edge, for the various coarse-scale discretizations considered above. For

the averaging and periodic-theory based discretizations, this integration is done using

the coarse-scale solution and coarse-scale permeabilities (as determined by the method

used). For the multilevel upscaling method, we consider the interpolated coarse-scale

solution and integrate on the fine scale, taking advantage of the approximation provided

by the multiscale basis functions.

We consider both the flows above, where Dirichlet boundary conditions are im-

posed so as to induce a flux from left to right across the domain, as well as the case when

Dirichlet boundary conditions induce the flux from bottom to top across the domain,

with Neumann (no-flow) boundary conditions along the left and right edges. In each

case, we report both the computed approximate flux as well as the percentage error

as compared to a fine-scale, 512 × 512 element approximation. We compute the fluxes

for all four upscaling techniques discussed above, in all cases starting with the 64× 64

permeability specification and coarsening down in factors of two as far as a 4× 4 coarse

scale.

Tables 4.4 and 4.5 show the computed flux values and associated errors for the

mildly-layered field with flow in the x-direction, as compared to a fine-scale calculation

of this flux as 2.696. As with the upscaled permeability calculations of Section 4.3, we

see that the arithmetic mean is always an upper bound on the flux and the harmonic

mean provides a lower bound. Both choices, however, give poor approximations to the

fine-scale flux, with much more significant errors than either the periodic theory or

multilevel upscaling techniques. Both of these techniques provide good approximations

to the fine-scale flux, with errors under 2% when coarsening only a single level to a

32 × 32 coarse scale, and errors under 4% on all coarse scales down to the 4 × 4 grid.

Similar behaviour is seen in the fluxes in the y-direction, as shown in Tables 4.6 and 4.7.

Here, we see that the multilevel upscaling method is somewhat more accurate than the
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Upscaling Technique 32× 32 16× 16 8× 8 4× 4
Arithmetic Mean 2.895 3.092 3.400 3.660
Harmonic Mean 2.153 1.558 1.087 0.944
Periodic Theory 2.748 2.755 2.751 2.797
Multilevel 2.743 2.753 2.802 2.795

Table 4.4: Computed Outflow Flux Values for Mildly-Layered Geostatistical Permeabil-
ity Field with Flow in the x-direction

Upscaling Technique 32× 32 16× 16 8× 8 4× 4
Arithmetic Mean 7.4% 14.7% 26.1% 35.8%
Harmonic Mean 20.1% 42.2% 59.7% 65.0%
Periodic Theory 1.9% 2.2% 2.0% 3.7%
Multilevel 1.7% 2.1% 3.9% 3.7%

Table 4.5: Percentage Errors in Outflow Fluxes for Mildly-Layered Geostatistical Per-
meability Field with Flow in the x-direction

periodic theory, with errors of less than 2% relative to the fine-scale flux of 0.705 on all

coarse scales. He et al. [52] consider an example with the same media characteristics,

but with a 50× 50 fine grid upscaled to a 10× 10 coarse grid. They report errors of 5%

and 8%, relative to the 50× 50 solution, in computing the coarse-scale x- and y-fluxes,

respectively.

Results for the strongly-layered media of Figure 2.4 show significantly more varia-

tion in the computed fluxes. The fine-scale calculation for outflow flux in the x-direction

is 2.229, with coarse-scale fluxes shown in Table 4.8 and the percentage errors relative to

the fine-scale value in Table 4.9. Again, the arithmetic and harmonic means give upper

and lower bounds on the fine-scale permeability, but with significant error. The approx-

imations from the periodic theory are much worse in this case, particularly on coarser

grids, peaking with the 8 × 8 grid where the predicted value is more than twice the

fine-scale computation. Performance of the multilevel upscaling method is worse than

that in the mildly-layered case, but still much better than any of the other methods,

with a maximum error of 16.6% occuring when upscaling 3 levels.

Flow in the y-direction produces more striking results, as shown in Tables 4.10
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Upscaling Technique 32× 32 16× 16 8× 8 4× 4
Arithmetic Mean 0.864 1.344 1.874 2.073
Harmonic Mean 0.656 0.616 0.548 0.513
Periodic Theory 0.721 0.756 0.737 0.727
Multilevel 0.708 0.718 0.712 0.708

Table 4.6: Computed Outflow Flux Values for Mildly-Layered Geostatistical Permeabil-
ity Field with Flow in the y-direction

Upscaling Technique 32× 32 16× 16 8× 8 4× 4
Arithmetic Mean 22.7% 90.7% 166.0% 194.3%
Harmonic Mean 6.9% 12.6% 22.2% 27.2%
Periodic Theory 2.4% 7.3% 4.6% 3.2%
Multilevel 0.5% 1.9% 1.1% 0.5%

Table 4.7: Percentage Errors in Outflow Fluxes for Mildly-Layered Geostatistical Per-
meability Field with Flow in the y-direction

Upscaling Technique 32× 32 16× 16 8× 8 4× 4
Arithmetic Mean 2.847 3.347 3.655 4.031
Harmonic Mean 1.565 0.982 0.579 0.423
Periodic Theory 2.319 3.482 4.923 3.124
Multilevel 2.430 2.558 2.599 2.493

Table 4.8: Computed Outflow Flux Values for Strongly-Layered Geostatistical Perme-
ability Field with Flow in the x-direction

Upscaling Technique 32× 32 16× 16 8× 8 4× 4
Arithmetic Mean 27.7% 50.2% 64.0% 80.8%
Harmonic Mean 29.8% 55.9% 74.0% 81.1%
Periodic Theory 4.0% 56.2% 120.8% 40.1%
Multilevel 9.0% 14.8% 16.6% 11.8%

Table 4.9: Percentage Errors in Outflow Fluxes for Strongly-Layered Geostatistical
Permeability Field with Flow in the x-direction
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Upscaling Technique 32× 32 16× 16 8× 8 4× 4
Arithmetic Mean 1.571 2.370 3.093 3.700
Harmonic Mean 0.819 0.628 0.454 0.353
Periodic Theory 1.177 5.750 16.207 2.705
Multilevel 1.074 1.058 0.919 0.962

Table 4.10: Computed Outflow Flux Values for Strongly-Layered Geostatistical Perme-
ability Field with Flow in the y-direction

Upscaling Technique 32× 32 16× 16 8× 8 4× 4
Arithmetic Mean 50.5% 127.0% 196.3% 254.4%
Harmonic Mean 21.5% 39.9% 56.5% 66.2%
Periodic Theory 12.7% 451.7% 1452.4% 159.1%
Multilevel 2.8% 1.3% 11.9% 7.8%

Table 4.11: Percentage Errors in Outflow Fluxes for Strongly-Layered Geostatistical
Permeability Field with Flow in the y-direction

and 4.11. Here, the fine-scale flux of 1.044 is better approximated on every level of the

multilevel upscaling method than on any level of any other method. While we expect

the bounds of the arithmetic and harmonic means to be poor, as in Figure 4.3, the

periodic theory approach gives its poorest performance on this problem, overestimating

the flux on the upscaled 8 × 8 grid by a factor of over 15. In contrast, the multilevel

upscaling technique remains quite accurate, with errors of less than 3% on the first two

coarsening levels and under 12% on all levels.

These results convincingly indicate the advantages of the multilevel upscaling

technique, particularly given its low cost. We are able to accurately reconstruct fine-

scale characteristics of the flow through coarse-scale calculations and the interpolation

of an operator-induced multigrid method. Not only does this method accurately predict

macro-scale properties, such as the integrated flux or global trends in the pressure field,

it also reconstructs accurate approximations to local variation, such as local maxima

and minima of the pressure.

A simple approach to improving the accuracy of these results with a small addi-

tional cost is to augment the interpolation process from the coarse, computational scale
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to the fine scale with a single post-smoothing step on each finer level. This creates, in ef-

fect, a V(0,1) multigrid cycle, with the computational-scale solve discussed above taking

the place of a coarse-scale solve and the small amount of post-relaxation incorporating

further fine-scale information into the solution. Figure 4.23 shows the cross-sections in

the x-direction for the weakly-layered (top) and strongly-layered (bottom) geostatistical

permeability fields when this post-relaxation strategy is employed.

Both figures show a noticeable increase in the resolution of fine-scale behavior,

accurately resolving features missed in the computational-scale solution. In particular,

we see a more accurate resolution of the local maxima and minima of the pressures

along these cross-sections. The same improvement is not seen in the computed outflow

fluxes, however, which appear to be marginally less accurate than those of the coarse-

scale solution. Fluxes further upstream, such as those integrated along the line x = 1
2 ,

do show a measurable improvement in accuracy. As is typical, relaxation is slow to

propagate the improved upstream pressure information to the outflow boundary.

These results offer insight into the cost-effectiveness of the multilevel upscaling

approach. Once the multigrid hierarchy is constructed, solution of a suitably-coarse

problem is quite cheap (costing several coarse-scale work units, but only a small amount

of work relative to the fine scale). This iteration does not converge to the solution of the

fine-scale problem, however, and additional relaxation on finer grids must be used to

improve the fine-scale character of the approximate solution. Such additional accuracy

comes at a cost of more fine-scale work units. Balancing the desired accuracy with a

practical computational cost determines the optimal strategy for a given application.

There are many possible avenues of further research in this area, which are pri-

marily discussed in Section 6.2.1. There are two avenues, however, that we feel are of

particular interest in relation to these results. First, we are very interested in the effect

of using other variational multigrid methods for the upscaling. BoxMG is well-suited to

the task, particularly due to the approximate conservation of normal flux in interpola-
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tion [67], but is restricted by the assumption of geometrically-regular coarse grids. In

contrast, AMG is well-suited to handling the often-complex geometries of real reservoir

simulations, but uses a much less physical interpolation scheme.

We also feel that a more detailed comparison to the multiscale finite element

method (MSFEM) [56] is appropriate. The approach of using multiscale basis functions

in the coarse-scale model is shown here to be very effective, and we expect this to be true

also for the MSFEM. However, the cost of explicitly forming the finite element basis

functions is much more significant than that of forming the interpolation operators

necessary in our approach. Thus, we believe that the MSFEM method may provide

comparable accuracy, although at a higher cost. Verification of this expectation is, of

course, necessary in evaluating both methods.



Chapter 5

Adaptive Multigrid Methods

Consider the class of solvers based on multigrid principles that depend little or

not at all on geometric information about the problem, but instead attempt to use basic

concepts of “algebraic smoothness” (see Section 3.3) to determine effective coarsening

and/or relaxation processes. Solvers of this type typically assume some defining char-

acteristic of algebraic smoothness that specifies error components that are not quickly

eliminated by the relaxation that is being used. For example, all such components are

assumed, in standard AMG (cf. [72] and §3.3), to vary slowly along so-called strong

connections in the matrix, or, in standard smoothed aggregation (SA; cf. [82] and §3.4),

to be represented locally by a few prototype vectors supplied by the user. While ap-

propriate use of the characteristic of algebraic smoothness seems essential for obtaining

effective solvers, these additional assumptions limit the scope of applicability of these

methods. In many important cases, errors missed by standard relaxation processes

can vary substantially along strong matrix connections, and, in many cases, even the

concept of strength of connection is not well understood. Moreover, supplying a fully

representative set of prototypical smooth components is not always easy nor possible in

practice.

The principal aim of the adaptive approach developed here is to eliminate or sub-

stantially reduce this reliance on the additional assumptions usually present in these

methods. The basic idea is to test the initial version of the given solver on the homo-
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geneous problem, Ax = 0, to determine its performance and expose whatever types of

errors it cannot effectively handle. The resulting prototypical errors that these tests

produce are then used to improve the algebraic multigrid process.

The concept of using a multigrid algorithm to improve itself began with standard

AMG [71], where interpolation was adjusted to fit vectors obtained by relaxation on the

homogeneous problem. In [23], a variation of this idea was used for recovering typical

AMG convergence for a badly scaled scalar elliptic problem. While the method there

was very basic and used only one error prototype, it contained many of the ingredients

of the adaptive process developed here. These concepts were developed further in [63,

69, 70, 73]. The idea of fitting of eigenvectors corresponding to the smallest eigenvalues

was advocated in [63] and [73], where an AMG algorithm determining these eigenvectors

through Rayleigh quotient minimization was outlined. These vectors were, in turn, used

to update the AMG interpolation and coarse-level operators. Most of these ideas were

later summarized in [63].

In many ways, using algebraically smooth vectors in the definition of interpola-

tion represents the next logical step in improving the interpolation operators used in

robust geometric and algebraic multigrid methods. Alcouffe et al. introduced the idea

of operator-induced interpolation in [2]. This improvement on the previously used geo-

metric interpolation approach opened up a much larger class of problems to black-box

multigrid solution.

In the present chapter, we use operator-induced interpolation approaches as well,

but also rely on an automatic process that supplies representative smooth components to

ensure optimal performance. By integrating information regarding algebraically smooth

vectors into the definition of interpolation, we develop multigrid schemes that are hope-

fully optimal for elliptic problems where the discrete system is not necessarily given in

terms of an M-matrix. These operator- and relaxation-induced interpolation approaches

can, if properly implemented, greatly enlarge the class of problems that admits optimal
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performance by a black-box multigrid technique.

We also introduce this form of adaptivity into AMG and SA. While classical

multigrid methods can be viewed as stationary iterative methods [9], the methods pre-

sented here are dynamic. In fact, we propose using the method itself to drive its own

iterative improvement. A “bootstrap” AMG method that is similar to the approach

developed here was recently proposed for the classical AMG setting by Brandt [21, 24].

Several other attempts have been made to allow for the solver itself to determine

from the discrete problem the information required to solve it successfully, without a

priori assumptions on the form of the smooth error, including the methods of [25, 27,

29, 47]. All of these methods, however, have in common their requirement that the local

finite element matrices of the problem be available, and they construct the multigrid

transfer operators based on the algebraically smooth eigenvectors corresponding to local

stiffness matrices assembled over element agglomerates. Although they can achieve

encouraging convergence rates, their need to construct, store, and manipulate the coarse-

level element information typically leads to increased storage requirements compared to

those of classical AMG or standard SA. The methods described below attempt to achieve

the good convergence properties of the element-based methods without the overhead of

element storage that they require.

We refer to the approaches developed here as adaptive because they involve self-

testing to expose slowly converging error components and adaptation of the schemes’

components to improve themselves. The acronym αMG is used to refer to the general

class of multigrid methods of this type, to suggest their primal algebraic nature: we have

in mind methods that use only the defining characteristic of algebraic smoothness and

must use an automatic, algebraic process to determine additional characteristics that

enable effective determination of the full MG algorithm. The additional abbreviations

αAMG and αSA, respectively, are used to refer to the specific AMG and SA versions

of αMG.
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In the next section, we present the adaptive framework and discuss the funda-

mental principles of αMG methods. Section 5.2 presents the application of these ideas

in the AMG context. In Section 5.3, theoretical results are motivated and shown in

the particular setting of a reduction-based AMG algorithm. Finally, the adaptive SA

method is discussed in Section 5.4.

5.1 The Adaptive MG Framework

The details of the αAMG and αSA algorithms are quite complex. We arrived upon

them by careful consideration of the basic principles and methodologies of an adaptive

algorithm. For this reason, our discussion focuses on these basic principles before the

particular details. We restrict our attention for the remainder of the paper to the case

that the n × n matrix, A = (aij), is symmetric and positive definite, although most of

what is developed applies to more general cases. Our aim is to develop an algebraic

multigrid process to solve the matrix equation,

Ax = b,

without a priori knowledge of the character of algebraically smooth error.

5.1.1 The Adaptive MG Algorithm

An efficient multigrid process for solving Ax = b relies on the appropriate com-

plementarity of relaxation and coarse-grid correction. Thus, we view the goal of the

adaptive process as the development of a representative collection of vectors for which

the chosen relaxation process is inefficient. In its most basic form, the adaptive pro-

cess would be quite simple: relax on a significant number of vectors to expose slow-

to-converge components and then choose interpolation to fit these vectors. Such an

approach is, however, quite inefficient and a multiscale viewpoint proves more useful.

Suppose we know the matrix, A, but nothing more. Relaxation is then the only



122

possible way to expose algebraically smooth error components. However, with no further

knowledge, there is no way of predicting, a priori, how many distinct components are

needed to achieve good results. Experience (and, in the case of SA, theory [79]) has

shown that, for discretizations of second-order scalar elliptic PDEs, a single component

is sufficient, whereas six components may be needed for a problem such as 3D linear

elasticity. To arrive at an optimal solver with a minimal amount of work, it thus seems

necessary to start with a single vector and introduce new prototypes as the evolving

method proves inadequate.

The situation is then that we have a given matrix and seek to find a single

algebraically smooth vector upon which to base interpolation. Relaxation alone can

achieve this, simply by iteration on the homogeneous problem. However, it typically

requires a significant number of relaxations to expose a global, algebraically smooth

vector, and so we seek to expose such components through multiscale development. We

use only enough relaxation to expose errors smooth enough to be handled on the first

coarse grid. Smoother errors are exposed by relaxation on this coarse grid and then used

to create a still coarser grid in the usual multigrid fashion. Just a few steps of relaxation

on the homogeneous problem on the finest grid quickly reduces a significant portion of

a random initial guess, leaving error that can then be said to be locally algebraically

smooth. If this prototype is used locally to define interpolation from some preselected

coarse grid, then a coarse-grid problem that adequately represents the algebraically

smooth error on the fine grid can be created. We can now iterate to an appropriate

coarsest grid and interpolate a prototype of the smooth error to all grids. Proceeding

recursively, this resembles a full approximation scheme multigrid for the algebraically

smooth component, rather than the usual correction scheme method.

In this manner, a good prototype of a single algebraically smooth component

can be determined and the resulting solver tested. If it proves sufficient, then the

adaptive stage is complete. Inefficiency in the resulting solver indicates that relaxation
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and coarse-grid correction are not yet perfectly complementary, and that there are

distinct algebraically smooth components that are not being accounted for. Since these

components are being reduced neither by relaxation nor coarse-grid correction, they

can be exposed by an iteration as above with the current solver taking the place of

relaxation. This may be repeated until acceptable convergence rates are attained.

Thus, we sketch the adaptive procedure as

Algorithm 2 (Abstract Adaptive Process).

(1) Let k = 1 and x(1) be a random vector. Define, for all grids l, the methods

CYCLEl(x(l),b(l)) to be ν relaxation sweeps on A(l)x(l) = b(l).

(2) CYCLEk(x(k),0).

(3) If not sufficiently coarsened, form interpolation and its coarse-grid operator.

Let x(k+1) = (x(k))c (that is, x(k) evaluated at the grid k+1 points), k = k+1,

and goto Step 2.

Otherwise, continue.

(4) While k > 1, let k = k − 1, interpolate the coarse-grid approximation,

x(k) = Ik
k+1x

(k+1), and perform CYCLEk(x(k),0).

(5) Let k = 1 and x(1) be a random vector. For all grids l, redefine the cycle,

CYCLEl(x(l),b(l)), to be ν current V-cycles on A(l)x(l) = b(l). If the perfor-

mance of CYCLE1(x(1),0) is not acceptable, go to Step 2.

5.1.2 Adaptive MG Principles

Perhaps the easiest way to understand the adaptive methodology is to begin with

the principles upon which it is based. Here, we list the core ideas that motivate and

provide a foundation for the αMG methods, with the primary focus on the αAMG
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scheme. The pragmatic reader may prefer to defer reading this discussion until after

Sections 5.2 and 5.4.

Smoothness: The concept of algebraic smoothness is of utmost importance in achieving

an optimally efficient algebraic multigrid method. Since we only allow reduction of the

error through the processes of relaxation and coarse-grid correction, the algebraically

smooth error (which, by definition, is slow to be resolved by relaxation) must be ac-

curately corrected from the coarse grid. That is, interpolation must be very accurate

for algebraically smooth components. In fact, a stronger requirement is imposed by the

eigenvector approximation criterion that, for a given eigenvector, u, of A, interpolation

must reconstruct u to an accuracy proportional to its eigenvalue [18, 62].

The algebraic multigrid methods considered here are based on some defining char-

acteristic of what algebraic smoothness means. This definition generally amounts to

articulating an algebraic property of the errors that the given relaxation process cannot

reduce effectively. For example, classical AMG is developed based on properties of a

polynomial iterative method such as the Richardson iteration:

x̃← x̃− 1
‖A‖

(Ax̃− b).

For this iteration, the error, e = A−1b− x̃, converges slowly in the A-norm,

‖e‖A =
√
< Ae, e >,

if and only if e yields a small generalized Rayleigh quotient:

RQA(e) =
< Ae, Ae >
‖A‖ < Ae, e >

.

Proper use of this defining property of algebraic smoothness gives AMG its potential

for optimal performance over a wide range of problems. It enables coarsening processes

that rightfully depend on the matrix and hopefully capture the errors that relaxation

cannot eliminate.
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Almost all algebraic multigrid methods, however, make additional assumptions

regarding algebraically smooth error that allow them to capitalize on the special nature

of algebraic smoothness that is assumed. For example, classical AMG rests on two

main assumptions: that the constant vector, 1, must be interpolated exactly; and that

algebraically smooth errors vary slowly along strong connections. While this enables

effective treatment of many problems, it also restricts the class to which these algorithms

apply. Many discrete systems exhibit algebraically smooth errors that vary dramatically

across strong connections and many others offer no clear understanding of what strength

of connection even means. Also, as we discuss further in the next section, 1 is not

necessarily a good representative of algebraically smooth error. A major goal of the

adaptive process is to capitalize on the definition of algebraically smooth error without

making additional specific assumptions about its character.

Prototypes: A central idea in the development of αAMG methods is the use of pro-

totypes that serve as representatives of algebraically smooth error. In fact, prototypes

are used in the development of nearly all multigrid methods. As mentioned above, for

example, classical AMG uses 1 to build its matrix-based interpolation coefficients (see

Equation 3.1 and the discussion in Section 3.3). αAMG and αSA differ in that they

attempt to generate their prototypes automatically.

Given a set of these prototypes, it is important to recognize that they should only

be used locally as representatives of algebraically smooth error. Otherwise, it would not

be possible to achieve optimality. As an illustration of this point, consider the fact

that a non-optimal preconditioned conjugate gradient method can be formulated as an

αMG method that uses the generated prototypes globally as representatives of slow-to-

converge error components (here, the smoother is the preconditioner and the coarse-grid

corrections are the Krylov subspace projections; see [42] for details). In general, errors

that are left by relaxation consist of a large fraction of the spectrum of the matrix, so

that coarsening must effectively approximate O(n) components with varying degrees of
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accuracy. The goal is to achieve this approximation property by only using a small,

O(1), number of computed prototypes.

The use of a small number of prototypes to achieve approximation of a much

larger space is a cornerstone of multigrid methods. It is essential that each prototype

be used effectively as a representative of many components with similar local character.

Remember that the constant vector, 1, is used in classical AMG to define an interpola-

tion whose range not only includes 1, but also approximates all smooth errors. This is

analogous to how local basis functions are used in finite elements: piecewise polynomial

basis functions are used locally not only because they can reconstruct their global coun-

terparts, but also because they can approximate all smooth components of the solution

of the PDE. The global prototype is a representative of many algebraically smooth com-

ponents, and thus is used locally to determine an interpolation operator that has many

such smooth components in its range.

Self-Testing: Computation of a rich supply of prototypes can be done by carefully

testing the algorithm as it evolves. These self-tests should be done on a problem with

known solution. The homogeneous problem, Ax = 0, is especially appropriate because

it avoids trouble with machine representation when the approximation is very close to

that solution. For our αMG schemes, we can test the current version of the algorithm

on Ax = 0 by measuring the A-norm of the error of successive iterates. This test serves

a dual role: it signals when the algorithm is performing well enough and it produces a

good prototype when it is not. Assuming that enough iterations are used, the prototype

must be appropriate because it is algebraically smooth (relaxation is not eliminating

it), yet poorly represented by whatever current coarsening process is being used (if

any). This prototype can then be used in the underlying algorithm precisely where the

additional smoothness assumptions were used. For classical AMG, this means that the

prototype would provide information on the correct coefficients to use in eliminating

the matrix connections to points that are only on the fine level.
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While the homogeneous problem is important as a measure of performance be-

cause it has a known solution, other measures can be useful in monitoring the evolving

behavior and improving the prototypes. This issue is most clearly exposed when a di-

rect solver is used on the coarsest level, where solving the homogeneous problem seems

paradoxical: why solve Ax = 0 when all you presumably get is x = 0? At this point,

a simple approach is to just accept the prototype computed on the next finer level so

that the coarsest level is never really used in the adaptive process. This means that

the prototype is never really improved there either. It may be better to enhance the

coarsest-level prototype by using a more precise measure of smoothness. For our αMG

schemes, we could choose to improve the prototype, x, on the coarsest level by mini-

mizing the generalized Rayleigh quotient, RQA(x). This approach becomes less clear,

however, when there are several prototypes because of the need to distinguish between

them. It may be necessary to also use a Ritz projection and, perhaps, a Rayleigh quo-

tient involving the correction operator from the current method (RQBA, where I −BA

represents the current error propagation matrix) or a more sophisticated measure [43].

In the scalar PDE case considered in §5.2, as well as in the αSA method in §5.4, we

have not yet found any need for improving the coarsest-level prototype, so this is not

addressed further in what follows. The Rayleigh quotient can, however, be useful as a

diagnostic tool in assessing how the adaptive process is behaving, as in Section 5.3.

Range of Interpolation: The primary aim of coarsening in any multigrid process is to

allow algebraically smooth error to be represented by the range of interpolation. For the

adaptive process, this means approximating the prototypes as much as possible. When

enough DOFs are used on the coarse level, it is possible to fit them exactly: x = Pxc

for some coarse-level xc. This is not, however, sufficient for achieving good multigrid

performance because, for example, piecewise-constant interpolation can fit the constant

vector exactly but leads to poor multigrid performance [16]. In fact, in our αAMG

scheme (described in Section 5.2.1), xc is chosen simply as x restricted to the coarse
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points, and so x = Pxc only in the case that Ax = 0.

The fine-level problem is coarsened so that the coarse-grid representation of a

prototype is just as good as the fine-grid representation, but requires less effort to re-

solve. For this reason, we can improve our representation of the near null space on the

coarse grid, but only if the range of interpolation admits an algebraically smoother com-

ponent than the prototype upon which interpolation was based. By using the prototype

locally, we ensure that this is possible. Thus, in the adaptive process, we overwrite each

fine-level prototype by its coarse-level interpolant that is, in general, a better prototype.

Optimality: Multigrid methods are useful solution techniques because they exhibit

optimal traits, such as O(N) or O(N logN) scaling in both number of operations and

storage. As such, any adaptive multigrid process should also retain this optimality. In

particular, the adaptive process must not make requirements of the solver that compro-

mise the optimality of the overall process and must itself scale optimally in operation

count and storage.

Classical AMG controls complexity by its intricate way of determining the coarse

points and its careful use of the matrix entries. The adaptive AMG approach assumes

that a suitable coarsening process is available (such as the compatible relaxation in [43,

61] and Section 6.2.2), with the attendant assumption that there is sufficient reduction

in grid sizes from fine to coarse levels. When fitting multiple prototypes, however, it

is tempting to abandon the tight control on the stencil of interpolation (such as to the

nonzero pattern of Afc, the submatrix of A linking fine- to coarse-grid nodes, as is used

in classical AMG) to allow for exact fitting of more prototypes. This must be done

with utmost care, as each new nonzero entry in the interpolation operator can lead to

new nonzero connections in the coarse-grid matrix. Care must also be taken to ensure

that the stencil of interpolation is not too small: early experiments limited the size of

the set of coarse-grid points from which any fine-grid point i is interpolated, Ci, to the

number of prototypes being fit, which led to an extremely inefficient algorithm because
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a single prototype could only be used to define one-sided interpolation, and so multiple

prototypes were needed for good convergence even for second-order, scalar PDEs.

Constructing a prototype set of minimal size is important to practical success

and control over the complexity of the algorithm. While the same near null space may

be well-represented by a small number of very precise vectors or a larger number of

less-resolved prototypes, the costs of the adaptive process and, possibly, the resulting

method increase with the number of prototypes. This is seen in αSA, where the proto-

type set is locally orthogonalized when determining interpolation to ensure new columns

of the prolongator (and thus coarse-grid points) are not introduced unnecessarily. For

this reason, it is more efficient to consider improvement of the existing prototype(s) than

to add a new prototype. As prototypes emerge, we can consider improvement of their

representation by removing each in turn from the prototype set, constructing the multi-

grid method based on this reduced set, and then applying the reduced multigrid method

to the removed prototype. This either improves the prototype as a representative of the

smooth components that are not well-represented by the rest of the prototype set, or

signals that the removed prototype is not needed in the set and the reduced multigrid

algorithm can replace the previous one. In either case, the prototype set is improved,

either by reducing its size or by enhancing its representation of algebraically smooth

error.

To ensure that the adaptive process is also optimal, adaptations are made when-

ever sufficient new information becomes known, but also only when the change is ex-

pected to improve the overall algorithm. For example, we develop the algebraically

smooth prototype in a full approximation scheme manner. This means that the pro-

totype on a given level is discarded when it can be improved from a coarser grid. We

do not, however, update interpolation or coarse-grid operators on the upward traverse

of the setup V-cycle. Such an adaptation would be wasted because operators at higher

levels will also change as the cycle moves toward the finest grid. For this reason, while
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we allow for multiple V-cycles to be performed in the setup phase, the last cycle always

terminates at the coarsest grid.

Termination of the adaptive process must also be properly implemented in order to

maintain optimality. Experience has shown that improvement in the resulting multigrid

process becomes less cost-effective with the number of setup phases and the total amount

of relaxation in the adaptive step. A method with an acceptable convergence factor

may be attained after even a single adaptive step, and a second adaptive step improves

this factor by only a fraction of a percent. This may be addressed by reducing the

amount of relaxation per adaptive step to a single sweep on each level, and monitoring

the convergence of the prototype vector between sweeps (for example, measuring its

Rayleigh quotient). Unfortunately, the majority of the cost of an adaptive step is

in the computation of interpolation and coarse-grid operators and not relaxation, so

performing many adaptive steps is undesirable. For this reason, we choose a strategy

involving a minimal number of setup cycles, motivated in Section 5.2.4, with enough

relaxations in these cycles to quickly achieve convergence factors within a few percent

of the apparent optimal performance.

5.2 Adaptive Algebraic Multigrid Methods

Our goal in developing a new type of algebraic multigrid method is to extend the

applicability of classical AMG schemes. Thus, a primary concern is the generalization

of the definition of interpolation in AMG. The guiding principles for this generalization

come from basic properties of all multigrid algorithms:

• simple relaxation is inefficient for solving Ax = b on error components, e, whose

residuals, Ae, are small relative to e in some sense; and

• efficient multigrid performance depends on effective complementarity of relax-

ation and coarsening so that they efficiently cooperate to eliminate all error
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components.

In developing the new interpolation procedure, we consider the case of pure alge-

braic coarsening; however, for practical reasons, we chose to first implement the algo-

rithm in the case of regular geometric coarsening. The numerical results presented in

Section 5.2.5 are for this implementation in the case of a scalar PDE.

5.2.1 Definition of Interpolation

Since the success of our methods depends on the complementarity of relaxation

and coarse-grid correction, a good starting point for defining interpolation is to consider

a vector, e, that is not quickly reduced by relaxation. Using a simple (pointwise)

relaxation scheme, such as Gauss-Seidel, this also means that Ae ≈ 0, or

aiiei ≈ −
∑
j∈Ci

aijej −
∑
k∈Fi

aikek,

where, as in Equation 3.2, we assume a splitting of Ni into Ci and Fi. Again writing

error ek, k ∈ Fi, as

ek ≈
∑
j∈Ci

ωi
kjej + ωi

kiei,

a general interpolation formula for point i ∈ F is then:

ei = −
∑
j∈Ci


aij +

∑
k∈Fi

aikω
i
kj

aii +
∑
k∈Fi

aikω
i
ki

 ej . (5.1)

The αAMG interpolation is different from that used in classical AMG [73] in that {ωi
kj}

are chosen to depend on both the entries in A and a (computed) prototype, x(1), that

represents many algebraically smooth components. How this prototype is computed is

the subject of Section 5.2.3.

To be specific about the choice of {ωi
kj}, consider the idea of twice-removed inter-

polation [23]. Suppose we have a point, i, whose neighbors have been partitioned into

the two sets, Ci and Fi. The problem of collapsing the F − F connections is equivalent
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to that of determining a way to interpolate to point k ∈ Fi from points j ∈ Ci (or, more

generally, j ∈ Ci ∪ {i}). That is, we seek to write (as before)

ek =
∑
j∈Ci

ωi
kjej , (5.2)

dropping the term ωi
kiei, under the assumption that k is as strongly connected to some

point (or points) in Ci as it is to i. If there is a particular vector, x(1), that we want to

be in the range of interpolation, then we ask that Equation 5.2 hold when e is replaced

by x(1). This constraint with one vector, x(1), fixes one DOF of the possibly many for

set {ωi
kj}, but leads to a unique Fi-interpolation formula if it is restricted to be of the

form D−1Afc, where D is a diagonal matrix. (This choice is motivated by the discussion

in [25].) D is thus determined by

di
kkx

(1)
k = −

∑
j∈Ci

akjx
(1)
j

or

di
kk =

−
∑
j∈Ci

akjx
(1)
j

x
(1)
k

. (5.3)

Thus, choosing ωi
kj = (di

kk)
−1akj in Equation 5.2, the Fi-interpolation formula is

ek = −
∑
j∈Ci

akj

di
kk

ej .

Interpolation to i ∈ F , given by Equation 5.1, then has the particular form

ei = −
∑
j∈Ci

1
aii

aij +
∑
k∈Fi

aik
akjx

(1)
k∑

j′∈Ci

akj′x
(1)
j′

 ej . (5.4)

Note that the interpolation operator, P , as a mapping from C to F ∪ C, then has the

form

P =

 W

I

 ,
where W is the matrix of coefficients determined by Equation 5.4.
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This αAMG interpolation formula is a simple generalization of the classical AMG

formula that allows for a sense of smoothness that may differ from what AMG conven-

tionally uses. The primary assumption used in standard AMG to collapse F − F con-

nections is that the smoothest error component is constant [73]. Thus, classical AMG

interpolation is recovered from the formula in Equation 5.4 by choosing x(1) ≡ 1.

The iterated interpolation of Equations 5.2 and 5.3 was chosen to exactly match

the near null space approximation, x(1). The final interpolation in Equation 5.4, how-

ever, does not necessarily match this vector exactly. For a fine-grid point, i, the misfit

is easily calculated as

x
(1)
i − (Px(1)

c )i =
1
aii

(Ax(1))i. (5.5)

This is in accord with the classical AMG point of view that interpolation must be more

accurate for errors that yield smaller residuals. In fact, it may be directly compared

with the eigenvector approximation criterion, as described by Brandt [18, Theorem 4.1],

which relies on the existence of a constant, C0, such that

C0

∑
i

aii(ei − (Pec)i)2 ≤ eTAe,

for all e ∈ RN . Squaring Equation 5.5, multiplying through by aii, and summing, we

have

∑
i

aii(x
(1)
i − (Px(1)

c )i)2 =
∑

i

1
aii

(Ax(1))2i = (x(1))TA

(
diag(

1
aii

)
)
Ax(1)

≤ ρ
(
A

1
2

(
diag

(
1
aii

))
A

1
2

)
(x(1))TAx(1).

For a diagonally-dominant operator with constant diagonal, such as the finite-

element Laplacian, ρ
(
A

1
2

(
diag

(
1

aii

))
A

1
2

)
is easily bounded by 2 and, thus, the con-

stant, C0, in Brandt’s bound is not made unduly small due to the misfit in the interpola-

tion of x(1). While such a bound is only for the prototype, x(1), and not for any arbitrary

fine-grid vector (as required by the eigenvector approximation criteria), we consider x(1)
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to be an appropriate prototype of the algebraically smooth error for which this bound

is most difficult to achieve and, thus, indicative of a good interpolation scheme.

While this section considers methods involving just one prototype vector, x(1),

appropriate for scalar PDEs, these concepts can also be generalized to systems. Consider

discretizing a system so that its DOFs are located on the same grid, i.e., there are d

DOFs co-located at each node. Since we seek to generalize the ideas from the scalar

case, we start by generalizing the notation: Akj becomes the d×d matrix of connections

between the DOFs located at nodes k and those located at node j, the diagonal entries

of D (Di
kk) become d × d matrices, and x(1) becomes the matrix, X(1), composed of d

columns of distinct prototypes. Its restriction to the d DOFs at node k is denoted by

X
(1)
k . The analogue of Equation 5.3 is then

Di
kk = −

∑
j∈Ci

AkjX
(1)
j

(X(1)
k

)−1
.

The Fi-interpolation formula for systems thus becomes

ek = −
∑
j∈Ci

(Di
kk)

−1Akjej ,

which yields the final nodal interpolation formula

ei = −A−1
ii

∑
j∈Ci

Aij +
∑
k∈Fi

Aik(Di
kk)

−1Akj

 ej .

5.2.2 Theoretical Properties

One situation that can cause difficulty for classical AMG is when the matrix

is rescaled. For example, if A is the discretization of a Poisson-like problem, then

it is generally true that A applied to 1 yields a relatively small residual: A1 ≈ 0.

This means that constant vectors are indeed algebraically smooth, as classical AMG

presumes. Rescaling A by multiplying it on both left and right (to preserve symmetry)

by a positive diagonal matrix can dramatically change this property. Thus, if A is

replaced by Â = SAS for some positive diagonal matrix S, then Â(S−11) ≈ 0, and
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the new near null space component is actually S−11. If the diagonal entries of S have

significant variation in them, then S−11 has a significantly different character than does

1. For classical AMG, this can cause a dramatic deterioration in convergence rates,

although it can be prevented if the scaling is supplied to AMG so that the original

matrix can essentially be recovered (as in [23]), but this is not always possible in practice.

Fortunately, as the following result shows, such scaling causes no problem for αAMG,

provided the scaled prototype can be accurately computed.

Theorem 3. Given a positive diagonal matrix, S, vectors x(1), x̂(1) = S−1x(1), b, and

b̂ = Sb, then the convergence of αAMG on Âx̂ = b̂ with prototype x̂(1) (measured in

the Â-norm) is equivalent to that of αAMG on Ax = b with prototype x(1) (measured

in the A-norm).

Proof. Given a coarse-grid set, C, and the complementary fine-grid set, F , partition A

and S to have the forms

A =

 Aff Afc

Acf Acc

 and S =

 Sf 0

0 Sc

 ,
so that

Â =

 SfAffSf SfAfcSc

ScAcfSf ScAccSc

 .
The weights, ω̂i

kj , for matrix Â are given by

ω̂i
kj =

âkj x̂
(1)
k∑

j′∈Ci

âkj′ x̂
(1)
j′

=
skakjsjs

−1
k x

(1)
k∑

j′∈Ci

skakj′sj′s
−1
j′ x

(1)
j′

= s−1
k ωi

kjsj ,

where the weights, ωi
kj , are chosen as for matrix A. Equation 5.4 then gives (with some
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algebra)

ei = −
∑
j∈Ci

s−1
i


aij +

∑
k∈Fi

aikω
i
kj

aii

 sjej , i ∈ F.

For i ∈ C, again simply take the value from the coarse-grid and assign it as the value

on the fine-grid. Thus, the interpolation operator, P̂ , is of the form

P̂ =

 Ŵ

I

 =

 S−1
f WSc

I

 = S−1PSc,

where P is the interpolation operator from the unscaled case. Further, considering

the coarse-grid operator, Âc, note that Âc = ScP
TAPSc = ScAcSc, where Ac is the

coarse-grid operator from αAMG on A.

So, the coarse-grid operator for the scaled problem is simply the scaled version of

the coarse-grid operator for the unscaled problem. Since standard relaxation techniques

such as Gauss-Seidel or Jacobi (both pointwise and block forms) are scaling invariant

(that is, if A is scaled to SAS as above, initial guess x(0) to S−1x(0) and initial right

side b to Sb, then the approximation generated changes from x(1) to S−1x(1)), we see

that the entire process is independent of any diagonal scaling.

Theorem 4. Theorem 3 extends to the systems algorithm, which is invariant to diagonal

scaling with pointwise relaxation and nodal scaling with nodal relaxation.

Proof. The proof is identical in form to the scalar case, and is thus omitted.

5.2.3 Determining x(1)

Successful implementation of these schemes for interpolation relies on having an

appropriate prototype vector, x(1) (or set of vectors, X(1)). Since we rely on the comple-

mentarity of relaxation and coarsening, the best choice for x(1) would be a representative

of the vectors for which relaxation is inefficient. Thus, a straightforward method for

generating this prototype would be to start with a vector that is hopefully rich in all
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components (i.e., all eigenvectors of symmetric A), relax on Ax = b for some b, and then

determine the error in the approximate solution after a sufficient number of relaxations.

We typically make use of relaxation schemes whose error-propagation matrices

have the form I − BA. While it is possible that the slow-to-converge modes of the

relaxation iteration, I−BA, are not modes for whichAe ≈ 0, in most practical situations

they are. In particular, for the pointwise relaxation schemes considered here, the two

descriptions of algebraically smooth error are equivalent. In fact, for many choices of B,

the true near null space of A is accurately reflected in the vectors for which relaxation

is inefficient. Knowledge of this space could be used as it is with standard AMG to

determine an effective coarsening process. Our focus, however, is on the case where this

knowledge is inadequate or even unavailable. We thus concentrate on the case that a

good prototype, x(1), is not known.

Start with a vector generated randomly from a uniform distribution on (0, 1).

(Consideration of positive vectors is motivated by the case of scalar, second-order op-

erators, which tend to have positive near null space vectors. A more general choice

is appropriate when considering problems such as linear elasticity, but care must be

taken because the definition of interpolation for αAMG presented here breaks down if

x
(1)
j = 0 for any coarse-grid node, j.) Such a vector is, in general, not equally rich in

all error components. However, in the scalar PDE case, it tends to be rich enough that

a few relaxation sweeps on the homogeneous problem, Ax = 0, produces a good repre-

sentative of the slow-to-converge components. Note that the homogeneous problem is

advantageous to use here because the prototype is simply the error in approximating

the exact solution, x = 0. Thus, starting with a random initial guess and performing

relaxation on Ax = 0 generates a prototype vector, x(1), that represents the slow-to-

converge components and that can then be used in the interpolation formula developed

in Section 5.2.1.

Unfortunately, generating the prototype by fine-grid relaxation alone is effective
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only in terms of the first coarse level and is, in general, quite inefficient in a multilevel

setting. To produce a prototype that is smooth enough to represent the components

associated with smoothness on very coarse levels, a multilevel scheme is needed. Here,

we again measure smoothness by the eigenvector approximation criterion. Basing every

interpolation operator on a single component, whose Rayleigh quotient is near the min-

imal eigenvalue on the finest grid, requires significant smoothness in that component

as the eigenvector corresponding to this eigenvalue must be interpolated with accuracy

proportional to this small value. For coarser grids, such smoothness is much more effi-

ciently represented by calculation on these grids. Thus, we start with a random guess

on the fine level and perform a few (ν0) relaxation sweeps there to generate a tentative

x(1). Using this current prototype, an interpolation operator is computed (as in Sec-

tion 5.2.1) and the coarse-level and restriction operators are formed using the Galerkin

condition. We use injection (direct restriction of the values on the C-points) to form

a coarse-level initial guess, relax ν1 times, and recurse to the coarsest level. From this

coarsest level, interpolate and relax ν2 times on the vector all the way to the finest level,

but do not recompute the coarse-level and restriction operators.

The cycle can then be repeated, using the resulting vector as an overall initial

guess in an attempt to improve the prototype. This cycle may proceed as before,

simply by performing relaxation on each level, or it may be augmented by replacing

the relaxation stage with the current multilevel solver. Use of the current solver may

be preferred as this exposes errors that are both algebraically smooth and that are not

being quickly reduced by the current coarse-level correction scheme. In the case of scalar-

PDE based matrices, such error is a good prototype upon which to base relaxation. For

matrices with a higher-dimensional near null space, interpolation should be adapted to

account for this prototype as well as any other prototypes currently being approximated.

This cycling strategy is illustrated in Figure 5.1, where boxes indicate stages where

coarse-level operators are computed and circles indicate stages where only application
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of the current solver is necessary. Note that since the multigrid operators are computed

only on the downward part of the cycle, no relaxation is necessary on the upward part

of the final setup cycle. As is discussed in Section 5.2.5, this procedure yields multigrid

solvers with level-independent convergence factors tested up to 1024 × 1024 grids for

many scalar problems.

One important benefit of generating the initial prototype vector in a multilevel

fashion is the ability to implement a proper transition to simplicity in the algorithm.

That is, since we begin by relaxing on a random vector (assumed to be rich in all

components), it is easy to tell if relaxation is sufficient to solve either the fine grid

problem or one of the generated coarse-level problems. If this is indeed the case, then

no additional labor is needed in designing an algorithm because an efficient solver already

exists.

For systems of PDEs and higher-order problems, an added wrinkle is the need

to generate multiple prototype vectors. We expect that a technique similar to the

one described above can generate the components well enough to produce an efficient

multigrid scheme, but further investigation is necessary to ensure that the generated

prototypes are rich enough and are not redundant. We expect that a strategy similar

to the one developed for αSA can be used to produce an effective αAMG approach for

systems, which is the subject of current research.

5.2.4 Setup Cost Considerations

An important factor to be considered in the cost of the αAMG algorithm is

the cost of the setup phase. Normal (solution) cycling costs the same as any other

multigrid method, but the setup costs incurred can be much higher than other multigrid

algorithms, including those that use operator-induced coarsening. Here, we analyze the

costs of the setup procedure in the structured case, and consider the question of what

makes an efficient setup routine.
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Figure 5.1: The Setup Scheme for Determining x(1)
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5.2.4.1 Theoretical Costs

We consider the general setup routine appropriate for a bilinear finite-element

discretization of a scalar PDE. In the current code, this comprises some initial fine-grid

relaxations, followed by adaptive cycles with significant costs from relaxation, the defi-

nition of interpolation, and the RAP multiplication. We define the following variables

to describe the setup process:

ν0 = the number of initial fine-grid relaxations.

M = the number of setup cycles to be run.

ν1 = the number of relaxations on the downward side of each setup cycle.

ν2 = the number of relaxations on the upward side of each setup cycle.

We now describe our setup (with a fixed number of cycles, M) as

Algorithm 3 (Single-Prototype αAMG Setup).

(1) Let m = 1, k = 1 and x(1) be a random vector. Define, for all grids l, the

methods CYCLEl(x(l),b(l)) to be 1 relaxation sweep on A(l)x(l) = b(l).

(2) Apply ν0 cycles to the homogeneous fine-grid problem, CYCLEν0
1 (x(1),0).

(3) Apply ν1 cycles to the homogeneous level k problem, CYCLEν1
k (x(k),0). If con-

vergence is fast, return to previous flow at Step 5a with x(k) as before relaxation.

(4) If not sufficiently coarsened,

(a) Compute interpolation, Ik
k+1.

(b) Compute the coarse-grid operator, A(k+1) =
(
Ik
k+1

)T
A(k)Ik

k+1.

(c) Let x(k+1) = (x(k))c (that is, x(k) evaluated at the grid k + 1 points),

k = k + 1, and goto Step 3.
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Otherwise, continue.

(5) While k > 1, let k = k − 1, and

(a) Interpolate the coarse-grid approximation, x(k) = Ik
k+1x

(k+1)

(b) Apply ν2 cycles to the homogeneous level k problem, CYCLEν2
k (x(k),0).

(6) Let k = 1 and x(1) be a random vector. Define, for all grids l, CYCLEl(x(l),b(l))

to be ν current V-cycles on A(l)x(l) = b(l). If m < M , increment m and go to

Step 3, otherwise exit.

Under the assumption of a structured (tensor-product) 2-D mesh, the bilinear

FE discretization gives 9-point operators. Choosing full-coarsening based grids and con-

straining interpolation to have the same sparsity structure as Afc, this 9-point structure

is maintained on all coarse grids. Full coarsening results in a reduction in grid size by a

factor of approximately 1
4 in each coarsening. Thus, the cost of an operation performed

on each grid can be approximately bounded by 4
3 of its cost on the finest grid. We use

fine-grid work units (the cost of a residual evaluation or matrix-vector product on the

finest grid) as our primary cost measure.

We can now estimate the costs of the setup phase in fine-grid work units as

ν0 +
4M
3

(CGO + INTERP + P) +
4
3
(ν1 + ν2) +

4
3
(M − 1)

(
8
3
ν1 +

8
3
ν2 + 2P

)
,

where INTERP represents the cost of forming the interpolation to the finest-grid, CGO

represents the cost of performing the RAP triple product to form the Galerkin coarse-

grid operator, and P represents the cost of interpolating the representative vector x to

the finer grid. This estimation can be slightly improved by recalling that any relaxation

or interpolation on the upward step of the final setup cycle can be omitted. The revised

estimate is then

ν0 +
4
3

(ν1 + CGO + INTERP) ,
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if M = 1, or

ν0 +
4M
3

(CGO + INTERP + P) +
4
3

(
ν1 −

5
3
ν2 − P

)
+

4
3
(M − 1)

(
8
3
ν1 +

8
3
ν2 + 2P

)
,

if M > 1.

The costs of Step 5a in Algorithm 3 are the easiest to compute, given the structure

of interpolation in αAMG, as P =
[

W
I

]
, with W having the same sparsity structure as

Afc. Noticing that, with a full-coarsening grid, Acc is diagonal, a column of P has the

same number of non-zero elements as a column of A. So, assuming an operator of fixed

stencil size (such as our nine-point matrix A), the cost of the interpolation Px is simply

nc
N work units, where nc is the size of the coarse-grid and N is the size of the (full) fine

grid. Assuming a coarsening ratio of 1
4 , this means that the cost of interpolation to the

fine grid is also 1
4 work units.

The cost of determining interpolation is much more significant, because, for each

fine-grid point, i, a double sum must be evaluated for each nonzero in the ith row of P ,

as in Equation 5.4.

For each fine-grid point i, for each of its coarse-grid neighbors, we evaluate the

term in parenthesis in Equation 5.4. Each of these terms requires a negation, an addi-

tion, a division, and the evaluation of a sum over the fine-grid neighbors of i (requiring

|Fi| − 1 additions). Each term in this sum, in turn, requires two multiplications and

a division, as well as the evaluation of a sum over the coarse-grid neighbors of i (with

|Ci| − 1 additions). Each term in this final sum requires a multiplication. Thus, the

innermost sum requires |Ci| multiplication and |Ci|−1 additions. The middle sum then

requires |Fi| evaluations of the inner sum, |Fi| times 3 flops, plus |Fi|−1 additions in its

evaluation. Determining the ith row of P requires |Ci| evaluations of the middle sum,

as well as |Ci| negations, additions, and divisions. Thus, the total cost in operations of

defining P is given by ∑
i∈F

|Ci| (|Fi| ((2|Ci| − 1) + 4) + 2) .
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There are now three types of fine-grid points in our fully-coarsened grid. One-

fourth of the grid is composed of points that lie at the center of a coarse-grid cell,

having 4 coarse-grid neighbors and 4 fine-grid neighbors. One-fourth lie at midpoints of

horizontal coarse-grid lines, and one-fourth lie at midpoints of vertical coarse-grid lines,

both having 2 coarse-grid neighbors and 6 fine-grid neighbors. The final fourth of the

fine-grid nodes are also coarse-grid nodes. Thus, the sum above can be written as

N

4
(4 (4 ((2 · 4− 1) + 4) + 2)) +

2N
4

(2 (6 ((2 · 2− 1) + 4) + 2)) = 90Nflops.

Now, one work unit equals the cost of a residual evaluation. For our 9-point

operator, this takes 18N flops (one addition and one multiplication per non-zero in the

matrix). Thus, we find that forming interpolation costs 90
18 = 5 work units.

This calculation does, however, make use of the assumption that there is no cost

to computing a needed entry in the matrix A. This is, unfortunately, not realistic with

CSR storage. Instead, we must compute the location of a row of A and then search

all of the non-zero entries in that row for the correct column. Thus, the true cost of

computing P is expected to be higher than just that of the floating point operations

needed to form each non-zero entry in P .

We could determine the cost of forming the Galerkin coarse-grid operator by

analyzing the terms in the triple product, but find it more convenient to analyze the

looping structure of the algorithm used to compute RAP in compressed-sparse-row

form. This structure can be simplified to its essentials:

• for i = 1 to nc,

∗ for ii = Ri(i) to Ri(i+ 1)− 1,

– for j = Ai(Rj(ii)) to Ai(Rj(ii) + 1)− 1,

· Perform one multiplication.

· for jj = Pi(Aj(j)) to Pi(Aj(j) + 1)− 1,

perform one addition and one multiplication.
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Considering the looping, the innermost for-loop is executed once for each nonzero

in row Aj(j) of P . The next loop is executed once for each nonzero in row Rj(ii) in

A, of which there are nine. The next loop is executed once for each nonzero in row i

of R = P T , of which there are also nine. Finally, the outermost loop is executed once

for coarse-grid point, of which there are N
4 . The number of non-zeros in row jj of P

depends on which type of node jj corresponds to, but is either 1 (if jj is a coarse-grid

node), 2 (if jj is a fine-grid node embedded in a coarse-grid line), or 4 (if jj is a fine-grid

node at the center of a coarse-grid cell).

Assuming that the rows of P are accessed roughly equally, the innermost loop is

executed an average of 9
4 times. The next two loops are executed 9 times each, with the

outermost loop being executed nc = 1
4N times. Thus, the total number of operations is

approximately N
4 · 9 · 9 · (1 + 9

4 · 2). Dividing this by the 18N operations in a work unit,

we get that the cost of forming a coarse grid operator is approximately 9·9·11
4·2·18 ≈ 6 work

units.

Using these results, our setup cost estimate becomes

ν0 +
4
3

(ν1 + 11) ,

if M = 1, or

ν0 + 15M +
4
3

(
ν1 −

5
3
ν2 −

1
4

)
+

4
3
(M − 1)

(
8
3
ν1 +

8
3
ν2 +

1
2

)
,

if M > 1.

5.2.4.2 Measured Costs

Using a profiling tool, we can easily measure the costs of computing interpolation

and coarse-grid operators relative to the cost of a known cycle. As a standard of

measurement, consider the timing of a V(1,1) cycle, equivalent to approximately 8
3 work

units. Since such timings should not vary significantly based on the matrix coefficients,
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Grid Size V(1,1) Solution Total Setup CGO INTERP Setup Relaxation

2048× 2048 1.45 26.75 9.36 13.71 0.43
1024× 1024 0.34 6.59 2.40 3.32 0.10
512× 512 0.087 1.46 0.43 0.81 0.03
256× 256 0.027 0.36 0.10 0.20 0.02
128× 128 0.006 0.08 0.02 0.05 0.01

Table 5.1: Timing Results (in Seconds) for V(1,0) αAMG Setup Cycles

we test using the 9-point finite element discretization of the Laplacian on 2`×2` element

meshes. The test runs and samples were done on a dual-processor machine with 2.0GHz

Intel XEON CPUs, and 4GB of RAM. Problems smaller than 128×128 elements ran too

quickly on this machine to generate accurate timings. Results for grids from 128× 128

to 2048× 2048 elements, timing a single V(1,0) setup cycle are given in Table 5.1.

In general, the cost of computing the coarse-grid operators is about 6 times the

cost of a V(1,1) cycle, while the cost of computing interpolation is closer to 9 times

the cost of a V(1,1) cycle. This suggests that the true cost of computing a coarse-grid

operator is about 13 work units, while the true-cost of computing interpolation is about

19 work units.

The relationship between the theoretically expected and computationally realized

costs of computing both the interpolation and coarse-grid operators is quite poor. This

may be due to a number of factors, including memory and cache access costs, the costs

of computed addressing in CSR format, and inefficiencies in the programmed routines.

Regardless of this mismatch, we see that the significant cost of the αAMG setup phase

remains in the computation of the interpolation and coarse-grid operators.
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5.2.4.3 Analysis

We consider this issue primarily to inform our decisions on the parameters of the

setup algorithm, namely, M , ν0, ν1, and ν2. Using the theoretically computed cost,

ν0 +
4
3

(ν1 + 11) ,

if M = 1, or

ν0 + 15M +
4
3

(
ν1 −

5
3
ν2 −

1
4

)
+

4
3
(M − 1)

(
8
3
ν1 +

8
3
ν2 +

1
2

)
,

if M > 1, keeping M small is very important. Note, for example, that for fixed nu’s,

decreasingM by 1 saves over 15 work units in theory and comparatively more in practice.

Following this reasoning, we suggest that M should, perhaps, be as small as pos-

sible. Forcing M to be 1, however, allows for no iterative improvement of the prototype

vector, which has been shown numerically to be effective. So, we consider here also the

case of M = 2, but seek strongly to avoid allowing any further growth.

5.2.4.4 Test Problems

The bottom line in this consideration is minimizing the real cost of setup, in

computational time, over the (M,ν0, ν1, ν2) parameter space. Guided by this, consider

the performance of the αAMG solver (as measured by convergence factors of V(1,1)

cycles) versus setup time for points in this parameter space. In particular, for fixed M ,

we find the point, (ν0, ν1, ν2), that corresponds to the minimal setup time to achieve

near-optimal asymptotic V(1,1) convergence factors for each problem. Considering these

test problems, we can easily take M and (ν0, ν1, ν2) large enough to achieve the optimal

convergence factors that result from using the algebraically smoothest eigenvector of

the matrix as the prototype. Knowing the truly optimal convergence factors, we then

choose the values of M and (ν0, ν1, ν2) such that the asymptotic V(1,1) convergence

factor for a given problem is within 0.01 of the optimal factor. These points and the
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times required for only the multigrid setup phase for the problems discussed below are

shown in Table 5.2. Here, we disregard the solution time, under the assumption that

the resulting solver will be used to solve the linear system for many right-hand sides

and, thus, achieving a near-optimal convergence factor in a minimal amount of time is

more important than the overall time to solution for any single right-hand side.

In Table 5.2, Problem 1 is the finite-element Laplacian, discretized on [0, 1]2 with

Dirichlet boundary conditions. Problem 1r is a diagonally scaled version of Problem 1,

with scaling of the form 1010r for r chosen uniformly between 0 and 1.

Problem 2 is the finite-element Laplacian, discretized on [0, 1]2 with Neumann

boundary conditions. Problem 2r is a diagonally scaled version of Problem 2, using the

same scaling as in Problem 1r. Note that Problem 2 is, in general, a harder problem for

any multigrid method, because the eigenvector approximation criterion suggests that

we must approximate the null space exactly in interpolation.

Problem 3 is a finite-element discretization of −∇·K(x, y)∇p(x, y) with Dirichlet

boundary conditions on the left and right sides and Neumann boundary conditions top

and bottom. Here, K is given to be 10−8 inside the square [13 ,
2
3 ]2 and 1 everywhere

else. Applying the AMG-like heuristic of the near-null space being constant achieves

convergence factors of about 0.14, while the αAMG code can achieve factors of about

0.10 or better. Problem 3r is again a diagonally scaled version of Problem 3, using the

same scaling as in Problems 1r and 2r.

These CPU timings indicate two things. First, for a fixed number of cycles, the

amount of work per cycle increases with problem difficulty (size and jumps). This

comes as no surprise, because relaxation takes longer to expose the smooth modes of

these problems. The second indication is that the best setup scheme for the problems

tested makes use of only one cycle. It is much harder to find the correct relaxation

parameters for this, but, in all cases, the setup cycle with M = 1 was faster than

choosing M = 2. Considering the trends, it is not clear if this would remain true for
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Prob. Size M = 1 M = 2
ν0 ν1 ν2 T ν0 ν1 ν2 T

1 1282 2 2 0 0.10 1 1 0 0.17
1 2562 3 3 0 0.35 1 1 0 0.67
1 5122 4 5 0 1.55 1 1 0 2.71
1 10242 7 7 0 6.93 1 1 0 11.32
1r 1282 7 6 0 0.08 1 1 1 0.18
1r 2562 10 10 0 0.46 2 1 1 0.74
1r 5122 16 15 0 2.04 1 2 1 3.00
1r 10242 23 22 0 10.01 1 2 1 12.39
2 1282 4 4 0 0.09 1 1 0 0.20
2 2562 6 6 0 0.44 2 1 1 0.74
2 5122 9 9 0 1.83 2 2 1 3.22
2 10242 13 13 0 8.06 3 2 1 12.77
2r 1282 12 11 0 0.14 3 2 1 0.22
2r 2562 18 18 0 0.58 3 2 1 0.81
2r 5122 27 27 0 2.69 5 3 3 3.53
2r 10242 38 38 0 13.34 5 4 3 15.01
3 1282 4 4 0 0.10 1 1 0 0.20
3 2562 4 4 0 0.38 1 1 0 0.68
3 5122 6 6 0 1.58 2 1 1 3.00
3 10242 7 7 0 6.95 2 1 1 11.63
3r 1282 6 6 0 0.10 2 2 1 0.19
3r 2562 11 11 0 0.45 4 2 2 0.84
3r 5122 13 13 0 2.02 4 3 2 3.43
3r 10242 21 20 0 9.73 5 4 3 15.08

Table 5.2: Parameters and CPU Times for Optimal Points in the Setup Parameter
Space
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larger grids, because in many cases, the relative costs of M = 1 and M = 2 became

closer as the grid size increased.

5.2.5 Numerical Results

To examine the feasibility of this approach, we implemented a solver for the special

case of a rectangular grid in two dimensions with full coarsening. This restriction in

generality has a notable effect on the range of problems that are able to be reasonably

considered (anisotropy, for example, becomes much more difficult to account for in this

setting). However, examining problems without such difficulties, we feel that we can

obtain a good initial indication of the performance of this approach. In particular, the

aim here is to test the quality of the interpolation operator, not that of the coarsening

procedure. Indeed, given current research into new coarsening techniques [61], it is

difficult to say which coarsening method would be most appropriate for comparison.

We consider several measures of the effectiveness of the algorithm. Of primary

importance is the total time to solution, given only the matrix equation, Ax = b. Here,

solving a problem is defined as reducing the residual by 10 orders of magnitude, and the

wall-clock time to solution on a modern desktop workstation (2.66 GHz Intel Pentium

4) is measured. Another relevant measure is the asymptotic convergence factor of the

resulting cycle. While setup costs may form a significant portion of the cost of solving

a linear system with a single right side, many problems require repeated solution with

multiple right sides (such as in implicit time stepping). In these cases, the (possibly

large) setup cost can be amortized over the number of solutions and the cost of only

the solution stage is important. The asymptotic convergence factor reflects this cost,

as a lower factor requires fewer iterations in the solution phase. We discard the usual

AMG measures of grid and operator complexity because, in the structured coarsening

framework considered here, these measures are constant for all fine-grid operators of the

same mesh and stencil sizes.
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As discussed in Sections 5.2.3 and 5.2.4, the setup may be performed in an it-

erative fashion. This is an appealing feature because, in practice, convergence of the

prototype vector can be measured as an indicator of convergence of the method. This it-

eration is, however, quite expensive as it involves computation of new interpolation and

new Galerkin coarse-grid operators at each iteration. Testing, as in §5.2.4, indicates that

it is usually significantly more efficient to perform more relaxation sweeps (i.e., increase

ν0 and ν1) in a single setup cycle than it is to perform multiple setup cycles with fewer

iterations per cycle to generate a single prototype. Thus, in the results that follow, we

first consider performing only a single setup cycle and track the number of relaxations

(values of ν0 and ν1) necessary to achieve highly efficient solver performance. This cali-

brated AMG method is typically more efficient than the adaptive AMG method, whose

results appear later. In the adaptive procedure, we fix the number of relaxations used in

each setup phase and perform setup iterations until an acceptable solver is determined

(measured by the error reduction in the solver). Note that the adaptive approach is

that of Algorithm 2 in Section 5.1.1 and not the iterative improvement approach. That

is, the results in §5.2.5.3 reflect starting each subsequent cycle with a new random ini-

tial guess and redefining interpolation based only on this new prototype. Numerical

results for iterative improvement of prototypes are not demonstrated here, rather they

are shown in Sections 5.2.4.4 and 5.3.

We consider four PDEs as test problems, all discretized using bilinear finite ele-

ments on the unit square. Problem 1 is Laplace’s Equation with pure Dirichlet boundary

conditions. Problem 2 is Laplace’s Equation with pure Neumann boundary conditions.

Problems 3 and 4 are

−∇ · K(x)∇p(x) = 0,

with Dirichlet boundary conditions on the East and West boundaries and Neumann



152

boundary conditions along the North and South boundaries. For Problem 3, K(x) is

chosen as

K(x) =

 10−8 x ∈ [13 ,
2
3 ]2,

1 otherwise.

For Problem 4, K(x) is assumed to be constant on each element and chosen to have

value 10−8 on 20% of the elements (chosen randomly) and value 1 everywhere else.

A significant advantage of the αAMG method is its invariance to diagonal scaling,

as shown in Section 5.2.2. Thus, for each of these problems, we consider the results of

such scaling. A common scaling is to make the diagonal entries of A all have value 1,

using the diagonal matrix given by sii = 1√
aii

. For Problems 1-4 above, the problems

with matrices thus scaled are referred to as Problems 1u-4u (where the u refers to the

unit diagonal of the matrix). We also consider a more drastic scaling given by sii = 105ri ,

where again ri is chosen from a uniform distribution on [0, 1] for each i. We call these

Problems 1r-4r (where the r refers to the random scaling).

5.2.5.1 AMG Benchmarks

A baseline for these problems is established by considering the performance of

standard AMG under the same assumptions (primarily that coarsening is performed

geometrically). Since we expect the scalings employed to destroy any sense of strong

connection in the matrix coefficients, we consider here a “strong-connection-only” ver-

sion of AMG, equivalent to setting θ = 0 in the definitions of strong influence and

dependence in Section 3.3. Wall-clock times and iteration counts are shown in Table

5.3, while convergence factors are shown in Table 5.4.

These results show that classical AMG interpolation gives a scalable solver for

Problems 1, 2, and 3, coming directly from discretization. If, however, the discretization

matrices are scaled, then there is a significant increase in the needed work units for

solution, especially noticeable as the problem grows (but also present with smaller fine
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64× 64 128× 128 256× 256 512× 512 1024× 1024

Problem 1 0.04 (9) 0.22 (9) 0.91 (9) 3.32 (9) 13.13 (9)
Problem 1u 0.05 (9) 0.24 (9) 0.86 (9) 3.33 (9) 13.15 (9)
Problem 1r 3.3 · 10−5 3.6 · 10−5 2.5 · 10−5 1.8 · 10−5 1.3 · 10−5

Problem 2 0.04 (8) 0.20 (8) 0.81 (8) 3.12 (8) 12.30 (8)
Problem 2u 0.09 (27) 0.93 (52) 5.64 (90) 36.94 (158) 2.4 · 10−9

Problem 2r 4.5 · 10−6 3.8 · 10−6 4.3 · 10−6 3.4 · 10−6 3.5 · 10−6

Problem 3 0.04 (9) 0.25 (9) 0.89 (9) 3.41 (9) 13.23 (9)
Problem 3u 0.11 (26) 0.78 (41) 4.73 (69) 29.81 (124) 4.6 · 10−10

Problem 3r 4.0 · 10−5 3.0 · 10−5 1.8 · 10−5 1.4 · 10−5 9.6 · 10−6

Problem 4 0.05 (12) 0.28 (12) 1.04 (11) 4.40 (13) 17.64 (14)
Problem 4u 0.18 (64) 3.14 (179) 2.0 · 10−6 1.8 · 10−5 1.1 · 10−5

Problem 4r 4.5 · 10−5 2.5 · 10−5 1.7 · 10−5 1.2 · 10−5 9.3 · 10−6

Table 5.3: Wall-Clock Time in Seconds (and Iteration Count), or Residual Reduction
After 200 Iterations in Case of Failure for Standard AMG to Reduce Residuals by 1010.

grids). Improving on the results from these unscaled problems is difficult, so our aim

should be to determine a balance where significant improvement on the results from

the scaled problems is found, while not excessively increasing the cost of solution for

problems such as 1,2, and 3. The results for the unscaled Problem 4 are typical of the

situation where, as h decreases, the problem becomes more difficult to solve due to the

increase in the number of internal boundaries.

5.2.5.2 Calibrated AMG results

For the adaptive AMG method, we consider several questions around the same

problems. Since experience has shown that a single setup cycle is often most efficient,

parameters ν0 and ν1 must be chosen such that this cycle yields an effective solver.

How to do so actually depends on our interests. For solving only the matrix equation,

Ax = b, for a single vector, b, choose ν0 and ν1 such that the total time to solution is

smallest. This may mean sacrificing performance of the solver to save cost of the setup

stage. For solving the matrix equation for many right sides, the parameters should be

chosen such that the solver performs optimally. We consider this latter situation, and
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64× 64 128× 128 256× 256 512× 512 1024× 1024

Problem 1 0.104 0.115 0.124 0.131 0.137
Problem 1u 0.104 0.115 0.124 0.131 0.137
Problem 1r 0.991 0.997 0.996 0.996 0.996
Problem 2 0.068 0.069 0.070 0.071 0.071
Problem 2u 0.594 0.754 0.864 0.929 0.964
Problem 2r 0.991 0.993 0.993 0.993 0.992
Problem 3 0.111 0.122 0.130 0.136 0.141
Problem 3u 0.488 0.656 0.793 0.886 0.940
Problem 3r 0.995 0.997 0.996 0.996 0.996
Problem 4 0.209 0.212 0.233 0.290 0.375
Problem 4u 0.760 0.914 0.976 0.994 0.998
Problem 4r 0.996 0.996 0.996 0.996 0.995

Table 5.4: Asymptotic Convergence Factors (Measured After at Most 200 Iterations)
for Standard AMG

demonstrate that doing so does not severely impact the time-to-solution for a single

right side. This approach may be called a calibrated AMG approach, reflecting that

parameters ν0 and ν1 are chosen to calibrate the AMG performance, rather than a

truly adaptive approach, where ν0 and ν1 remain fixed and setup is performed until an

efficient solver is exposed.

Our experiments were thus performed with the goal of (approximately) mini-

mizing the asymptotic convergence factors of the resulting methods. To do this, we

computed the asymptotic convergence factors for very large ν0 and ν1, corresponding to

the optimal case where x(1) is the eigenvector associated with the smallest eigenvalue

of the matrix, then chose the smallest values for ν0 and ν1 such that the convergence

factor of the resulting method was within 0.005 of the optimal factor. We found that,

for Problems 1, 2, and 3, good asymptotic convergence factors could be achieved with

relatively small values of ν0 and ν1. For Problem 4, the same performance as standard

AMG on the unscaled system can be recovered with small values of ν0 and ν1. Table

5.5 shows the time required for the setup phase for given values of these parameters and

different grid sizes. As always happens when measuring computational performance,
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64× 64 128× 128 256× 256 512× 512 1024× 1024

Problem 1 0.02 (2,2) 0.09 (2,2) 0.38 (3,3) 1.67 (4,5) 7.21 (7,7)
Problem 1u 0.02 (2,2) 0.09 (2,2) 0.37 (3,3) 1.63 (4,5) 7.27 (7,7)
Problem 1r 0.02 (4,4) 0.11 (5,5) 0.47 (8,7) 2.13 (11,11) 9.52 (16,17)
Problem 2 0.02 (3,2) 0.10 (4,4) 0.42 (6,6) 1.88 (9,9) 8.57 (13,13)
Problem 2u 0.04 (3,2) 0.09 (4,4) 0.43 (7,6) 1.83 (10,9) 8.03 (14,13)
Problem 2r 0.03 (7,7) 0.11 (9,9) 0.51 (14,14) 2.50 (21,21) 11.84 (31,31)
Problem 3 0.02 (2,2) 0.11 (4,4) 0.45 (4,4) 1.69 (6,6) 6.86 (7,7)
Problem 3u 0.02 (2,2) 0.10 (4,4) 0.41 (4,4) 1.66 (6,6) 6.94 (7,7)
Problem 3r 0.03 (5,5) 0.10 (6,6) 0.45 (9,8) 1.90 (10,11) 8.50 (17,16)
Problem 4 0.02 (2,2) 0.06 (3,2) 0.35 (4,4) 1.60 (6,6) 6.80 (8,8)
Problem 4u 0.02 (2,2) 0.09 (3,2) 0.39 (5,5) 1.60 (6,6) 6.98 (9,9)
Problem 4r 0.02 (6,5) 0.12 (9,9) 0.50 (13,14) 2.37 (22,21) 17.09 (22,20*)

Table 5.5: Wall-Clock Time in Seconds (and Values of ν0, ν1) for Calibrated AMG
Setup Phase. * Indicates 2 Setup Cycles Were More Efficient

the timings are accurate only to within a few hundredths of a second, and so there

is some variation in the timings of program stages that require the same number and

ordering of operations.

Table 5.6 presents the asymptotic convergence factors for the methods resulting

from the setup stages as outlined in Table 5.5. Note that, for the first three problems

and for all grid sizes, αAMG achieves convergence factors bounded well below 1, with

very small growth as the mesh size decreases. For Problem 4, we see growth like that

in the standard AMG results. Note also that scaling the matrices has no affect on our

ability to determine an efficient solver for these problems.

Finally, in Table 5.7, we consider the total cost of solving Ax = 0 a single time,

with random initial guess, using the near-optimal solver. Calibrated AMG did not (and

could not be expected to) beat the overall performance of standard AMG on the four

unscaled problems. However, the setup costs of calibrated AMG were not significantly

higher than those of AMG. On a 1024×1024 mesh, AMG setup required approximately

5 seconds of CPU, and so the adaptive setup needed between 30% and 120% more time,

but tended to produce a slightly better solver than classical AMG. For these reasons,
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64× 64 128× 128 256× 256 512× 512 1024× 1024

Problem 1 0.067 0.073 0.079 0.080 0.079
Problem 1u 0.067 0.073 0.079 0.080 0.079
Problem 1r 0.069 0.078 0.077 0.078 0.079
Problem 2 0.069 0.069 0.071 0.071 0.073
Problem 2u 0.069 0.071 0.071 0.071 0.072
Problem 2r 0.072 0.071 0.071 0.072 0.073
Problem 3 0.070 0.097 0.081 0.110 0.103
Problem 3u 0.072 0.097 0.080 0.109 0.106
Problem 3r 0.070 0.100 0.084 0.111 0.108
Problem 4 0.194 0.202 0.243 0.288 0.376
Problem 4u 0.189 0.212 0.231 0.294 0.374
Problem 4r 0.187 0.212 0.235 0.292 0.383

Table 5.6: Asymptotic Convergence Factors for Calibrated AMG.

the overall cost of calibrated AMG is close to that of standard AMG in the cases where

standard AMG works well. When standard AMG fails, there is no contest. Calibrated

AMG was able to solve those problems that caused difficulty for standard AMG in

a small fraction of the time. Considering that 200 iterations of standard AMG for a

1024 × 1024 problem took approximately 180 seconds, calibrated AMG was able to

reduce the residual by over 4 orders of magnitude more in under a tenth of the time on

the first three randomly scaled 1024 × 1024 grid problems, and in a sixth of the time

for the fourth.

5.2.5.3 Adaptive AMG (αAMG) results

While the calibrated AMG approach yields solvers with optimal performance

characteristics, its results are achieved at a significant cost of user time in tuning the

setup parameters of ν0 and ν1. An adaptive approach may be used instead, moving the

burden of calibration from the user to the solver itself.

In the αAMG approach, a small, fixed number of relaxation sweeps are initially

performed on the finest grid to locally expose algebraically smooth error. This error

is used to create an interpolation operator and (through the Galerkin conditions) a
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64× 64 128× 128 256× 256 512× 512 1024× 1024

Problem 1 0.04 (8) 0.25 (8) 0.89 (8) 3.52 (8) 14.70 (8)
Problem 1u 0.06 (8) 0.21 (8) 0.90 (8) 3.55 (8) 14.73 (8)
Problem 1r 0.03 (7) 0.22 (7) 0.91 (7) 3.64 (7) 15.64 (7)
Problem 2 0.05 (8) 0.22 (8) 0.92 (8) 3.83 (8) 15.85 (8)
Problem 2u 0.04 (8) 0.24 (8) 0.95 (8) 3.83 (8) 15.94 (8)
Problem 2r 0.05 (7) 0.24 (7) 0.97 (7) 4.23 (7) 18.60 (7)
Problem 3 0.05 (8) 0.20 (8) 0.93 (8) 3.63 (8) 14.58 (8)
Problem 3u 0.03 (8) 0.21 (8) 0.92 (8) 3.66 (8) 14.43 (8)
Problem 3r 0.04 (7) 0.24 (8) 0.94 (8) 3.81 (8) 16.32 (8)
Problem 4 0.03 (11) 0.31 (11) 1.09 (11) 4.84 (13) 22.06 (16)
Problem 4u 0.04 (11) 0.32 (11) 1.10 (11) 4.79 (13) 20.40 (14)
Problem 4r 0.05 (10) 0.27 (10) 1.22 (11) 5.35 (12) 28.27 (12)

Table 5.7: Total Solution Wall-Clock Time in Seconds (and Iteration Count) for Cali-
brated AMG to Reduce Residuals by 1010.

coarse-grid problem. Relaxation is then performed on this grid and the problem is

further coarsened. After the initial multigrid hierarchy is created in this fashion, another

setup cycle is performed with a new random initial guess. Now, relaxation is replaced

by the current multigrid solver. This is done in order to expose errors that are both

algebraically smooth (as relaxation does not quickly reduce them) and not reduced by

the current coarse-grid correction scheme.

Ideally, such errors would then be used to improve the adaptive AMG interpola-

tion, resulting in a more robust solver. We have, however, been considering problems

similar to those for which classical AMG is effective. In particular, those where the near

null space can be represented by a single vector. The question of how to improve an

existing AMG interpolation operator with information from a second prototype vector

is not easily addressed. Instead, here we redefine the interpolation operator based only

on the new vector. This is quite dangerous, as the new prototype is representative

of error distinct from the previous one, and so we may expect that in some cases the

adapted method will be worse than its parent.

The results in Tables 5.8, 5.9, and 5.10 reflect performing 8 iterations of the
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64× 64 128× 128 256× 256 512× 512 1024× 1024

Problem 1 0.04 (1) 0.21 (1) 0.79 (1) 3.18 (1) 12.75 (1)
Problem 1u 0.03 (1) 0.19 (1) 0.83 (1) 3.13 (1) 12.75 (1)
Problem 1r 0.04 (1) 0.20 (1) 0.81 (1) 6.46 (2) 25.61 (2)
Problem 2 0.04 (1) 0.21 (1) 0.85 (1) 3.31 (1) 13.00 (1)
Problem 2u 0.04 (1) 0.21 (1) 0.81 (1) 3.25 (1) 12.65 (1)
Problem 2r 0.05 (1) 0.22 (1) 0.83 (1) 23.07 (7) 91.55 (7)
Problem 3 0.04 (1) 0.20 (1) 0.72 (1) 3.15 (1) 12.71 (1)
Problem 3u 0.03 (1) 0.18 (1) 0.83 (1) 3.28 (1) 12.40 (1)
Problem 3r 0.04 (1) 0.19 (1) 0.82 (1) 6.44 (2) 25.35 (2)
Problem 4 0.05 (1) 0.18 (1) 0.80 (1) 3.18 (1) 25.01 (2)
Problem 4u 0.05 (1) 0.17 (1) 0.81 (1) 6.44 (2) 25.39 (2)
Problem 4r 0.04 (1) 0.37 (2) 1.62 (2) 6.37 (2) 50.63 (4)

Table 5.8: Wall-Clock Time in Seconds (and Number of Setup Cycles) for Adaptive
AMG Setup Phase

current solver on the homogeneous problem at each level of the setup phase. The

fine-grid multigrid cycle is accepted when the error reduction (measured in the A-

norm) by the last of these iterations is by a factor greater than 2.5. An additional

cost in the adaptive setup phase is that of this “test drive”, performing 8 cycles of the

current V-cycle on the homogeneous problem (to ensure adequate performance) before

considering the system Ax = b. Performing fewer iterations of the solver results in less

exposure of algebraically smooth error and typically increases the number of setup cycles

needed. Considering the high cost in recomputation of the interpolation and coarse-

grid operators, we prefer to avoid this. Performing more iterations of the solver on the

homogeneous problem better exposes the error sought, but at the cost of potentially

significant unnecessary computation. Choosing the threshold for accepting the solver

is less ambiguous. Setting a high threshold reduces the setup time but admits poor

solvers, whereas setting the threshold to be small improves the solver but potentially

requires more setup cycles.

Table 5.8 demonstrates the typical higher computational cost of the adaptive

approach as compared to the calibrated approach. Some of this cost is certainly un-
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64× 64 128× 128 256× 256 512× 512 1024× 1024

Problem 1 0.065 0.068 0.070 0.086 0.201
Problem 1u 0.065 0.068 0.070 0.086 0.201
Problem 1r 0.069 0.085 0.210 0.072 0.071
Problem 2 0.067 0.069 0.089 0.155 0.334
Problem 2u 0.067 0.070 0.091 0.158 0.337
Problem 2r 0.099 0.160 0.355 0.118 0.349
Problem 3 0.067 0.097 0.080 0.118 0.294
Problem 3u 0.067 0.097 0.080 0.121 0.298
Problem 3r 0.075 0.131 0.293 0.110 0.090
Problem 4 0.186 0.195 0.243 0.395 0.390
Problem 4u 0.185 0.195 0.231 0.300 0.389
Problem 4r 0.227 0.238 0.241 0.283 0.397

Table 5.9: Asymptotic Convergence Factors for Adaptive AMG.

avoidable. Fixing the number of iterations performed on the homogeneous problem un-

doubtedly results in some extraneous relaxations being performed, particular on coarser

grids, where few relaxation sweeps are “necessary”. Likewise, the cost of testing the

solver can only be avoided if we know, a priori, whether the solver will be acceptable.

While these costs are significantly higher than those for calibrated AMG (as in Table

5.5), they do remain relatively low, still under two minutes of CPU time in all cases

with a 1024× 1024 grid.

Convergence factors for the adaptive AMG approach (Table 5.9) demonstrate its

robustness. While the requirement for a successful setup was a single=step convergence

factor less than 0.4 when measured after 8 iterations, we see that the asymptotic con-

vergence factors are all bounded by 0.4 as well. Some of these factors are worse than

the corresponding convergence factors for the calibrated AMG approach, although they

could also be improved at the cost of more expensive setup cycles. A constant conver-

gence factor of 0.4 is still sufficient, however, to reduce the error by a factor of 1010 in

25 iterations.

The overall time to solution of the adaptive approach, as in Table 5.10, reflects

the expected behavior. Iteration counts are low - at most 15 iterations are required



160
64× 64 128× 128 256× 256 512× 512 1024× 1024

Problem 1 0.05 (8) 0.33 (8) 1.31 (8) 5.11 (8) 22.81 (11)
Problem 1u 0.06 (8) 0.31 (8) 1.36 (8) 5.05 (8) 22.72 (11)
Problem 1r 0.06 (7) 0.34 (8) 1.44 (10) 8.17 (7) 32.14 (7)
Problem 2 0.07 (8) 0.34 (8) 1.36 (8) 5.52 (9) 25.44 (13)
Problem 2u 0.06 (8) 0.35 (8) 1.33 (8) 5.46 (9) 25.35 (14)
Problem 2r 0.08 (8) 0.37 (8) 1.68 (13) 25.05 (8) 101.92 (11)
Problem 3 0.06 (8) 0.34 (8) 1.30 (8) 4.95 (8) 25.42 (14)
Problem 3u 0.05 (8) 0.32 (8) 1.35 (8) 5.24 (8) 25.01 (14)
Problem 3r 0.07 (7) 0.33 (9) 1.56 (12) 8.40 (8) 32.04 (7)
Problem 4 0.08 (11) 0.36 (11) 1.51 (11) 7.40 (18) 38.80 (15)
Problem 4u 0.08 (11) 0.37 (11) 1.50 (11) 9.56 (13) 39.10 (15)
Problem 4r 0.07 (11) 0.55 (11) 2.32 (11) 8.78 (10) 62.54 (13)

Table 5.10: Total Solution Wall-Clock Time in Seconds (and Iteration Count) for Adap-
tive AMG to Reduce Residuals by 1010.

for residual reduction by a factor of 1010 - and so the time to solution, discarding the

setup phase, is quite low. The increased setup costs due to the poor adaptations used

are reflected in the total time to solution. Comparing these results to the calibrated

AMG approach is somewhat disappointing; however, in all cases, the solution was still

obtained quickly, with total time for the αAMG approach within a factor of at most

6 (and often 2) of the total time for the calibrated AMG results. Comparing with the

standard AMG results shows that the overall time to solution for the unscaled problems

is higher than that for standard AMG, whereas, for the scaled problems, adaptive AMG

always yielded a quickly converging solver, and so yielded lower overall solution times

in all cases where standard AMG performance suffered.

The calibrated and adaptive AMG results are very encouraging. For the scaled

problems, there is a tremendous improvement in the amount of effort required for solu-

tion of the linear systems when compared to the results for standard AMG interpolation

in Table 5.4. The solution phase of the algorithm scales well across all 5 grid sizes, and

the actual costs are quite reasonable. It must be acknowledged, however, that once we

account for the cost of the setup phase of our algorithm, classical AMG is still a slightly



161

more efficient solver for the unscaled matrices when we consider solving with only a sin-

gle right-hand side. Put simply, if the algebraically smoothest component of an elliptic

PDE is known exactly, αAMG can do no better than designing multigrid interpolation

based on that component. Indeed, if this component is given as input to the adaptive

AMG method for creating the multigrid hierarchy, we can solve the problem with the

same cost as classical AMG on the unscaled problem, simply by using this prototype as

x(1) in Equation 5.4, as discussed in Section 5.2.2.

5.3 Theoretical Results

The results above give no quantitative indication of the growth in cost of the

adaptive process with difficulty of the problem nor with grid size. To get an indication

of this cost, we consider the case of using a simple V(1,0) setup cycle to iteratively

improve a single prototype. As discussed in Section 5.1.2, a prototype may be improved

by removing it from the prototype set, constructing the reduced method, and then

using the prototype as an initial guess for iteration on the homogeneous problem with

the reduced method. Since we limit ourselves to a single prototype, the reduced method

will always be no method, and so the structure of the cycles used is always the same

as the first setup cycle, contrary to the cycling scheme analyzed in Section 5.2.4. We

monitor the performance of the solvers resulting from increasing numbers of such cycles.

The difficulty of the problem under consideration is controlled by utilizing the

shifted Laplacian problem, −∆u − 2π2(1 − 2−β)u = 0, with Dirichlet boundary condi-

tions, discretized with finite elements on the unit square, with uniform mesh width, h,

in both x and y. To maintain a relationship with the continuous problem, we consider

the generalized eigenvalues of the discrete operator, A, values λ such that Au = λMu

for some u, where M is the finite element mass matrix. The minimal eigenvalue of this
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problem is then

12
h2

(
2− cos(πh)− cos2(πh)

4 + 4 cos(πh) + cos2(πh)

)
− 2π2(1− 2−β) = 21−βπ2 + O(h2).

By increasing β, the problem is made more difficult, as the eigenvector approximation

principle requires a more accurate prototype to ensure good performance. Thus, we

monitor the difference between the exact smallest eigenvalue and the Rayleigh quotient

(RQ(x) = 〈Ax,x〉
〈Mx,x〉 , where M is the finite element mass matrix) of the current prototype

as the setup iterations proceed, with differing β and grid sizes.

Results for a 128× 128 grid, with a random initial guess (with Rayleigh quotient

of 1.35 × 104), are shown in Figure 5.2. The upper figure in 5.2 shows the size of

the Rayleigh quotient of the prototype vector after each cycle, measured relative to

the minimal eigenvalue of the matrix. The lower figure in 5.2 shows the convergence

factors of the resulting multigrid methods after each setup cycle, measured relative to

the convergence factor of the cycle based upon the eigenvector of minimum eigenvalue.

Results for a 256 × 256 grid, with a random initial guess (with Rayleigh quotient of

5.25× 104), are shown in Figure 5.3. Results for a 512× 512 grid, with a random initial

guess (with Rayleigh quotient of 2.06× 105), are shown in Figure 5.4.

These results indicate that there is, in general, a constant reduction in the

Rayleigh quotient per V(1,0) setup cycle. This is particularly noticeable for large

β, where the gap between the Rayleigh quotient of the initial guess and the optimal

Rayleigh quotient, λmin, is largest, and we see several cycles of setup with such a reduc-

tion before the Rayleigh quotient of the prototype nears λmin. They also indicate that

solver performance approaches its best when the error between the Rayleigh quotient of

the prototype and λmin is O(λmin). For all three grids, the optimal convergence factors

range from approximately 0.07 for β = 0 to 0.105 for β ≥ 9. Thus, a convergence factor

within a factor of three of the optimal reflects a convergence factor less than approxi-

mately 0.3. On all three lower plots, we mark the line of a relative convergence factor of
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3 with the dashed line. The points where relative convergence factors cross these lines

for the different numbers of setup cycles are marked as crosses on the upper plots. Note

that for all three grids, these points occur at roughly the same value of the Rayleigh

quotient of the prototype, relative to the grid- and β-dependent λmin. The same is

true for any for any fixed convergence factor not approaching 1, measured relative to

the minimum. Since the Rayleigh quotient of a random initial guess for this problem

has expected value O(h−2), O
(
log
(

h−2

λmin

))
setup cycles are expected to be necessary

to reduce the Rayleigh quotient of the prototype to be O(λmin) and, thus, obtain good

solver performance.

To improve understanding of adaptive AMG, we seek to develop a theory in a

simplified, two-level setting for a reduction-based method called AMGr. The basis for

AMGr is a splitting of the finest-level variables into a set of fine-level-only variables, F ,

and coarse-level variables, C, in such a way that the matrix defining F -to-F connections

is diagonally dominant. Such a splitting can be achieved using compatible relaxation [20]

in the coarsening process. The theory in Section 5.3.1 shows that, given an appropriate

splitting, we can obtain convergence factors bounded uniformly below 1 for any amount

of diagonal dominance.

We also develop a simple, two-level version of adaptive AMGr (αAMGr). In this

case, we aim to show that αAMGr recovers, to arbitrary tolerance, the assumed one-

dimensional null space of the operator. Using this component to define an interpolation

scheme then recovers convergence factors bounded below 1 for two-level AMGr. This

indicates that, at the cost of a few αAMGr cycles, we can recover the performance of

the AMGr method without explicit knowledge of the near null space components.

5.3.1 Reduction-Based AMG (AMGr)

AMGr is developed from a reduction point of view. We suppose that the origi-

nal degrees of freedom (points, or variables in Rn) are partitioned into those that are
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associated with the coarse level (set C) and those that are not (set F ): Rn = F ∪ C.

We further assume that this is done in such a way that the F -to-F connections are

subdominant (i.e., the submatrix associated with the fine-level-only points is diagonally

dominant). If this is the case, then good performance can be achieved using relaxation

only on the F points in combination with coarse-level correction (as shown below).

In what follows, the matrix, A, is assumed to be real, symmetric, and positive

definite. Additional assumptions are made on A that specify the F -to-C dominance

needed. We show that this algorithm obtains uniform convergence for any given scale

of diagonal dominance.

Consider the representation for the n× n matrix A as

A =

 Aff −Afc

−AT
fc Acc

 ,
where we choose to denote the F -C block as −Afc, both to simplify notation in what

follows and to suggest the overall balance in the block structure typical of the matrices

we consider. To clarify the diagonal dominance we need, write Aff = D + E , where D

is diagonal and positive definite and 0 ≤ E ≤ εD for some ε > 0. The matrix notation

A ≤ B is taken to mean that xTAx ≤ xTBx for all x. Assume further that A and D

satisfy

AD =

 D −Afc

−AT
fc Acc

 ≥ 0. (5.6)

Our primary interest is in applying such methods to finite difference and finite

element discretizations of elliptic PDEs, using standard multigrid coarsening techniques.

Five-point finite difference matrices on tensor-product meshes coarsened in a red-black

manner satisfy the above assumptions trivially, as Aff is diagonal. When coarsening of

these operators is done in a full-coarsening manner, the assumptions still hold, however

now parameter ε may be quite large as Aff is only irreducibly diagonally dominant,

not strictly so, and easy bounds on ε are not available with Gerschgorin’s Theorem.
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For nine-point finite element operators coarsened using full coarsening, the bound is

typically easy to achieve with moderate ε.

The two-level AMGr scheme is defined by its basic components, relaxation and

coarse-level correction. For relaxation, we choose a weighted Jacobi-like process applied

to the F points only. Its error propagation matrix is given by

REL =

I − ω
 D−1 0

0 0

A
 , (5.7)

with ω =
2

2 + ε
. Complementing this is a variational coarse-level correction scheme

using interpolation operator

P =

 D−1Afc

I

 .
Note that the error propagation matrix for this coarse-level correction is given by

CLC = I − P (P TAP )−1P TA. (5.8)

The error propagation matrix for the two-grid scheme analyzed here, with ν ≥ 1 relax-

ation steps followed by a coarse-level correction, is then given by

MG2 = CLC ·RELν . (5.9)

The analysis is simplified by noticing that any e ∈ Rn can be written as the

A-orthogonal sum

e = α

 A−1
ffAfc

I

v + β

 I

0

w, (5.10)

where ‖v‖Âff
= ‖w‖Aff

= 1 and Âff = Acc − AT
fcA

−1
ffAfc is the Schur complement

of Aff in A. Here, we again use the energy-norm notation, ‖x‖A = 〈Ax,x〉
1
2 , for any

symmetric and positive-definite matrix, A.

Theorem 5. Given A =
[

Aff −Afc

−AT
fc Acc

]
≥ 0, such that Aff = D + E, 0 ≤ E ≤ εD,

and
[

D −Afc

−AT
fc Acc

]
≥ 0, the multigrid process given in Equations 5.7, 5.8, and 5.9, MG2,



169

satisfies, for any ε > 0 and ν ≥ 1,

‖MG2‖A ≤

(
ε

1 + ε
+
(

ε

2 + ε

)2ν
) 1

2

.

The two-grid AMGr scheme thus converges uniformly for any ε > 0 with sufficiently

many smoothing steps, ν ≥ 1.

Proof. Considering the effect of relaxation, the A–orthogonal decomposition of (5.10)

gives

RELe = e− ω

 D−1 0

0 0


 βAffw

αÂffv − βAT
fcw



= e− βω

 D−1Affw

0



= α

 A−1
ffAfc

I

v + β

 I − ωD−1Aff

0

w.

However,∥∥∥∥∥∥∥
 I − ωD−1Aff

0

w

∥∥∥∥∥∥∥
A

= ‖
(
I − ωD−1Aff

)
w‖Aff

≤ ρ
(
I − ωA1/2

ff D
−1A

1/2
ff

)
≤ max

(∣∣∣∣1− 2
2 + ε

∣∣∣∣ , ∣∣∣∣2 + 2ε
2 + ε

− 1
∣∣∣∣) =

ε

2 + ε
.

It is therefore easy to see that

RELνe = α

 A−1
ffAfc

I

v + β̂

 I

0

 ŵ,

where ‖ŵ‖Aff
= 1, and

|β̂| ≤ |β|
(

ε

2 + ε

)ν

. (5.11)
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To analyze the coarse-level correction step, we again make use of Equation 5.10

to see that

‖CLCe‖A = min
u

∥∥∥∥∥∥∥e−
 D−1Afc

I

u

∥∥∥∥∥∥∥
A

≤ min
θ

∥∥∥∥∥∥∥α
 A−1

ffAfc

I

v + β

 I

0

w − αθ

 D−1Afc

I

v

∥∥∥∥∥∥∥
A

≤ |α|min
θ

∥∥∥∥∥∥∥

 A−1

ffAfc

I

− θ
 D−1Afc

I


v

∥∥∥∥∥∥∥
A

+ |β|. (5.12)

The key is then to write the correction as an A–orthogonal sum: D−1Afc

I

v =

 A−1
ffAfc

I

v +


(
D−1 −A−1

ff

)
Aff

0

v,

giving∥∥∥∥∥∥∥

 A−1

ffAfc

I

− θ
 D−1Afc

I


v

∥∥∥∥∥∥∥
2

A

= (1− θ)2

∥∥∥∥∥∥∥
 A−1

ffAfc

I

v

∥∥∥∥∥∥∥
2

A

+ θ2
∥∥∥(D−1 −A−1

ff

)
Afcv

∥∥∥2

Aff

≤ (1− θ)2 + θ2ε ≡ f(θ). (5.13)

This inequality follows because AD ≥ 0 implies that Acc ≥ AT
fcD

−1Afc, which in turn

implies that∥∥∥(D−1 −A−1
ff

)
Afcv

∥∥∥2

Aff

= vTAT
fcA

−1/2
ff

(
A

1/2
ff D

−1A
1/2
ff − I

)2
A
−1/2
ff Afcv

≤ εvTAT
fcA

−1/2
ff

(
A

1/2
ff D

−1A
1/2
ff − I

)
A
−1/2
ff Afcv

= εvTAT
fc

(
D−1 −A−1

ff

)
Afcv

≤ εvT
(
Acc −AT

fcA
−1
ffAfc

)
v

= ε‖v‖2
Â

= ε.
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Now f ′(θ) = 0 implies that θ = 1
1+ε and that the minimum of f(θ) is ε

1+ε . We thus have

‖CLCe‖A ≤ |α|
√

ε

1 + ε
+ |β|.

Combining this bound with Equations 5.10 and 5.11 yields

‖MG2e‖A ≤ |α|
√

ε

1 + ε
+ |β̂|

≤ |α|
√

ε

1 + ε
+ |β|

(
ε

2 + ε

)ν

≤

(
ε

1 + ε
+
(

ε

2 + ε

)2ν
) 1

2

‖e‖A.

5.3.2 Adaptive AMGr (αAMGr)

Construction of AMGr depends on knowledge of the splitting of Aff into D + E

with the assumed properties. Our aim is now to extend the applicability of AMGr to the

case where such a splitting is not known beforehand. Here, the basic idea is to develop

an adaptive AMGr scheme that automatically computes near null space components

by “solving” Ax = 0 and using the result to determine D. To understand this process

more clearly, we now assume that A is singular but positive semidefinite. It is easy to

see that Theorem 5 still holds with the understanding that convergence is in N (A)⊥

(the orthogonal complement of the null space of A).

Although we no longer assume that D and E are known, we continue to suppose

that the partition, RN = F ∪C, is given and that D and E exist under the assumptions

of the previous section. We thus assume again that we can write the matrix as

A =

 Aff −Afc

−AT
fc Acc

 ≥ 0.
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Below, nf and nc denote the dimensions of square matrices Aff and Acc, respectively,

and subscripts f and c are used to refer to the corresponding components of v ∈ RN , i.e.,

v = (vf ,vc)T and N = nf +nc. Assume also that A is singular with a one-dimensional

null space spanned by a unit vector, r ∈ RN : Ar = 0, ‖r‖ = 1. Since we continue to

assume that AD ≥ 0 and E ≥ 0, we must conclude that ADr = 0 and Erf = 0. To see

this, note that the splitting Aff = D + E yields

0 = 〈Ar, r〉 = 〈ADr, r〉+ 〈Erf , rf 〉.

By assumption, the two terms on the right are nonnegative, so they must both be zero.

Since AD and E are both positive semidefinite, we must have ADr = 0 and Erf = 0.

Without loss of generality, and for convenience, we assume further that D = I.

Our aim is to construct a two-level method that yields grid-independent convergence

factors for solving Ax = b in general, and Ax = 0 in particular, without assuming

knowledge of r nor of the splitting of Aff = I + E .

Finally, suppose that the vector, u, approximates the true null-space component,

r. We may write u = r + e, rescaling u is necessary, where e is taken to be somehow

orthogonal to r (in a manner defined momentarily). Let RQ(v) =
〈Av,v〉
〈v,v〉

, the standard

Rayleigh quotient. The two-level adaptive AMGr algorithm then takes the following

abstract form:

(1) Relax on Au = 0.

(2) Define P such that Puc = u.

(3) Set unew = P

(
argmin
w∈Rnc

RQ(Pw)
)

.

To simplify the theoretical development, we replace the iterative Jacobi-like F -

point solver in AMGr with an exact F -point relaxation, uf = A−1
ffAfcuc. Interpolation,

P , is then defined to match the values of u on the fine-level. This is done by choosing



173

the form of interpolation to be Λ−1Afc for some diagonal matrix Λ > 0, and then

determining Λ to match the fine-level values:

Λ−1Afcuc = uf = A−1
ffAfcuc. (5.14)

Notice that the definition of Λ is independent of the norm of u. Thus, we can define Λ

based on a given u, then scale u based on the definition of Λ, without affecting that of

Λ.

The interpolation operator, P , is defined by

P =

 Λ−1Afc

I

 .
For later use, it is convenient to also define an “ideal” interpolation operator:

Q =

 A−1
ffAfc

I

 .
It is easy to see that using Q in place of P in AMGr yields an exact two-level solver,

whence the term reduction-based AMG.

We first show that the two-grid αAMGr scheme produces a new iterate, unew,

that gives a substantially smaller Rayleigh quotient. Since min
u∈RN

RQ(u) = 0, this gives

us a measure of how close
unew

‖unew‖
is to N (A) and, hence, r. Note then that successive

αAMGr cycles would thus converge, in the sense of the Rayleigh quotient, to r.

Theorem 6. Let A =
[

Aff −Afc

−AT
fc Acc

]
≥ 0 be given such that Ar = 0 and suppose that

Aff = I + E, 0 ≤ E ≤ εI, and
[

I −Afc

−AT
fc Acc

]
≥ 0. Given a vector, u, define Λ as in

Equation 5.14, P =
[

Λ−1Afc

I

]
, and assume that η = min

i
(Afcuc)i > 0. Then,

RQ(unew) ≡ min
w∈Rnc

RQ(Pw) ≤

1− 1

2
(
δ2 + (1 + δ2)

(
1 + ε

η2

))
RQ(u),

where u = r + e, P rc ⊥ Pec, and δ = ‖Pec‖2
‖P rc‖2 .
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Proof. It suffices to show that there is some w ∈ Rnc for which the stated bound

holds. The choice we make is w = uc + svc for a particular s determined below. Here,

vc = δrc − ec and δ is chosen so that Puc and Pvc are orthogonal:

δ =
eT

c P
TP (rc + ec)

rT
c P

TP (rc + ec)
=

eT
c P

TPec

rT
c P

TP rc
,

where the second equality comes from defining e so that Pec is orthogonal to P rc. This

necessitates a rescaling of u such that u = r + e, which is permissible as such scaling

does not affect the definition of P .

Note that

RQ(P (uc + svc)) =
〈APuc, Puc〉+ 2s〈APuc, Pvc〉+ s2〈APvc, Pvc〉

‖Puc‖2 + s2‖Pvc‖2

=
〈AQuc, Quc〉+ 2s〈AQuc, Pvc〉+ s2〈APvc, Pvc〉

‖Quc‖2 + s2‖Pvc‖2

≤
〈Âffuc,uc〉+ 2s〈Âffuc,vc〉+ s2〈APvc, Pvc〉

‖Quc‖2

=
〈Âffec, ec〉 − 2s〈Âffec, ec〉+ s2〈APvc, Pvc〉

‖Quc‖2

=

(
1− 2s+ s2

〈APvc, Pvc〉
〈Âffec, ec〉

)
〈Âffec, ec〉
‖Quc‖2

=

(
1− 2s+ s2

〈APvc, Pvc〉
〈Âffec, ec〉

)
〈APuc, Puc〉
‖Puc‖2

=

(
1− 2s+ s2

〈APvc, Pvc〉
〈Âffec, ec〉

)
RQ(u).

Choosing s =
〈Âffec, ec〉
〈APvc, Pvc〉

then yields

RQ(P (u + svc)) ≤

(
1−

〈Âffec, ec〉
〈APvc, Pvc〉

)
RQ(u) = (1− s)RQ(u).

This implies that 0 ≤ s ≤ 1, since both Rayleigh quotients are positive and s is

a ratio of positive terms. Equivalently, this implies that 〈Âffec, ec〉 ≤ 〈APvc, Pvc〉. It

now suffices to show that 〈APvc, Pvc〉 ≤ C1〈Âffec, ec〉 for some C1 �∞.
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Writing v = δu− (1 + δ)e, we have

〈APvc, Pvc〉 = ‖Pvc‖2A = ‖δPuc − (1 + δ)Pec‖2A

≤ (‖δPuc‖A + ‖(1 + δ)Pec‖A)2

≤ 2
(
‖δPuc‖2A + ‖(1 + δ)Pec‖2A

)
= 2

(
δ2〈Âffec, ec〉+ (1 + δ)2‖Pec‖2A

)
.

Thus, if we can show that ‖Pec‖2A ≤ C2〈Âffec, ec〉, the theorem would follow. To this

end, note that Acc ≥ AT
fcD

−1Afc = AT
fcAfc and, hence,

〈Âffec, ec〉 ≥ 〈(AT
fcAfc −AT

fcA
−1
ffAfc)ec, ec〉

= 〈(I −A−1
ff )Afcec, Afcec〉.

Noting that

〈APec, Pec〉 = 〈(Âff +AT
fcΛ

−1AffΛ−1Afc − 2AT
fcΛ

−1Afc +AT
fcA

−1
ffAfc)ec, ec〉

= 〈Âffec, ec〉+ 〈(Λ−1AffΛ−1 − 2Λ−1 +A−1
ff )Afcec, Afcec〉,

it then suffices to show that

〈(Λ−1AffΛ−1 − 2Λ−1 +A−1
ff )Afcec, Afcec〉 ≤ C3〈(I −A−1

ff )Afcec, Afcec〉.

Defining Λ̃ = A
− 1

2
ff ΛA

− 1
2

ff , we get

〈(Λ−1AffΛ−1 − 2Λ−1 +A−1
ff )Afcec, Afcec〉

= 〈A− 1
2

ff Λ̃−2A
− 1

2
ff − 2A

− 1
2

ff Λ̃−1A
− 1

2
ff +A−1

ff )Afcec, Afcec〉

= 〈(Λ̃−2 − 2Λ̃−1 + I)z, z〉

= 〈(I − Λ̃−1)2z, z〉 = ‖(I − Λ̃−1)z‖2,

where z = A
− 1

2
ff Afcec.

To control this term, note that Λ was chosen so that Λ−1Afcuc = A−1
ffAfcuc.

Hence,

Λ−1Afcrc + Λ−1Afcec = A−1
ffAfcrc +A−1

ffAfcec,
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which yields

Λ−1rf − rf = (A−1
ff − Λ−1)Afcec,

or,

(Λ−1 − I)rf = A
− 1

2
ff (I − Λ̃−1)z

because Aff rf = (I + E)rf = rf . Now, (I − Λ̃−1)z = A
1
2
ff (Λ−1 − I)rf , and we see that

‖(I − Λ̃−1)z‖2 = ‖A
1
2
ff (Λ−1 − I)rf‖2 ≤ (1 + ε)‖(Λ−1 − I)rf‖2.

It thus suffices to bound (Λ−1 − I)rf in the L2-norm. By prerelaxation (Step 1),

we have uf = A−1
ffAfcuc, which yields

(Λ−1 − I)rf = diag
(

(uf )i

(Affuf )i
− 1
)

rf

= diag

(
(A−1

ffAfcuc)i

(Afcuc)i
− 1

)
rf

= diag

(
((A−1

ff − I)Afcuc)i

(Afcuc)i

)
rf

= diag

(
((A−1

ff − I)Afcec)i

(Afcuc)i

)
rf .

Thus,

‖(Λ−1 − I)rf‖2 =
∑

i

(
((A−1

ff − I)Afcec)i

(Afcuc)i

)2

(ri)2.

Taking η = min
i

(Afcuc)i, and noting that I ≤ Aff ≤ (1+ ε)I implies I −A−1
ff ≤

ε

1 + ε
I,

we have

‖(Λ−1 − I)rf‖2 ≤
1
η2

∑
i

(((
A−1

ff − I
)
Afcec

)
i

)2
(ri)2

≤ 1
η2

∑
i

(((
A−1

ff − I
)
Afcec

)
i

)2∑
i

(ri)2

=
1
η2

∥∥∥(I −A−1
ff

)
Afcec

∥∥∥2
‖rf‖2

≤ 1
η2

ε

1 + ε

〈(
I −A−1

ff

)
Afcec, Afcec

〉
.
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Tracing back, this implies that

‖(I − Λ̃−1)z‖2 ≤ (1 + ε)‖(Λ−1 − I)rf‖2

≤ ε

η2

〈(
I −A−1

ff

)
Afcec, Afcec

〉
≤ ε

η2
〈Âffec, ec〉,

so that

〈APec, Pec〉 = 〈Âffec, ec〉+ ‖(I − Λ̃−1)z‖2

≤
(

1 +
ε

η2

)
〈Âffec, ec〉.

Thus,

〈APvc,vc〉 ≤ 2
(
δ2〈Âffec, ec〉+ (1 + δ)2‖Pec‖2A

)
≤ 2

(
δ2 + (1 + δ)2

(
1 +

ε

η2

))
〈Âffec, ec〉,

and so we arrive at the bound

RQ(P (uc + svc)) ≤

1− 1

2
(
δ2 + (1 + δ)2

(
1 + ε

η2

))
RQ(u).

To show that we are actually driving the Rayleigh quotient to zero uniformly,

we must show that this constant is bounded independently of the iteration number. In

particular, we want to show that we have the necessary control over constants δ and η

to ensure that the reduction factor does not tend to 1 as we iterate.

Constant ε is given by our decomposition of the matrix Aff = I + E , where

0 ≤ E ≤ εI. It reflects how good of a job has been done in partitioning Rn into F

and C in the sense of how well the F -F connections of A are dominated by the F -C

connections. We can coarsely bound ε for a particular Aff using Gerschgorin’s theorem:

ε ≤ max
i∈F

∑
j∈F

|aij | − 1. Considering standard finite-element or finite-difference matrices,
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we can derive a slightly more optimistic bound (independent of h) by considering the

fixed stencil-size and noticing that the diagonal scaling necessary to write Aff = I + E

cancels the powers of h in the matrix coefficients.

Parameter δ =
eT

c P
TPec

rT
c P

TP rc
=
‖Pec‖2

‖P rc‖2
is a measure of the relative size of ec. The

normalization of u = r + e suggests that, as the iteration converges to r, the size of

‖Pec‖ relative to ‖P rc‖ should remain bounded, controlling the behavior of δ.

Parameter η = min
i

(Afcu)i is more difficult to consider. There is nothing inherent

in the iteration to suggest that η remains bounded away from zero. If, however, u is

a good approximation to rc, we expect that the variational coarsening preserves the

relationship between small eigenvalues of discrete operators A and AP = P TAP , and

those of the continuous operator. Smoothing u then results in a smooth ec, and the

reduction in Rayleigh quotient from the coarse-grid correction must reflect a reduction

in the size of ec and not simply significant additional smoothing in ec that could mask

an increase in magnitude and an approach to the critical case of (uc)i = 0 for some

node i.

At present, we have not found acceptable analytic bounds on δ and η. Experience,

however, suggests that such bounds are possible. Here, we demonstrate numerically

that, for two simple examples, both of these parameters are well behaved.

Consider the two-dimensional problem, −∇ · K∇p, discretized via bilinear finite

elements with natural boundary conditions (so that r = 1) on an n × n grid. Let the

coarse grid be chosen by red-black coarsening, so that no row of Afc is zero, and consider

the iteration, starting with a random initial guess, u, normalized so that u · 1 = ‖1‖2:

(1) uf = A−1
ffAfcuc,

(2) Λ−1 = Diag
(

(uf )i

(Afcuc)i

)
, P =

[
Λ−1Afc

I

]
, Ac = P TAP ,

(3) Solve Acvc = λminP
TPvc ,

(4) unew = 1T 1
(Qvc)T 1

Qvc.
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Iteration # RQ η δ

0 6.4× 10−1 4.5× 10−3 2.2× 10−1

1 1.6× 10−2 1.1× 10−1 1.5× 10−1

2 8.4× 10−4 6.3× 10−1 7.7× 10−3

3 3.1× 10−5 9.7× 10−1 1.1× 10−5

Table 5.11: αAMGr Iteration for 33× 33 Laplacian

Iteration # RQ η δ

0 4.3× 100 1.7× 10−3 2.2× 10−1

1 3.6× 10−3 1.5× 10−3 3.2× 102

2 1.9× 10−3 9.0× 10−1 6.3× 10−3

3 9.3× 10−6 1.0× 100 1.9× 10−6

Table 5.12: αAMGr Iteration for 33× 33 Variable Coefficient Problem

This iteration is exactly the αAMGr iteration from above, with the additional

step of normalizing u so that we may always write u = 1+e. Performing this iteration,

we monitor δ and η, and also note the reduction in the Rayleigh quotient in Table 5.11

for K = 1 on a 32 × 32 element grid. Notice that η increases monotonically to 1 and

δ decreases monotonically to zero. Results for a more difficult problem, with diffusion

coefficient K(x) = 1
1000+10xTx, are shown in Table 5.12. Here, we see an initial decrease

in η and increase in δ after the first step, but monotonic improvement afterward.

In addition to a result such as that in Theorem 6, showing that the iterates,

u, converge nicely to r, we must analyze the performance of the resulting method.

Assuming exact fine-grid relaxation as in the setup phase above, we consider only the

coarse-level correction step from the AMGr algorithm presented in Section 5.3.1. Recall

that Λ is the emerging approximation to I, the diagonal term from the decomposition

of Aff = I + E (referred to as D in Section 5.3.1). Analogous to Equation 5.12 with Λ

replacing D, we have

‖CLCe‖A ≤ |α|min
θ

∥∥∥∥∥∥∥

 A−1

ffAfc

I

− θ
 Λ−1Afc

I


v

∥∥∥∥∥∥∥
A

+ |β|,

for arbitrary fine-grid error, e, where v is now an Âff -unit vector from the A-orthogonal
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decomposition of an arbitrary error, e ∈ Rn (see Equation 5.10). Since e is the error

in solving Ax = 0, choose v to be orthogonal to rc, for use below. Now, following the

analysis in Equation 5.13,∥∥∥∥∥∥∥

 A−1

ffAfc

I

− θ
 Λ−1Afc

I


v

∥∥∥∥∥∥∥
A

= (1− θ)2 + θ2‖(Λ−1 −A−1
ff )Afcv‖2Aff

.

Again, minimizing over θ shows that

‖CLCe‖A ≤ |α|

(
‖(Λ−1 −A−1

ff )Afcv‖2Aff

1 + ‖(Λ−1 −A−1
ff )Afcv‖2Aff

) 1
2

+ |β|.

We now would like to uniformly bound ‖(Λ−1 −A−1
ff )Afcv‖2Aff

, which is equiva-

lent to bounding ‖(Λ−1 − I)Afcv‖Aff
:

‖(Λ−1 −A−1
ff )Afcv‖Aff

≤ ‖(Λ−1 − I)Afcv‖Aff
+ ‖(I −A−1

ff )Afcv‖Aff

≤ ‖(Λ−1 − I)Afcv‖Aff
+
√
ε.

Recall that v has unit Âff -length, and so achieving a uniform bound is difficult because

this Schur complement is not naturally accounted for. A uniform bound on

‖A
1
2
ff (Λ−1 − I)AfcÂ

− 1
2

ff ‖,

is necessary, which is clearly possible if Λ−1 − I is small enough, but requires that the

size of this term depend on h (and the original operator, A) to achieve uniform bounds.

5.3.3 Other Convergence Results

The results above indicate the convergence of αAMGr, but fail to give uniform

convergence bounds. Thus, we now consider alternative techniques and assumptions to

establish further convergence results. In the special case of a two-dimensional coarse

grid, much simpler results are available. In this case, we may again write uc = rc + ec,

now taking rc ⊥ ec, and so {rc, ec} spans the entire coarse-grid space. This reduction in

complexity allows for a complete analysis of the αAMGr algorithm, with the coarse-grid

eigenproblem replaced by inverse iteration.
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Theorem 7. Let nc = 2, and let approximation u, uc = rc + ec with ‖rc‖ = 1 and

rc ⊥ ec be given. Define the usual αAMGr interpolation operator, P =
[

Λ−1Afc

I

]
, with

Λ−1Afcuc = A−1
ffAfcuc, and coarse-grid matrix AP = P TAP . Assume also that Ar = 0,

Aff = I + E, for 0 ≤ E ≤ εI, and that
[

I −Afc

−AT
fc Acc

]
≥ 0. Finally, let η̄ = mini(rf )i and

η = min(min
i

(rf + Afcec)i, η̄) > 0. Then, the coarse-grid solution, vc, to the inverse

iteration, vc = A−1
P uc, satisfies

vc = k(ζrc + ec),

for constant k, and ζ ≥ 1 + 1
1+‖ec‖2

η2

ε(1+ε)‖rf‖2
.

Proof. Let W = [rc,
ec
‖ec‖ ] be the orthogonal transformation from Cartesian coordinates

to the (rc, ec) coordinate system. The inverse iteration, vc = A−1
P uc, may then be

rewritten as

vc = W (W TAPW )−1W T (rc + ec).

Note that Puc = Quc, where Q denotes the ideal interpolation operator, Q =
[

A−1
ff Afc

I

]
,

and that Qrc = r, so that

P rc = r +
(

(Λ−1−I)rf

0

)
,

Pec = Qec −
(

(Λ−1−I)rf

0

)
,

and compute α ≡ rT
c AP rc = rT

f (Λ−1−I)Aff (Λ−1−I)rf . Notice then that eT
c AP rc = −α,

because Pec = Puc − P rc = Quc − P rc, and Quc is A-orthogonal to any vector that is

zero on all coarse points.

Thus, taking γ = ‖ec‖ and β = eT
c Âffec, the inverse iteration matrix may be

rewritten as

W TP TAPW =

 α −α
γ

−α
γ

α+β
γ2

 .
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The inverse iteration then takes the form

vc = W

 α −α
γ

−α
γ

α+β
γ2


−1

W T (rc + ec)

= W
γ2

αβ

 α+β
γ2

α
γ

α
γ α


 1

γ


=
(
α+ β

αβ
+
γ2

β

)
rc +

(
γ + γ3

β

)
ec

γ

=
(

1 + γ2

β

)((
α+ β

(1 + γ2)α
+

γ2

1 + γ2

)
rc + ec

)
.

Now consider β = eT
c Âffec, and note that

Âff = Acc −AT
fcAfc +AT

fc(I −A−1
ff )Afc ≥ AT

fc(I −A−1
ff )Afc,

as Acc −AT
fcAfc ≥ 0, by assumption as in Equation 5.6. Then, since

(I −A−1
ff ) = (I − (I + E)−1) = E(I + E)−1,

we see that

Âff ≥
1
ε
AT

fcE2(I + E)−1Afc,

as

E2(I + E)−1 ≤ εE(I + E)−1.

In particular, this implies that β ≥ 1
εe

T
c A

T
fcE2(I + E)−1Afcec. We now turn our

attention to α, which can be bounded above as follows:

α = ‖(Λ−1 − I)rf‖2Aff
≤ (1 + ε)‖(Λ−1 − I)rf‖2

= (1 + ε)
∑

i

(
((A−1

ff − I)Afcec)i

(rf +Afcec)i

)2

(rf )2i

≤ 1 + ε

η2

∑
i

((A−1
ff − I)Afcec)2i

∑
i

(rf )2i

≤
(1 + ε)‖rf‖2

η2

∑
i

((A−1
ff − I)Afcec)2i
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and so,

α =
(1 + ε)‖rf‖2

η2
‖(A−1

ff − I)Afcec‖2

≤
(1 + ε)‖rf‖2

η2
‖(A−1

ff − I)Afcec‖2Aff

=
(1 + ε)‖rf‖2

η2
eT

c A
T
fcA

−1
ff (Aff − I)Aff (Aff − I)A−1

ffAfcec

=
(1 + ε)‖rf‖2

η2
eT

c A
T
fcE2(I + E)−1Afcec ≤

ε(1 + ε)‖rf‖2

η2
β.

Thus, vc =
(

1+γ2

β

)((
α+β

(1+γ2)α
+ γ2

1+γ2

)
rc + ec

)
can be seen to have the form,

vc = k(ζrc + ec), for k =
(

1+γ2

β

)
, and

ζ =
(

α+ β

(1 + γ2)α
+

γ2

1 + γ2

)
≥ 1 +

β

(1 + γ2)α

≥ 1 +
1

1 + γ2

η2

ε(1 + ε)‖rf‖2
.

Corollary 2. Under the hypotheses of Theorem 7, the inverse iteration process, uc ←

A−1
P uc converges uniformly to uc = rc.

Proof. Let η̄ = mini(rf )i. Renormalizing vc = rc + 1
ζ ec, we see that 1

ζ < 1, thus

ηnew = min
(

min
i

(
rf +

1
ζ
Afcec

)
i

, η̄

)
≥ ηold,

and that

γnew =
∥∥∥∥1
ζ
ec

∥∥∥∥ < γold.

Thus, for any initial η(0) and γ(0), we have ζ from Theorem 7 satisfying

ζ ≥ 1 +
1

1 + (γ(0))2
(η(0))2

ε(1 + ε)
.

The success of inverse iteration in this case suggests that it may be useful also

in the case when nc > 2. It has not yet been shown that coarse-grid inverse iteration
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yields an N -independent bound in the more general case; however, we believe that the

following avenue of approach may be useful in achieving such a bound.

Given the current approximation, uc = rc + ec, define the orthonormal matrix,

V , to span the orthogonal complement of {rc, ec}, and then the orthonormal matrix,

W = (rc,
ec
‖ec‖ , V ), to span Rnc . Under the assumptions that uc = rc + ec, ‖rc‖ = 1 and

rc ⊥ ec, we have 〈uc, rc〉 = 1, and so we get

A−1
P uc = W (W TAPW )−1Wuc = W (W TAPW )−1


1

‖ec‖

0

 .

Now, let X = AP − Âff and notice that X(rc + ec) = 0. Thus, we have Xec = −Xrc,

and so

W TAPW = W T ÂffW +W TXW

=


0 0 0T

0 eT
c Âffec

‖ec‖2
eT

c Âff V
‖ec‖

0 V T Âffec

‖ec‖ V T ÂffV

+


rT
c Xrc − rT

c Xrc

‖ec‖ rT
c XV

− rT
c Xrc

‖ec‖
rT
c Xrc

‖ec‖2 − rT
c XV
‖ec‖

V TXrc −V T Xrc
‖ec‖ V TXV

 .

Now, take γ = ‖ec‖, α = rT
c Xrc, a = V TXrc, β = eT

c Âffec, and b = V T Âffec,

reducing the inverse iteration step to

A−1
P uc = (rc,

ec

‖ec‖
, V )


α −α

γ aT

−α
γ

α+β
γ2

−aT +bT

γ

a −a+b
γ V TAPV


−1

1

γ

0

 .

Gaussian elimination then yields

vc = A−1
P uc =

(
1
α

+
aTx
α

+
(
γ2 + 1
β

+
bTx
β

))
rc +

(
γ2 + 1
β

+
bTx
β

)
ec − V x,

where x =
(
V TAPV − aaT

α −
bbT

β

)−1 (
a
α + (γ2 + 1)b

β

)
. Since the decrease orthogonal

to rc is of primary importance, consider the relative size of the ec and V x terms to the
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rc term, rewriting vc as

vc =
(

1
α

+
aTx
α

+
(
γ2 + 1
β

+
bTx
β

))rc +
γ2+1

β + bT x
β

1
α + aT x

α +
(

γ2+1
β + bT x

β

)ec

− 1
1
α + aT x

α +
(

γ2+1
β + bT x

β

)V x

 .

The dependence of the definition of P on the infinity-norm of ec suggests that

convergence is naturally measured in this norm. In particular, we ask that∥∥∥∥∥∥
γ2+1

β + bT x
β

1
α + aT x

α +
(

γ2+1
β + bT x

β

)ec −
1

1
α + aT x

α +
(

γ2+1
β + bT x

β

)V x

∥∥∥∥∥∥
∞

< ‖ec‖∞,

which follows easily if

‖V x‖∞ <

(
1
α

+
aTx
α

)
‖ec‖∞,

under the assumption that 1
α + aT x

α > 0. Proof of such an inequality is an open question.

5.3.4 Contraction Argument

The above theory still does not provide a satisfactory bound on convergence of the

adaptive process to the null-space component, r, of A. Convergence in a neighborhood

of this solution may be guaranteed, however, by a contraction argument under further

assumptions.

In what follows, we use the notation,

D(w) = Diag(. . . , wi, . . .),

for a given vector, w, to be the diagonal matrix with w as the diagonal terms. We also

use the Jacobian notation,

J(G,x)[y],

to denote the Jacobian of the map G with respect to x, evaluated at y, or J(z,x)[y] to

denote the Jacobian of the map from x to z, evaluated at y.
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Theorem 8. Suppose that nc = nf and that Acf = Afc = I. Let uc = rc + ec,

for rc = 1c, rc ⊥ ec. Define the map, G : ec → enew
c , to be defining Λ based on uc

as in Equation 5.14, then finding the new ec from the coarse-grid eigenvalue problem,

P TAPvc = λminvc, 〈vc, rc〉 = ‖rc‖2, and enew
c = vc − rc.

The map, G, is a contraction at the solution, ec = 0. Further, the norm of the

Jacobian of G with respect to ec satisfies

‖J(G, ec)‖ ≤
ε

1 + ε
,

and so G remains a contraction in some neighborhood of ec = 0.

Proof. Notice first that the coarse-grid operator,

AP = P TAP = Acc − 2AcfΛ−1Afc +AcfΛ−1AffΛ−1Afc

= (Acc −AcfA
−1
ffAfc) + (AcfA

−1
ffAfc − 2AcfΛ−1Afc +AcfΛ−1AffΛ−1Afc)

= (Acc −AcfA
−1
ffAfc) +Acf (Λ−1 −A−1

ff )Aff (Λ−1 −A−1
ff )Afc,

is the sum of two symmetric and positive semidefinite parts, with

(Acc −AcfA
−1
ffAfc)rc = 0

and Acf (Λ−1 −A−1
ff )Aff (Λ−1 −A−1

ff )Afc(rc + ec) = 0.

The coarse-grid step is then to find

ec = argmin
ẽc

RQ(AP , rc + ẽc),

where RQ(A,v) = 〈Av,v〉
〈v,v〉 , under the constraint 〈ec, rc〉 = 0. The fine-grid error, ef , is

then defined by an exact fine-grid relaxation,

Aff (rf + ef )−Afc(rc + ec) = 0.

The iteration may be viewed as a mapping from ec → enew
c . Defining Ξ = Λ−1−I,

and ξ to be the vector such that ξi = Ξii (i.e., Ξ = D(ξ)), the iteration proceeds as

ec → ξ → ec.
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At this point, we use the assumption that Acf = Afc = I (and that nc = nf ),

define E = D(ec), and rewrite Equation 5.14 as

(I + Ξ)(rc + ec) = (I + E)(rc + ξ) = A−1
ff (rc + ec) = rc +A−1

ff ec,

where we make use of the fact that Ξec = Eξ, or

ξ = (I + E)−1(rc +A−1
ff ec)− rc.

Now, as ξ = ξ(ec), we consider the Jacobian, J(ξ, ec) = ∂ξ
∂ec

, evaluated at ec,

J(ξ, ec)[ec] = (I + E)−1A−1
ff − (I + E)−2(I +D(A−1

ff ec)),

recalling that rc = 1. At the solution, ec = 0, and we have

J(ξ, ec)[0] = A−1
ff − I. (5.15)

It is easy to see from the assumptions that

0 ≤ I −A−1
ff ≤

ε

ε+ 1
I < I,

and so this part of the map is a contraction.

For the second part of the map, we first find

uc = argmin
vc

RQ(AP ,vc) = argmin
vc

〈APvc,vc〉
〈vc,vc〉

(5.16)

subject to the constraint

〈uc, rc〉 − 〈rc, rc〉 = 0

and set enew
c = uc− rc. This yields an implicit relationship between ξ and enew

c . Taking

the gradient of (5.16), we have the set of equations

APuc −
〈APuc,uc〉
〈uc,uc〉

uc = 0

plus the original constraint equation

〈uc, rc〉 − 〈rc, rc〉 = 0.
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Note that AP = AP (ξ) and, to belabor the point, this has the form of a set of

equations

F (uc, ξ) = AP (ξ)uc −
〈AP (ξ)uc,uc〉
〈uc,uc〉

uc = 0. (5.17)

With the constraint there are nc+1 equations, but they are consistent, as the first

nc do not determine the constant multiplier and are therefore singular. The constraint

fixes the scaling.

Implicit differentiation of F yields

J(F,uc)J(uc, ec)J(ec, ξ) + J(F, ξ) = 0, (5.18)

where, of course, J(uc, ec) = I. We deal with the constraint equation later.

We now need to construct J(F,uc) and J(F, ξ), which is messy but straightfor-

ward. Referring to the definition of AP and recalling that Afc = Acf = I, Aff = I + E

and Λ−1 = I + Ξ, we have

AP = (Acc − 2I +Aff ) + Ξ2 + ΞE + EΞ + ΞEΞ.

This yields

J(F, ξ) = 2ΞD(uc) +D(Euc) + ED(uc) +D(EΞuc) + ΞED(uc) + uc(∇ξRQ(AP ,uc))T ,

where

∇ξRQ(AP ,uc) =
1

< uc,uc >
(2ΞD(uc) +D(Euc) + ED(uc) +D(EΞuc) + ΞED(uc))uc.

The important thing to notice is that at the solution, uc = rc, Ξ = 0, and ξ = 0, yielding

∇ξRQ(AP ,uc) = 0,

and the only surviving term in J(F, ξ) is (Eijuj) = E , because of the assumption that

rc = 1c, yielding

J(F, ξ)[0] = E .
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Now, to compute J(F,uc), we have

J(F,uc) = AP − RQ(AP ,uc)I + uc(∇ucRQ(AP ,uc))T ,

where, as stated before,

∇ucRQ(AP ,uc) =
1

< uc,uc >
(APuc −

< APuc,uc >

< uc,uc >
uc),

and, at the solution, this yields

J(F,uc)[rc] = Acc − 2I +Aff = Acc − I + E .

Now consider the constraint. If we think of the constraint equation as the last in

Equation 5.17, this adds one extra equation to the set in 5.18. The last row of J(F, ξ)

is 0T because the constraint does not depend on ξ. The constraint equation also adds

one row to J(F,uc), and that last row is rT
c . That is, the columns of J(ec, ξ) are all

orthogonal to rc. We must check that this augmented system has a solution, because

matrix J(F,uc)[rc] = Acc − 2I + Aff has rc as its null space. Note that the right side,

−J(F, ξ)[0] = −E , also has rc as its null space and (since it is symmetric) each column

of E is orthogonal to rc. Then, since J(F,uc)[rc] is also symmetric, each column of

E must be in its range (this is Fredholm’s theorem: that (Range(A))⊥ = Null(AT )).

So, we know that a solution, J(ec, ξ), exists. If we additionally ask for the solution to

satisfy the constraint, J(ec, ξ)rc = 0, with the minimal RQ, we then get a unique value

for J(ec, ξ)[0].

Note that in order to get the result we want, we must assume that rc is the only

null vector of Acc− I (as rc is the only null vector of E). Using the results in Equations

5.15 and 5.18, we have

(Acc − I + E)J(ec, ξ)J(ξ, ec) = E(I −A−1
ff ) = E2(I + E)−1.

Suppose now that V is the unitary matrix that diagonalizes E , i.e.,

Ψ = D(ψ) = V EV ∗.



190

Under this change of basis, we have

V ∗(V AccV
∗ − I + Ψ)V J(ec, ξ)J(ξ, ec) = V ∗(Ψ2(I + Ψ)−1)V.

So now we get the bound

C = argmax
e⊥V r

< Ψ2(I + Ψ)−1e, e >
< (V ∗AccV − I)e, e > + < Ψe, e >

≤ argmax
e⊥V r

< Ψ2(I + Ψ)−1e, e >
< Ψe, e >

≤ ε

1 + ε
.

Thus, the norm of the Jacobian of the mapping, J(G, ec) = J(ec, ξ)J(ξ, ec), is bounded

uniformly less than 1, yielding convergence in a neighborhood of the solution.

5.4 Adaptive Smoothed Aggregation

∗ Over the last decade, smoothed aggregation (SA; cf. [77, 82]) has emerged as

an efficient multilevel algebraic solver for the solution of the algebraic systems obtained

by discretizing certain classes of differential equations on unstructured meshes. In par-

ticular, SA is often very efficient at solving the systems that arise from problems of 3D

thin-body elasticity, a task that can tax traditional algebraic multigrid techniques.

As with classical AMG [23, 72, 73], the standard smoothed aggregation method

bases its transfer operators on certain assumptions about the nature of smooth error.

For SA applied to discretizations of elliptic partial differential equations, this assumption

usually takes the form of explicit knowledge of the near null space of the associated weak

form. This knowledge is easy to obtain for large classes of problems. For example, it

is simple to determine the near null space for finite element discretizations of second-

or fourth-order PDEs, including many nonscalar problems. In more general situations,

however, this knowledge may not be readily available. Here, we propose the αSA method

to address this situation. The objective of the setup phase of αSA is to compute a set of

prototype vectors, B, that represent error components that relaxation is slow to resolve.
∗ This section has also appeared as [26]
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The setup phase for αSA is easiest to describe as an adaptive process. We start

from a given, primitive parent method (possibly a simple relaxation scheme) with error

propagation operator M0, and a current, but possibly empty, set, B, of prototypes (error

components that M0 does not effectively reduce). We attempt to enhance B by first

putting M0 to the test: given a small number, ν, of iterations and a random initial

guess, e0, compute

eν ←Mν
0 e0. (5.19)

If the method performs well in the sense that eν is much smaller than e0 in an appropri-

ate norm, then it is accepted as the solver and the adaptive scheme stops. Otherwise,

the resulting approximation, eν , is expected to be rich in the error components that are

not effectively reduced by M0, so it is added to the prototype set, B. The new prototype

set is then used to construct an improved child method, with error propagation operator

M1. The whole process can then be repeated with M1 in place of M0, continuing in this

way to generate a sequence of hopefully improving methods.

Thus, we iterate on the method itself, improving the current version by having it

compute its own troublesome components - those that it does not effectively reduce -

and then adjusting the coarsening process accordingly to produce a new method. Old

prototype components are also used in this adjustment process to ensure that the new

method continues to reduce them efficiently. This improvement process repeats until

the current method shows itself to be capable of efficient solution of the problem of

interest. The iteration on the method is called the adaptive setup phase (or, simply,

the setup phase) to distinguish it from the solver phase where the resulting method is

applied to the target problem. The setup phase is terminated when either the latest

incarnation of the method performs satisfactorily or when a prescribed number of steps

is reached.

Each new child method is constructed based on components resulting from its
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parent iteration (5.19). The method is modified to reflect the newly computed proto-

types as soon as they become available. In other words, the method is kept up to date

at all times and no more work is done than necessary.

The smoothed aggregation framework [82] lends itself to the efficient use of a

prototype set. It offers fast automatic coarsening with well-understood control over

operator complexity due to its typically fixed coarse-operator sparsity pattern. In addi-

tion, the process guarantees proper approximation of a given set of functions and their

natural localizations during the coarsening process. The resulting coarse-level basis

functions are smooth by design and thus suitable for use in a multilevel method. The

prototypes obtained by iteration (5.19) play the roles of the near kernel components on

which the SA method is based. Thus, in the αSA context, the notion of near kernel

components depends not only on the problem, but also on the current method. In gen-

eral, however, a troublesome component must have a small Rayleigh quotient, signifying

ineffectiveness of relaxation.

Note that the convergence result in Theorem 1 (§3.4) hinges on the selection of

B1. In particular, B1, and the coarse operators, Bk+1 and P k
k+1, 1 ≤ k ≤ L− 1, that it

induces, must guarantee that the left side of Equation 3.8 is small for any vector u for

which 〈A(1)u,u〉 is small (where A(1) = A, the fine-grid matrix). Since the standard SA

method requires that matrix B1 be given as input, with the columns of B1 representing

a basis for (a superset of) the near kernel of A(1), then the construction of P k
k+1 as in

Equation 3.6 guarantees that all coarse-level representations, Bk, form a basis for (a

superset of) the near kernel of A(k), k > 1.

The purpose of αSA is to enrich a given, incomplete (possibly even empty) set of

near kernel components with approximations computed at runtime in such a way that

good convergence can be recovered. The adaptive method can then be viewed as an

iterative attempt to satisfy (3.8) heuristically. Our B1 is computed only approximately,

which means that the coarse-level Bk obtained by (3.6) may, alone, not be the optimal
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representation of the near kernel. To remedy this, we carry out the setup computation

also on the coarse levels to improve on the initial guess for the coarse-level prototypes

given by (3.6).

5.4.1 Self-Correcting Adaptive Setup

Before describing the algorithm, we introduce the following notational conven-

tions. The transfer operators and coarse-level problems, as well as other components

of our multigrid scheme, change as our method evolves. Whenever possible, we use

the same symbols for the updated components. Thus, symbol Bk may denote a single

vector in one cycle of the setup procedure, or perhaps a two-column matrix in the next

step of the setup. The intended meaning should be clear from context.

5.4.1.1 Initialization setup stage

The adaptive multigrid setup procedure considered in this section can be split

into two stages. If no knowledge of the near kernel components of A(1) is available, then

we start with the first stage to determine an approximation to one such component.

This stage also determines the number of levels, L, to be used in the coarsening process.

(Changing L in the next stage based on observed performance is certainly possible, but

it is convenient to fix L and other constructs early in the setup phase.) Let ε > 0 be a

given convergence tolerance.

Algorithm 4 (Initialization stage).

1. Set k = 1, select a random vector, x(1) ∈ IRN(1)
, and create copy, x̂(1) ← x(1).

2. With initial approximation x(1), relax ν times on A(1)x = 0:

x(1) ← (I −R(1)A(1))νx(1).

3. If
(
〈A(1)x(1),x(1)〉
〈A(1)x̂(1),x̂(1)〉

)1/ν
≤ ε, then set L = 1 and stop (problem A(1)x = b(1) can be

solved fast enough by relaxation alone, so only one level is needed).
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4. Otherwise, do the following:

(a) Set Bk ← x(k).

(b) Create a set, {Ak
i }N

(k+1)

i=1 , of nodal aggregates based on matrix A(k).

(c) Define tentative prolongator P k
k+1 and prototype set Bk+1 using the proto-

type set Bk and relations (3.6) with structure based on {Ak
i }N

(k+1)

i=1 .

(d) Define the prolongator: Ik
k+1 = SkP

k
k+1.

(e) Define the coarse matrix: A(k+1) = (Ik
k+1)

TA(k)Ik
k+1. If level k+1 is coarse

enough that a direct solver can be used there, skip to Step 5; otherwise,

continue.

(f) Set the next-level approximation vector: x(k+1) ← Bk+1.

(g) Make a copy of the current approximation: x̂(k+1) ← x(k+1).

(h) With initial approximation x(k+1), relax ν times on A(k+1)x = 0:

x(k+1) ← (I −R(k+1)A(k+1))νx(k+1).

(i) If
(
〈A(k+1)x(k+1),x(k+1)〉
〈A(k+1)x̂(k+1),x̂(k+1)〉

)1/ν
≤ ε, skip Steps (f-i) in further passes through

Step 4.

(j) Increment k ← k + 1 and return to Step 4(a).

5. Set L← k + 1 and update the finest-level prototype matrix:

B1 ← I1
2I

2
3 . . . I

L−2
L−1x

(L−1).

6. Create the V -cycle based on B1 using the standard smoothed aggregation procedure.

This initialization stage terminates whenever a level is reached in the coarsening

process where a direct solver is appropriate. It does not involve level L processing

because it is assumed that the coarsest level is handled by a direct solver, making

the stopping criterion in Step 4(i) automatically true. Notice that the prototype set is
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actually a single vector in this initial stage because we are computing only one prototype.

Note also that this stage provides all of the components needed to construct the initial

solver.

If the criterion tested in Step 4(i) is satisfied, we are assured that the current

coarse level, k + 1, can be easily solved by relaxation alone. At that point, we could

choose not to coarsen further and use relaxation as a coarsest-level solver. However, it is

possible that the general stage of the algorithm described below adds more prototypes.

In case a new prototype approximates the low-energy modes of the problem better than

the prototype obtained in the initial step, the coarse-level matrix may no longer be

easily solved by relaxation alone. Thus, we choose to coarsen further, until we are

certain that the coarsest problem can be handled well. This offers an added benefit of

producing, at the end of the initial stage, a complete aggregation that can be reused in

the general stage. Note that if the condition of 4(i) is satisfied, then the approximate

solution of the homogeneous problem may be zero. In such a case, we restore the saved

original vector x̂(k+1). We choose to skip the Steps 4(f-i) in further coarsening once 4(i)

is satisfied, amounting to using standard SA coarsening from level k + 1 down, which

guarantees that the prototype computed on level k is exactly represented all the way to

the coarsest level. Figure 5.5 illustrates Algorithm 4.

This initialization stage may not be necessary in practice. Consider a problem of

3D linear elasticity discretized by a standard, linear first-order finite element method

over an unstructured grid. In this case, if the discretization package either generates the

rigid body modes or supplies the nodal geometry to the solver, then the full set of null

space vectors are presumably available [81] and the adaptive process may be unnecessary.

When the full set of rigid body modes is unavailable, it is nevertheless often possible to

obtain a subset of the rigid body modes consisting of the three independent constant

displacements, regardless of the geometry of the grid. Such a subspace should be used

whenever possible to create B1 and to set up a V -cycle exactly as in the standard
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2
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3 )TA(2)I2
3

Figure 5.5: Initialization Stage, Algorithm 4
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smoothed aggregation method. This initialization stage would then be omitted.

Thus, the initialization stage given by Algorithm 4 should be viewed as optional,

to be done only if no information can be assumed about the system to be solved. If any

such information is available, the initial V-cycle may be constructed as in standard SA.

We can thus, in any case, assume that an initial B1 having at least one column and a

tentative V -cycle are available. This also means that aggregates Ak
i , transfer operators

P k
k+1 and Ik

k+1, and coarse operators A(k+1), k = 1, . . . , L− 1 have been constructed.

5.4.1.2 General setup stage

In each step of the second stage of the adaptive procedure, we apply the cur-

rent V -cycle to the homogeneous problem to uncover error components that are not

quickly attenuated. The procedure then updates its transfer operators to ensure that

these components will be eliminated by the improved method, while preserving the pre-

viously established approximation properties. Thus, this stage essentially follows the

initialization stage with relaxation replaced by the current V -cycle.

One of the subtleties of this approach lies in the method’s attempt to update each

level of the evolving V -cycle as soon as its ineffectiveness is exposed. Thus, on the finest

level in the second stage, the current V -cycle simply plays the role of relaxation: if it is

unable to quickly solve the homogeneous problem (i.e., Step 3 fails), then the resulting

error becomes a new prototype and new degrees of freedom are generated accordingly

on level 2 (i.e., columns are added to B1). The level 2-to-L part of the old V -cycle

(i.e., the part without the finest level) then plays the role of the level 2 relaxation in

the initial setup phase and is thus applied to the homogeneous problem to assess the

need to improve the coarser-level interpolation operators. The same is done on each

coarser level, k, with the level k-to-L part of the old V -cycle playing the role of the

level k relaxation step in the initial setup phase. The process continues until adequate

performance is observed or the maximum permitted number of degrees of freedom per
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node is reached on coarse levels.

Consider then a method in which, within each cycle of the adaptive setup, we

attempt to update the current V -cycle level by level. One cycle of this adaptive setup

traverses from the finest to the coarsest level; on each level, k, along the way, it updates

Bk based on computing a new prototype from the current multigrid scheme applied to

the homogeneous problem on level k. Thus, on level k in the setup process, a solver is

applied that traverses from that level to level L and back. Now, once this new prototype

is computed, it is incorporated into the current multigrid scheme and the previously

existing V -cycle components are overwritten on level k + 1, but temporarily retained

from that level down. As a result, we redefine level-by-level the V -cycle components.

Once the new Bk (and Ik
k+1 in (3.5)) are constructed all the way to the coarsest level, we

can then use them to update the current B1 and, based on it, construct a new V -cycle

on the finest level.

The general stage is therefore analogous to the initialization stage described in

Algorithm 4, with relaxation replaced by the evolving V -cycle. Instead of using sim-

ple relaxation on each level as the initialization stage does, the general stage uses the

current solver to identify new types of error that the earlier sweeps of the setup cy-

cle may have missed, just as the initialization stage was designed to capture a type

of error that relaxation cannot efficiently eliminate. This algebraically smooth error is

the prototype that is generated by applying relaxation to the homogeneous problem on

each level. Similarly, each cycle of the general stage is designed to capture a type of

error that the current V -cycle cannot handle, and this, too, must be done on each level.

It is, however, not enough for the coarsening process to eliminate only the particular

prototype: typically, a fixed percentage of the spectrum of A(1) is algebraically smooth,

so elimination of one prototype at a time would take O(N (1)) setup cycles. To avoid

this unacceptably large cost, each setup cycle must determine interpolation operators

so that the solver eliminates a relatively large set of errors similar to each prototype.
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Just as each rigid body mode is used locally in standard SA to treat errors of similar

type (with constants representing errors that are smooth within variables and rotations

representing inter-variable “smoothness”), so too must each prototype be used in αSA.

Moreover, a full set of prototypes must be determined if the solver is to attain full effi-

ciency (e.g., for 2D linear elasticity, three rigid body modes are generally needed). We,

thus, think of each prototype as a sort of straw man that represents a class of smooth

components. Efficient computation of a full set of straw men is the responsibility of the

adaptive process. However, proper treatment of each straw man is the task of the basic

solver, SA.

As we apply our current method to the homogeneous problem, the resulting

prototype, x(k), becomes rich in the components of the error that are slow to converge

in the current method. Our goal in designing the adaptive algorithm is to ensure that

x(k) is approximated relatively well by the newly constructed transfer operator. That

is, we want to control the constant, Ca, in the inequality

min
v∈IRN(k+1)

‖x(k) − P k
k+1v‖2 ≤

Ca

ρ(A(k))
‖x(k)‖2

A(k) . (5.20)

The transfer operators must therefore be constructed to give accurate approximations

to each prototype as it is computed. This can be guaranteed locally by requiring that,

over every aggregate, A, we have

min
v∈IRN(k+1)

‖x(k) − P k
k+1v‖2A ≤ CaδA(x(k)), (5.21)

where δA are chosen so that summing Equation 5.21 over all aggregates leads to In-

equality 5.20, i.e., so that ∑
A
δA(x) =

〈A(k)x,x〉
ρ(A(k))

. (5.22)

For now, the only assumption we place on δA(x) is that (5.22) holds. An appropriate

choice for its definition is given in Section 5.4.2.

To relate the condition in (5.20) to the theoretical foundation of smoothed ag-

gregation, we make the following observation. If P k
k+1 is constructed so that (5.20) is
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satisfied for the prototype x(k), the construction of our method automatically guarantees

that

min
v∈IRN(k+1)

‖x(1) − P 1
2P

2
3 . . . P

k
k+1v‖2 ≤

Ca

ρ(A(1))
‖x̂(1)‖2

A(1) ,

where x(1) = P 1
2P

2
3 . . . P

k−1
k x(k) and x̂(1) = I1

2I
2
3 . . . I

k−1
k x(k). Since it is easy to show

that ‖x̂‖A(1) ≤ ‖x‖A(1) , we can thus guarantee that (3.8) holds for the particular fine-

level prototype x(1). Inequality 5.20 is easily satisfied for any component, u, for which

‖u‖A(1) is bounded away from zero, and so we focus on the troublesome subspace of com-

ponents with small energy. Our experience with the standard SA method indicates that,

for second- and fourth-order elliptic problems, it suffices to ensure that the components

corresponding to the null space of the weak form of the problem are well approximated

by the prolongation (the near null space components are then well approximated due

to the localization and smoothing procedures involved in constructing the smoothed

aggregation transfer operators). Further, as the set of prototypes constructed during

the setup cycle is expected to eventually encompass the entire troublesome subspace,

satisfaction of (5.20) for all prototypes would imply the satisfaction of (3.8) for any

u ∈ IRN(1)
. This, in turn, guarantees convergence.

Three practical matters must be addressed when coarsening in the adaptive stage:

Locally small components: Each new prototype is the result of applying the V -cycle

based on the current prototype set, B1, so it must be approximately A(1)-orthogonal to

all previously computed prototypes. This is, however, only a global property that the

evolving prototypes tend to exhibit. It may be that a prototype is so small on some

aggregate, relative to its energy, that its representation there can be ignored. More

precisely, we could encounter situations in which

‖x(k)‖2A ≤ CaδA(x(k)) (5.23)

for a particular aggregate, A, meaning that Equation 5.21 is automatically satisfied, no

matter what choice we make for P k
k+1. We can, therefore, test for this condition for
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each prototype on every aggregate. When the test is positive, we can simply remove

the prototype’s segment from consideration in construction of that aggregate’s transfer

operator. This elimination can help control coarse-level complexity since small prototype

segments are prevented from generating additional columns of P k
k+1 and Ik

k+1. (This

test should be used in the initialization as well as the general setup stage. We did not

include it there for simplicity and because there is generally less worry about complexity

in the initial stage.)

Construction of P k
k+1 to minimize the number of columns: Although each pro-

totype’s segments may be too large to ignore, it may be that a nontrivial linear com-

bination of them is small. Thus, we also need to use (5.23) to identify a minimal local

basis for constructing the transfer operators so that the global approximation property

is maintained. To this end, let a subscript A denote the restriction of the correspond-

ing vector or matrix to the degrees of freedom in A, and let rA denote the number of

columns of Bk
A. One possibility for constructing the updated transfer operator, P k

k+1,

aggregate by aggregate, would then proceed as follows:

• Rescale each column, y, of Bk globally: y← y√
〈A(k)y,y〉

.

• Reorder the newly scaled columns of Bk
A so that their Euclidean norms over

aggregate A are nonincreasing: ‖y1‖A ≥ ‖y2‖A ≥ . . . ≥ ‖yrA‖A.

• Set j = 1.

• While j ≤ rA:

∗ Set γA = CaδA(yj)

〈A(k)yj ,yj〉
.

∗ If ‖yj‖2A ≤ γA, then stop. Otherwise, add yj

‖yj‖A as a new column of P k
k+1,

make all remaining columns in Bk
A orthogonal to yj , and reorder them so

that their Euclidean norms over A are nonincreasing.

∗ j ← j + 1.
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A disadvantage of this process is that P k
k+1 (hence, also Ik

k+1) must, in principle,

be constructed from scratch in each cycle of the adaptive setup. We discuss other

practical issues associated with this approach in the next section.

Reusing previously constructed components: To exploit the work done in the

earlier steps of the setup as much as possible, we consider an alternate procedure that

reuses parts of P k
k+1 that have already been computed. Thus, in each step of the setup,

we only consider adding a single new column to P k
k+1. This has the advantages that less

work is required and that the storage used to hold the global prototypes can be reused

as soon as they have been incorporated into P k
k+1.

In this approach, to minimize the complexity of the transfer operators, we seek to

ignore locally those components of prototype x(k) that appear to be well approximated

by the current transfer operators. This includes the case when x(k) is locally small

in the sense of (5.23). To decide whether to ignore x(k) locally in the construction of

new tentative prolongator, P k
k+1, we test how well it is approximated by the current

tentative prolongator, P̃ k
k+1. The following provides a test of how well the range of P̃ k

k+1

approximates x(k) over aggregate A:

‖x(k) − P̃ k
k+1(P̃

k
k+1)

Tx(k)‖2A ≤ CaδA(x(k)). (5.24)

Since (P̃ k
k+1)

T P̃ k
k+1 = I, then P̃ k

k+1(P̃
k
k+1)

T is the `2-projection onto the range of P̃ k
k+1;

thus, (5.24) is just the approximation property in (5.21), using the tentative prolongator

in place of the smoothed one.

If Equation 5.24 is satisfied, then x(k) is assumed to be well approximated by the

current transfer operator and is simply ignored in the construction of the new transfer

operator on aggregate A. (Practical implications of this local elimination from the

coarsening process are considered in Section 5.4.2.) If the inequality is not satisfied,

then we keep the computed vector y = x(k)− P̃ k
k+1(P̃

k
k+1)

Tx(k), that, by construction, is

orthogonal to all the vectors already represented in the current P̃ k
k+1. We then normalize
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via y← y/‖y‖A so that the new P k
k+1 has orthonormal columns: (P k

k+1)
TP k

k+1 = I.

Before we introduce Algorithm 5 below, we stress that the description should be

viewed as a general outline of the adaptive multigrid setup. We intentionally ignore sev-

eral practical issues that must be addressed before this algorithm can be implemented.

For instance, we do not include details on how the new Bk and Ik
k+1 are efficiently con-

structed in the evolving method. Also, when using a coarse-level V -cycle constructed

by previous applications of the setup stage, we must account for the possibility that the

number of vectors approximated on coarse levels in previous cycles is smaller than the

number of vectors approximated on the fine levels in the current cycle. These issues

are discussed in Section 5.4.2, where we take advantage of the smoothed aggregation

framework to turn the prototypical Algorithm 5 into a practical implementation.

Assume we are given a bound, R ∈ IN, on the number of degrees of freedom per

node on coarse levels, convergence factor tolerance, ε ∈ (0, 1), and aggregate quantities,

δA(x), such that
∑

A δA(x) = 〈A(k)x,x〉
ρ(A(k))

.

Algorithm 5 (One cycle of the general setup stage).

1. If the maximum number of degrees of freedom per node on level 2 equals R, stop

(the allowed number of coarse-grid degrees of freedom has been reached).

2. Create a copy of the current B1 for later use: B̂1 ← B1.

3. Select a random x(1) ∈ IRN(1)
, create a copy x̂(1) ← x(1), and apply ν iterations of

the current finest-level V -cycle:

x(1) ← MGν
1(x

(1),0).

4. If
(
〈A(1)x(1),x(1)〉
〈A(1)x̂(1),x̂(1)〉

)1/ν
≤ ε, then stop (A(1)x = b(1) can be solved fast enough by the

current method).

5. Update B1 by incorporating the computed x(1) in its range:

B1 ← [B1,x(1)].
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6. For k = 1, . . . , L− 2:

(a) Create a copy of the current Bk+1 for later use: B̂k+1 ← Bk+1,

(b) Define new coarse-level matrix Bk+1 and transfer operators P k
k+1, I

k
k+1 us-

ing (3.6) and (3.5). In creating P k
k+1, some local components in Bk may

be eliminated as suggested above.

(c) Construct coarse operator A(k+1) = (Ik
k+1)

TA(k)Ik
k+1.

(d) Set the coarse-level approximation, x(k+1), to be the last column of Bk+1.

(e) Make a copy: x̂(k+1) ← x(k+1).

(f) Apply ν iterations of the current level k + 1 V -cycle:

x(k+1) ←MGν
k+1(x

(k+1),0).

(g) If
(
〈A(k+1)x(k+1),x(k+1)〉
〈A(k+1)x̂(k+1),x̂(k+1)〉

)1/ν
≤ ε, then skip Steps (d) through (h) in further

passes through Step 6.

(h) Update Bk+1 by ensuring that the newly computed x(k+1) is in its range:

Bk+1 ← [B̂k+1,x(k+1)].

7. Update the finest-level prototype:

x(1) ← I1
2I

2
3 . . . I

L−2
L−1x

(L−1). (5.25)

8. Update B1 by adding the newly computed x(1) to the range of B̂1:

B1 ← [B̂1,x(1)].

9. Create a new V -cycle, MG, based on B1 using the standard smoothed aggregation

setup procedure.
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This algorithm, illustrated in Figure 5.6, starts from a V -cycle on input and

produces an improved V -cycle as output. It stops iterating when either the convergence

factor for the fine-level iteration in Step 3 is acceptable (as measured in Step 4) or when

the maximum number of iterations is reached. Note that, as with the initial stage, this

general stage does not involve level L processing because the coarsest level is assumed

to be treated by a direct solver. Also as in the initial stage, once a level is reached

where the problem can be solved well by the current method, any further coarsening is

constructed as in the standard SA.

5.4.2 Implementation Issues

Several issues must be addressed to make Algorithm 5 practical. We take advan-

tage of certain features of the smoothed aggregation concept to carry out the method

outlined above, as well as to control the amount of work required to keep the evolving

multigrid hierarchy up to date.

As suggested above, a prototype may occasionally be eliminated locally over an

aggregate. This results in varying numbers of degrees of freedom per node on the coarse

levels. (Recall that a coarse-level node is defined as a set of degrees of freedom, with

each DOF representing the restriction of a single prototype to a fine-level aggregate.) To

simplify notation, we assume for the time being that the number of degrees of freedom

per node is the same for all nodes on a given level (i.e., no prototypes are locally

eliminated). It is important, however, to keep in mind that we are interested in the

more general case. A generalization to varying numbers of degrees of freedom per node

could be obtained easily at the cost of a much more cumbersome notation. We briefly

remark on the more general cases below.

A practical implementation of the method requires strict attention to many details

affecting accuracy and cost. These details are discussed here individually, starting with

complexities introduced in trying to eliminate work in the setup phase.
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2 = B̃1, x(2) ←Last column of B2

Update x(1)

x(1) ← I1
2I

2
3 · · · I

L−2
L−1x

(L−1)

Set B1 ← [B1,x(1)]

Run SA setup ⇒ New V-cycle

V-cycle on A(1)x(1) = 0, B̃1 ← [B1,x(1)]

V-cycle on A(2)x(2) = 0, B̃2 ← [B2,x(2)]

Given B1, select x(1)

P 2
3B

3 = B̃2

x(3) ←Last column of B3

Figure 5.6: One Step of General Setup Stage, Algorithm 5.
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Construction of temporary “bridging” transfer operators: One issue we must

consider is the interfacing between the emerging V -cycle on finer levels and the previous

V -cycle on coarser levels. Each setup cycle starts by selecting an initial approximation

for a new prototype on the finest level (cf. Figure 5.6). This approximation is then

improved by applying the previously constructed V -cycle to it. The resulting prototype

is used to enrich B1, necessitating an update of P 1
2 , I

1
2 , and A(2) from (3.6) and (3.4),

and introducing an additional degree of freedom for the nodes on level 2. Since we now

want to run the current solver on level 2 to obtain an improved prototype on that level,

we need to temporarily modify P 2
3 and I2

3 because these transfer operators have not yet

been updated to reflect the added degrees of freedom on level 2. Once this modification

has been made, a V -cycle on level 2 can be run to compute the new prototype there. This

prototype is then incorporated into B2 and new P 2
3 and I2

3 are constructed, overwriting

the temporary versions, and the new A(3) can be computed using (3.4). To perform

the V -cycle on level 3, we then must temporarily modify operators P 3
4 and I3

4 for the

same reason we had to update P 2
3 and I2

3 above. Analogous temporary modifications

to the transfer operators are necessary on all coarser levels, as the setup cycle traverses

sequentially through them.

Thus, on level k of a single cycle of the setup process, all transfer operators

defining the V -cycle can be used without change, except for P k
k+1 and, consequently, Ik

k+1

defined through (3.5). We can construct the temporary operator, P k
k+1, by modifying

(3.6) as

P k
k+1B

k+1 = B̂k,

where B̂k is formed by removing the last column from Bk, which consists of the r + 1

fine-level prototype vectors, including the newly added one (so that the first r prototypes

are the same as in the previous cycle).

Since the tentative prolongator, P k
k+1, produced in this way is based only on fitting



208

the first r vectors in Bk, the coarse-level matrix A(k+1) resulting from the previous cycle

of the αSA setup can be used on the next level. Thus, all the coarse operators for levels

coarser than k can be used without change. This has the advantage of reducing the

amount of work to keep the V -cycle up to date on coarser, yet-to-be-traversed levels.

Eliminating prototypes locally: When we eliminate a prototype locally over an

aggregate as suggested above, the construction of the bridging operator can be easily

modified so that the multigrid hierarchy constructed in the previous setup cycle can be

used to apply a level k V -cycle in the current one. Performing the elimination so that the

previously selected prototypes are retained and only the newly computed prototype may

be locally eliminated, the V -cycle constructed in the previous setup cycle remains valid

on coarser grids. The only difference now is that aggregates may have a variable number

of associated prototypes, and the construction of the temporary transfer operator, P k
k+1,

must account for this when removing the column of Bk to construct B̂k.

The situation is slightly more complicated when eliminating prototypes by com-

plete orthogonalization over an aggregate. First, even if none of the old prototypes

are eliminated, the elimination may result in a permutation of the prototypes over an

aggregate, hence a permutation of the coarse degrees of freedom corresponding to the

associated node. To match the fine-level V -cycle with the existing coarser levels, an

appropriate permutation of the coarse degrees of freedom must then be done when

performing the intergrid transfer in the application of the resulting V -cycle.

However, if some of the previously selected prototypes are eliminated in favor of

the new prototype in the construction of the updated P k
k+1, the coarse V -cycle should

no longer be used without change. In such cases, we would have to generate all the

coarse levels below level k before running the level k+1 V -cycle, significantly increasing

the cost of the setup phase.

Selection of the local quantities δA(x): Our algorithm relies on local aggregate

quantities, δA(x), to decide whether to eliminate prototype x in aggregate A, and
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to guarantee that the computed prototypes satisfy the global approximation property

(5.20). This leads us to the choice

δA(x) =
(

card(A)
N (k)

)
〈A(k)x,x〉
ρ(A(k))

, (5.26)

where card(A) denotes the number of nodes in aggregate A on level k, and N (k) is the

total number of nodes on that level. Note that
∑

A δA(x) = 〈A(k)x,x〉
ρ(A(k))

for any x, so this

can be used in the local estimates in Equation 5.21 to guarantee Inequality 5.20.

Addressing these concerns, we may restate the αSA setup procedure (Algorithm

5), given the bound, R, and tolerance, ε, as

Algorithm 6 (One cycle of αSA).

1. If the maximum number of degrees of freedom per node on level 2 equals R, stop

(the allowed number of coarse grid degrees of freedom has been reached).

2. Create a copy of the current B1 for later use: B̂1 ← B1.

3. Select a random x(1) ∈ IRN(1)
, create a copy x̂(1) ← x(1), and apply ν iterations of

the current V -cycle:

x(1) ← MGν
1(x

(1),0).

4. If
(
〈A(1)x(1),x(1)〉
〈A(1)x̂(1),x̂(1)〉

)1/ν
≤ ε, then stop (A(1)x = b(1) can be solved fast enough by the

current method).

5. Update B1 by extending its range with the new column {x(1)}:

B1 ← [B1,x(1)].

6. For k = 1, . . . , L− 2:

(a) Define a new coarse-level matrix, Bk+1, and transfer operator, P k
k+1, based

on (3.6), using Bk and decomposition {Ak
i }N

(k+1)

i=1 . In creating P k
k+1, some

local components in Bk may be locally eliminated.
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(b) Construct the prolongator: Ik
k+1 = SkP

k
k+1.

(c) Construct the coarse operator: A(k+1) = (Ik
k+1)

TA(k)Ik
k+1.

(d) Reorder the columns of Bk+1 so that its last is x(k+1) and let B̂k+1 consist

of all other columns of Bk+1.

(e) Create a “bridge” transfer operator P k+1
k+2 to the coarser level with the old

Bk+1 by fitting all the vectors in Bk+1 except the last one.

(f) Set the new “bridging” prolongator: Ik+1
k+2 = Sk+1P

k+1
k+2 .

(g) Make a copy: x̂(k+1) ← x(k+1).

(h) Apply ν iterations: x(k+1) ← MGν
k+1(x

(k+1),0).

(i) If
(
〈A(k+1)x(k+1),x(k+1)〉
〈A(k+1)x̂(k+1),x̂(k+1)〉

)1/ν
≤ ε, then skip (d) through (j) in further passes

through Step 6.

(j) Update the coarse representation of the prototypes Bk+1:

Bk+1 ← [B̂k+1,x(k+1)].

7. Update the latest fine-level prototype:

x(1) ← I1
2I

2
3 . . . I

L−2
L−1x

(L−1). (5.27)

8. Update B1 by extending the old copy with the newly computed x(1):

B1 ← [B̂1,x(1)].

9. Create the V -cycle based on the current B1 using the standard smoothed aggregation

setup procedure.

Note that if we eliminate prototypes by a complete local orthogonalization step,

we should modify the algorithm to construct a completely new multigrid hierarchy on

levels k + 1 through L before applying the level k + 1 V -cycle in Step 6(h).
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In general, we seek to eliminate all unneeded computation from the setup algo-

rithm. Two important considerations are:

Improving the quality of existing prototypes: Many practical situations, includ-

ing fourth-order equations and systems of fluid and solid mechanics, require a set of

multiple prototypes to achieve optimal convergence. In the interest of keeping operator

complexity as small as possible, it is imperative that the number of prototypes used to

produce the final method be controlled. Therefore, ways of improving the quality of

each prototype are of interest, to curb the demand for the growth in their number.

When the current V -cycle hierarchy is based on approximating at least two pro-

totypes (in other words, the coarse problems feature at least two degrees of freedom per

node), this can be easily accomplished as follows.

Assume that the currently available prototype vectors are x1, . . . ,xr. Consider

one such prototype, say, xj , that we want to improve. We want to run a modified

but current V -cycle on the homogeneous problem, A(1)x = 0, using xj as the initial

guess. The modification consists of disabling, in the coarse-grid correction process, the

columns of the prolongator corresponding to the given prototype. That is, instead of

x(k) ← x(k) + Ik
k+1x

(k+1) in Step 4 of Algorithm 1, we use

x(k) ← x(k) + Ik
k+1x̂

(k+1),

where x̂(k+1) is obtained from x(k+1) by setting to zero every entry corresponding to

fine-level prototype xj . Thus, the columns of Ik
k+1 corresponding to xj are not used in

coarse-grid correction.

In this way, we come up with an improved prototype vector without restarting

the entire setup iteration from scratch and without adding a new prototype. Since we

focus on one component at a time and keep all other components intact, this modified

V -cycle is expected to converge rapidly.

Saving work: The reuse of current coarse-level components reduces the amount of work
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required to keep the V -cycle up to date. Additional work can be saved by performing

the decomposition of nodes into disjoint aggregates only during the setup of the initial

V -cycle and then reusing this decomposition in later cycles. Yet further savings are

possible in coarsening, assuming the prototypes are allowed to be locally eliminated.

For instance, we can exploit the second-level matrix structure:

A(2) =

 Ã(2) X

Y Z

 ,
where Ã(2) is the second-level matrix from the previous cycle. Thus, A(2) need not be

recomputed and can be obtained by a rank-one update of each block entry in Ã(2). In

a similar fashion, the new operators, P k
k+1 and Bk+1, do not have to be recomputed

in each new setup cycle by the local QR decomposition noted in Section 3.4. Instead,

it is possible to update each nodal entry in P̃ k
k+1 and B̂k+1 by a rank-one update on

all coarse levels, where P̃ k
k+1 and B̂k+1 are the operators created by the previous setup

cycle.

5.4.3 Numerical Experiments

To demonstrate the effectiveness of the adaptive setup process, we present results

obtained by applying the method to several model problems. In these tests, the solver

was stopped when the residual was reduced by a relative factor of 1012 (unless otherwise

specified). The value Ca = 10−3 was used in (5.24) and the relaxation scheme for the

multigrid solver was symmetric Gauss-Seidel. While a Krylov subspace process is used

often in practice, we present these results for the multigrid V -cycle with no acceleration

scheme for clarity, unless explicitly specified otherwise.

All the experiments have been run on a notebook computer with a 1.6 GHz

mobile Pentium 4 processor and 512 MB of RAM. For each experiment, we report

the following data. The column denoted by “Iter” contains the number of iterations

required to reduce the residual by the prescribed factor. The “Factor” column reports
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the convergence factor measured as the geometric average of the residual reduction in

the last 10 iterations. In the “CPU” column, we report the total CPU time in seconds

required to complete both the setup and iteration phases of the solver. In the column

“RelCPU”, we report the relative times to solution, with one unit defined as the time

required to solve the problem given the correct near null space components. In the

“OpComp” column, we report the operator complexity associated with the V -cycle for

every run (defining operator complexity in the usual sense [73], as the ratio of the number

of entries stored in all matrices on all levels divided by the number of entries stored in

the finest-level matrix.) The “Prototypes” column indicates the number of near-kernel

vectors computed in the setup iteration (a value of “provided” means that complete

kernel information was supplied to the solver, assuming standard discretization and

ignoring scaling). Parameter µmax denotes the maximal number of tentative V -cycles

allowed in computing each prototype.

In all cases, we consider both the problem as discretized and when that discretiza-

tion is modified by either scaling or rotating each nodal entry in the system by a random

angle. These modifications pose serious difficulties for classical algebraic iterative solvers

that are not aware of such modifications, as we assume here. For comparison, we include

the results for the unmodified problem, with a supplied set of kernel components. Not

surprisingly, the standard algorithm (without benefit of the adaptive process) performs

poorly for the scaled or rotated systems when the details of this modification are kept

from the solver. In all of the results that follow, whenever the solver is provided infor-

mation about the problem, that information is the appropriate near kernel components

for the unmodified discretization.

We start by considering a diagonally scaled problem:

A← D−1/2AD−1/2,

where the original matrix, A, is the matrix obtained by standard Q1 finite element
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σ Prototypes µmax Iter Factor CPU RelCPU OpComp

Poisson problem with 68,921 degrees of freedom
0 provided N/A 9 0.100 3.65 1.00 1.038
0 1 5 9 0.100 4.09 1.12 1.038
6 provided N/A 150 0.871 43.76 11.99 1.038
6 1 5 10 0.126 4.27 1.17 1.038

Poisson problem with 1,030,301 degrees of freedom
0 provided N/A 9 0.093 58.43 1.00 1.039
0 1 5 9 0.099 80.05 1.37 1.039
6 provided N/A 690 0.970 3,252.80 55.67 1.039
6 1 5 9 0.096 88.23 1.51 1.039

Table 5.13: 3D Poisson Problems, 68,921 and 1,030,301 Degrees of Freedom; Reducing
Residual by 108.

discretization of the 3D Poisson operator on a cube, and D is a diagonal matrix with

entries 10β, where β ∈ [−σ,+σ] is chosen randomly. Table 5.13 shows the results for

different values of parameter σ and different levels of refinement. Using the supplied

kernel yields good convergence factors for the unmodified problem, but the performance

is poor and deteriorates with increased problem size when used with σ 6= 0. In contrast,

the adaptive process, starting from a random approximation, recovers the convergence

properties associated with the standard Poisson problem (σ = 0), even for the scaled

case, with convergence that appears independent of the problem size.

The second problem comes from a matrix arising in 2D elasticity. Diagonal scaling

is again considered, with entries of D defined as 10β, for β ∈ [−σ,+σ] chosen randomly.

The original matrix is the discrete operator for the plane-strain elasticity formulation

over a square domain using bilinear finite elements on a uniform grid, with a Poisson

ratio of ν = 0.3 and Dirichlet boundary conditions specified only along the “West”

side of the domain. The results in Table 5.14 follow a pattern similar to those for the

Poisson problem. Note, however, that more than the usual three prototype vectors are

now needed to achieve convergence properties similar to those of the unscaled problem

when a correct set of three rigid-body modes is provided by the user. For the scaled
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problem, however, supplying the rigid-body modes computed based on the problem

geometry leads, as expected, to dismal performance of the standard solver.

The third set of experiments is based again on the 2D elasticity problem, but now

each nodal block is rotated by a random angle β ∈ [0, π]:

A← QTAQ,

where Q is a nodal block-diagonal matrix consisting of rotations with random angles.

The results in Table 5.15 show that αSA can recover good convergence factors for both

the unmodified and the modified systems. Without the adaptive procedure, our basic

algebraic solver could not solve the modified matrix problem in a reasonable amount of

time.

The fourth example demonstrates performance of the method when a higher num-

ber of prototypes is required. We consider a 3D elasticity problem with local rotations.

This is done to maintain locally orthogonal coordinates, but is otherwise a random

rotation of the three degrees of freedom at each node. The model problem we start

from is linearized elasticity discretized using trilinear finite elements over a uniform

grid. Dirichlet boundary conditions are specified on the “West” face of the cube and

the Poisson ratio is set to ν = 0.3. The results in Table 5.16 show that, even for the

modified system, the adaptive method can again recover good convergence factors. Fur-

thermore, our current method mimics the convergence of the smoothed aggregation for

the unmodified problem with the supplied set of rigid-body modes. In this set of exper-

iments, we can get close to the ideal iteration counts using just 6 prototypes. We see

that using one extra prototype can improve convergence properties and, in some cases,

actually lower the overall cost of the total time to solution. This is done at the price of a

small increase in operator complexity. For problems with multiple right sides, the more

expensive setup would be performed only once, and using the extra prototype may then

be preferred. Once again, however, we see that the additional cost of the setup stage



216

σ Prototypes µmax Iter Factor CPU RelCPU OpComp
2D elasticity problem, 80, 400 degrees of freedom

0 3 provided N/A 17 0.21 9.16 1.00 1.27
0 3 6 23 0.37 21.16 2.31 1.27
0 3 15 18 0.23 26.65 2.91 1.27
6 3 provided N/A 299 0.92 133.55 14.58 1.27
6 3 6 25 0.38 22.26 2.43 1.27
6 3 15 18 0.25 27.30 2.98 1.27

2D elasticity problem, 181, 202 degrees of freedom
0 3 provided N/A 23 0.35 22.85 1.00 1.28
0 3 15 267 0.937 272.14 11.91 1.27
0 4 15 26 0.422 75.18 3.29 1.50
0 4 20 26 0.439 86.60 3.79 1.50
0 5 15 20 0.314 88.20 3.86 1.78
6 3 provided N/A 5, 000∗ 0.996 4,559.95 199.56 1.28
6 4 15 23 0.367 74.95 3.28 1.50
6 4 20 19 0.302 76.78 3.36 1.50
6 5 10 14 0.173 69.46 3.04 1.78

Table 5.14: 2D Elasticity Problems with 80, 400 and 181, 202 Degrees of Freedom. It-
eration Counts Marked with an Asterisk Indicate that Residual Reduction by 1012 was
not Achieved Before the Maximum Number of Iterations was Reached.

Rotated Prototypes µmax Iter Factor CPU RelCPU OpComp
2D elasticity problem with 80, 400 degrees of freedom

NO 3 provided N/A 17 0.21 9.16 s 1.00 1.27
NO 3 15 18 0.23 26.66 2.91 1.27
YES 3 provided N/A 1,329 0.99 587.80 64.17 1.27
YES 3 15 19 0.27 27.84 3.04 1.27

2D elasticity problem with 181, 202 degrees of freedom
NO 3 provided N/A 23 0.35 22.85 s 1.00 1.28
NO 3 15 18 0.23 66.49 2.91 1.28
YES 3 provided N/A 5, 000∗ 0.999 3,968.36 173.67 1.28
YES 3 20 135 0.885 170.23 7.45 1.28
YES 4 15 27 0.488 77.46 3.39 1.50
YES 4 20 21 0.395 79.29 3.47 1.50
YES 5 6 18 0.34 60.78 2.66 1.78
YES 5 10 15 0.233 72.66 3.18 1.78

Table 5.15: 2D Elasticity Problems with 80, 400 and 181, 202 Degrees of Freedom. It-
eration Counts Marked with an Asterisk Indicate that Residual Reduction by 1012 was
not Achieved Before the Limit on the Number of Iterations was Reached.



217

should not be undertaken unless it is necessary. For the problem with 201,720 degrees

of freedom, the convergence factor for the unrotated problem with 6 given prototypes is

the same as that for the rotated problem with 7 computed prototypes and µmax = 10,

yet the total algorithm time is a factor of 6 larger. As the convergence factors are the

same, this increase can only be attributed to the additional setup costs.

The final example demonstrates performance of the adaptive method for an elas-

ticity problem featuring discontinuities in the Young modulus. Here we consider a 3D

elasticity problem in which the Poisson ratio is fixed at 0.32, while the Young modulus is

allowed to vary randomly between the elements. We consider two cases: a case of coeffi-

cients varying randomly with uniform distribution in the interval (1, 10σ), and the case

where the distribution is exponential, i.e., the Young modulus is computed as 10(σr),

where r is generated randomly with uniform distribution in (0, 1). Keeping with the

usual practice of employing Krylov method acceleration for problems with coefficient

discontinuities, in this experiment we use our adaptive method as a preconditioner in

the conjugate gradient method. The iteration was stopped once the initial residual was

reduced by 108. Table 5.17 compares the results obtained by using our adaptive scheme,

started from random initial guess, to the results obtained when the method based on

a priori knowledge of the rigid body modes is employed as a preconditioner. The table

indicates that using the adaptive procedure, without a priori knowledge of the problem

geometry, we can about recover the rates of the method based on the knowledge of the

rigid-body modes.

Note that the operator complexities in all of the test problems remain below 2.

Moreover, for the larger spatial dimension of 3D, these complexities improve somewhat,

due largely to the increased speed of aggregation coarsening. It is also worth mentioning

that the increasing size of the coarse-matrix block entries due to the increasing number

of prototypes does not significantly impact the time needed to perform one iteration of

the solver, apparently due to the more efficient memory access afforded by blocking.
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Rotated Prototypes µmax Iter Factor CPU RelCPU OpComp
3D elasticity problem with 114, 444 degrees of freedom

NO 6 provided N/A 16 0.20 29.97 1.00 1.159
NO 6 15 20 0.27 189.11 6.31 1.159
NO 7 15 17 0.21 215.78 7.20 1.217
YES 6 provided N/A 587 0.97 913.49 30.48 1.159
YES 6 15 16 0.22 184.32 6.15 1.159
YES 7 10 15 0.20 171.73 5.73 1.217
YES 7 15 15 0.20 210.99 7.04 1.217

3D elasticity problem with 201, 720 degrees of freedom
NO 6 provided N/A 16 0.20 50.33 1.00 1.153
NO 6 15 21 0.31 319.60 6.35 1.153
NO 7 10 17 0.216 297.95 5.92 1.209
NO 7 15 17 0.209 363.38 7.22 1.209
YES 6 provided N/A 739 0.97 1,924.62 38.24 1.153
YES 6 15 16 0.23 308.02 6.12 1.153
YES 7 10 15 0.20 301.98 6.00 1.209
YES 7 15 14 0.16 357.85 7.11 1.209

Table 5.16: 3D Elasticity Problems with 114, 444 and 201, 720 Degrees of Freedom
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σ Prototypes µmax Iter Factor CPU RelCPU OpComp
Elasticity problem with uniformly distributed coefficient jumps

2 6 provided N/A 8 0.073 24.22 1.00 1.15
2 6 10 13 0.221 219.34 9.05 1.15
2 7 10 11 0.187 266.29 10.99 1.21
3 6 provided N/A 8 0.077 24.23 1.00 1.15
3 6 10 13 0.215 218.57 9.02 1.15
3 7 10 11 0.186 265.70 10.96 1.21
4 6 provided N/A 8 0.077 24.56 1.00 1.15
4 6 10 12 0.208 219.26 8.93 1.15
4 7 10 11 0.165 264.38 10.76 1.21
Elasticity problem with exponentially distributed coefficient jumps
2 6 provided N/A 9 0.115 25.99 1.00 1.15
2 6 10 16 0.305 225.52 8.68 1.15
2 7 10 12 0.214 267.72 10.30 1.21
3 6 provided N/A 14 0.247 35.68 1.00 1.15
3 6 10 22 0.418 237.56 6.76 1.15
3 7 10 16 0.310 275.62 7.84 1.21
4 6 provided N/A 20 0.395 49.99 1.00 1.15
4 6 10 30 0.532 255.43 5.11 1.15
4 7 10 21 0.404 289.39 5.79 1.21
5 6 provided N/A 32 0.555 73.63 1.00 1.15
5 6 10 46 0.670 292.35 3.97 1.15
5 6 20 36 0.598 402.75 5.47 1.21
5 7 10 37 0.602 324.19 4.40 1.21
5 7 15 27 0.497 381.16 5.17 1.21

Table 5.17: 3D Elasticity Problem, 201,720 Degrees of Freedom, with Young Modulus
Featuring Random Jumps in (1, 10σ).



Chapter 6

Conclusions and Future Work

The focus of this thesis is on the efficient solution of the linear systems that

approximate certain PDEs, particularly those that come from diffusion or Darcy-law

flow models. The techniques developed here may be placed into two main categories,

upscaling and adaptive multigrid.

Upscaling techniques deal with computing an approximation to the solution of the

linear system with significantly less computational cost than solving the linear system

exactly, or even to the usual tolerances accepted of iterative methods. The techniques we

develop rely on a robust multigrid solver, typically BoxMG (although we also consider

the extension to AMG), to perform a coarsening of the fine-scale representation of

the linear system to a scale suitable for computation. Thus, we do as little work as

possible on the fine scale (and, in particular, solve no portion of the linear system on any

subdomain) to derive a coarse-scale model whose solution may be used to represent fine-

scale behavior of the PDE. We demonstrate notably better performance than competing

methods from the literature.

Adaptive multigrid methods are proposed to allow more efficient solution of the

fine-scale linear systems with fewer assumptions on their character and with less in-

formation supplied about their origin. With no knowledge of the problem except the

given matrix, our adaptive methods show performance characteristic of non-adaptive

multigrid methods applied to systems for which full knowledge of the near null space
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is available. The cost of this robustness is a more complicated setup phase, but the

resulting algorithms still demonstrate linear scaling and acceptable solution times.

6.1 Contributions of this Thesis

6.1.1 Upscaling

The permeability upscaling techniques presented in Chapter 4 build on the pre-

vious work of Moulton et al. [67] and Knapek [60]. We also introduce new techniques

and analysis into the field of coarse-scale modeling that show dramatic improvements

on the techniques of Durlofsky [39] and He et al. [52]. Furthermore, our multilevel up-

scaling method provides a new type of multiscale basis, competitive with the techniques

of multiscale finite elements [56, 57].

As classical homogenization theory rests on the assumption of periodic media,

the effective permeability calculations of Moulton et al. [67] and Knapek [60] also make

use of periodic boundary conditions. We extended this work to the case of Neumann

boundary conditions, because this is the important case of natural boundary conditions

for finite elements. This also allows the computation of effective permeability coeffi-

cients when the coarsened matrix has not yet reached the point of homogeneity. Our

Neumann boundary condition upscaling method yields similar accuracy to the periodic

boundary condition techniques, although we do not yet fully understand the implica-

tions of coarsening of the boundary conditions. We also extended the two-dimensional

theory to three dimensions, having done so fully in the periodic case, and nearly so in

the case of Neumann boundary conditions.

The regularization terms that appear in both two and three dimensions have

significant impact on both the recovery of effective material properties and the perfor-

mance of the multigrid solvers on which the upscaling is based. Without accounting for

these terms, coarse-scale coefficients may be recovered from the coarse-scale operators,
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but they do not reproduce the operator from which they were derived. By including

these higher-order terms in our analysis, we are able to recover physically meaning-

ful coarse-scale coefficients. The role of these regularizing terms is also important in

the performance of the multigrid solvers considered as, without them, isotropic fine-

grid problems may have coarse-grid operators that exhibit significant anisotropy, which

would lead to poor performance of the standard pointwise smoothers in resolving error

on these grids.

Our search of the existing literature on such upscaling of permeabilities led us to

a detailed analysis of the work of Durlofsky [39]. This analysis culminates in Theorem 2,

which states that the upscaled material properties computed using the methods in [39]

are simply finite element calculations of those predicted by the classical homogenization

theory, as in [5, 58]. In particular, this implies that the results in [39] are equivalent to

those of Bourgat [7], who implemented a finite element version of this theory.

We also introduced a multiscale technique for computing accurate approximations

to the fine-scale solutions of these equations, requiring significantly less computation

than even a multigrid V-cycle based approach would. The multiscale basis functions

implicit in a variational coarsening multigrid scheme create coarse-grid operators that

reflect significant fine-scale information. By solving these coarse-scale problems and

representing the solutions in that basis, we determine quite accurate approximations of

the fine-scale solutions at a small fraction of the computational cost. These approxima-

tions accurately reflect both macroscopic properties of the flow, such as global fluxes,

while also capturing the finer-scale structures necessary for useful modeling of the re-

lated nonlinear problems. In both cases, our approach is much more accurate than that

in [39, 52], both in fine-scale structure, as shown in the figures of Section 4.4, and in

quantitative measures, such as integrated outflow fluxes.
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6.1.2 Adaptive Multigrid Methods

Algebraic multigrid methods [23, 73] and smoothed aggregation multigrid [64, 82]

are known to be efficient multigrid solvers based solely on the algebraic system to be

solved. AMG has been shown to perform well for systems whose low energy modes are

locally constant, regardless of geometry or problem size [31]. When provided with a full

basis for the near null space of the matrix, smoothed aggregation can be shown to also

exhibit optimal convergence behavior [79].

The principles of an adaptive multigrid method are centered on the idea of using a

tentative solver to expose errors that must be accounted for in the multigrid coarsening

process. Of primary importance in this task is the concept of algebraic smoothness,

which is easily exposed through relaxation. Relaxation on the homogeneous problem,

Ax = 0, produces prototypical errors which may be used to calibrate the interpolation

choice in the multigrid scheme. That an interpolation based on only a few such compo-

nents can be effective is the cornerstone of all multigrid methods. Interpolation is chosen

to fit these prototypes locally, and thus all components with similar local character may

be effectively represented by their coarse-grid counterparts. The principle of a self-

testing method allows efficient adaptation: if performance on the homogeneous problem

is sufficient, we know we have an acceptable solver; if it is not, we know the component

exposed by application of the current solver is one to which more attention should be

paid. Overriding all of these concerns is a desire for optimality of both the adaptive

process and the resulting multigrid method. Thus, choices in the adaptation are always

made so that they provide an optimal change with minimal wasted computation.

The adaptive algebraic multigrid scheme follows these adaptive principles in the

framework of classical AMG. The definition of interpolation for αAMG is based on a

similar derivation as that of classical AMG, but with the modified assumption that the

global character of algebraically smooth error is given as a vector rather than assumed
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to be locally constant. The interpolation can be shown to reduce to that of classical

AMG if the prototype vector is constant, and can also be extended to a simple case

for systems of PDEs. We show that the resulting multigrid algorithm is then invariant

to diagonal scalings of the matrix, a problem that causes significant difficulties for

the classical AMG method. Practical considerations lead us to consider a strategy for

taking a small number of adaptive steps and the limiting case of allowing only a single

adaptation with a hand-tuned number of relaxation sweeps in the setup shows good

performance. Performance suffers somewhat for the adaptive approach compared to the

calibrated approach, largely because we still base interpolation on a single prototype

vector, which may not be the slowest-to-diminish component under an existing, but

non-optimal, V-cycle.

Theoretical understanding of αAMG is considered in a two-level, reduction-based

setting. We establish that the adaptive step reduces the Rayleigh Quotient of the

approximation to the algebraically smoothest component, although without a uniform

bound. We show better bounds in the special case of a 2-degree-of-freedom coarse grid,

which motivates a discussion of the role of inverse iteration in this setting. Under further

simplifying assumptions, the mapping of the error in the approximation from one step

to the next may be shown to be a contraction.

The application of the adaptive framework to smoothed aggregation is, in some

ways, more natural than to that of AMG. In particular, the introduction of additional

prototypes into interpolation is natural and can be done without significant change

to the basic method. However, important issues arise when considering the adaptive

development of the prototype set, particularly to distinguish local redundancy in the case

of global distinction among the prototypes, and to ensure the cost is kept to practical

levels. Good numerical results are shown for the three-dimensional Laplacian, as well as

a variety of linear elasticity problems, including those that have been diagonally scaled

or had rotations of degrees of freedom introduced.
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6.2 Future Work

6.2.1 Upscaling

The results presented in Chapter 4 show efficient and accurate performance of

the multilevel upscaling techniques based on BoxMG for the problem of saturated flow

in a porous media. Accurate comparison with the many other techniques currently in

use or under development for this problem is, in itself, a significant task. Extending

the results to more complicated domains and more complicated flows is also necessary

for the technique to be useful in real-world applications, such as reservoir modeling.

Additionally, the techniques developed for upscaling this class of PDEs may also be

examined for extension to other, more complex, families of problems.

The Neumann boundary condition permeability upscaling technique offers similar

performance to existing techniques based on periodic boundary conditions in many

situations. There appears, however, to be an inconsistency in the coarsening of these

natural boundary conditions that affects the results of the upscaling in certain cases.

Tracking down this inconsistency will provide insight into both the upscaling results

and the coarsening used in BoxMG. We would like to discover both why the results

appear as they do, and what changes to the coarsening used might provide effective

permeabilities that agree with existing homogenization theory in cases where it applies.

As discussed at the end of Section 4.4.4, a near-term goal is to compare our

results with those obtained using the multiscale finite element method (MSFEM) of

Hou et al. [56, 57]. We believe that there is a significant advantage in accuracy in

using a multiscale basis for the coarse-scale model over techniques that use an upscaled

permeability and a coarse-scale basis. Thus, we expect a similar level of accuracy as

the MSFEM exhibits. A negative feature of the MSFEM method, however, is the need

to create the multiscale basis functions from numerically solving fine-scale subdomain

problems. Our analysis will thus center on the idea of accuracy versus the computational
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cost of both approaches.

Allowing for upscaling of more complex geometries is an important goal for this

technique, due to the irregular structure of real-world domains, such as reservoirs, and

components of the model, such as wells. These features can be approximated by the

geometrically-regular grids of BoxMG, but are much more naturally considered in the

algebraic multigrid framework. We are currently implementing the multilevel upscaling

technique in the AMG setting, and believe that this will allow us to tackle much more

complex domains than we can currently consider. A concern of using the AMG code,

however, is the purely algebraic (and, thus, likely non-physical) nature of the interpo-

lation used there. The degree to which this impedes the accuracy of the coarse-scale

model must be evaluated. In other words, while the coarse-scale matrices of an AMG

hierarchy still represent a multiscale discretization of the original PDE, it is unknown

as to whether the basis functions used in this approach reflect enough of the fine-scale

structure to provide accurate coarse-scale approximations. Another interesting avenue

of investigation is the upscaling properties of the adaptive multigrid methods considered

in Chapter 5

We have tested out methods using realistic 2D permeability fields, generated using

standard geostatistical techniques. Application of our method to real-world applications

also requires an extension of these ideas to three dimensions. In principle, this is easily

done, and is the subject of current research in the case of computing upscaled perme-

abilities. The principles of multilevel upscaling extend obviously to three dimensions,

and, in the structured case, a 3D BoxMG code is available. We intend to develop these

ideas in three dimensions, and, having done so, will seek to apply them to appropriate

models of permeability.

The saturated single-phase flows considered in this thesis are the simplest in a

series of mathematical models of flow in porous media. An important generalization is
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to the case of unsaturated single-phase flow, where the saturation, S(x), satisfies

−∇ ·D(S,x)∇S(x) = Q(x).

Here, the nonlinearity appears because the diffusivity, D(S,x), depends upon the per-

meability, K(S,x), which depends on the level of saturation. Effective iteration on this

nonlinearity, using, for example, Newton’s method, or in the case of a time-dependent

flow, requires an accurate representation of S(x) in order to predict the coefficient of

the PDE at the next time step. Our results indicate that we can achieve such an ap-

proximation using the multilevel upscaling technique, and thus derive better fine-scale

and coarse-scale models for the next step in the iteration.

Theoretical approaches to upscaling, e.g. the method of moments [68], are, on the

surface, very different from many numerical approaches, including the one considered

here. The explicit closure required when considering a stochastic model of permeability

also results in elliptic equations of similar form [68]. As we consider upscaling only a

single realization of a permeability field, we have not introduced an explicit closure.

Whether the implicit closure can be formulated and compared to the explicit closure

used in analytic calculations of effective permeabilities is an open question that we are

investigating.

Homogenization methods exist for problems other than the −∇ · K∇ operator

considered here, and upscaling techniques may prove useful for many operators where

material properties vary on fine scales. The techniques developed in Chapter 4 are

effective, in part, because of the depth of multigrid techniques for solving diffusion-

type problems. Other PDE settings, such as elasticity or Maxwell’s equations, do not

have as rich of a class of effective multigrid solvers. As methods for these problems are

developed, the techniques used here can be considered, within the confines of variational

multigrid methods that are a simple combination of relaxation and coarse-grid correction

(multiple coarse grids, for example, would not easily allow such an approach).
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6.2.2 Adaptive Multigrid Methods

While we have demonstrated that adaptive multigrid methods, such as the αAMG

and αSA methods described in Chapter 5, can provide significant improvements over

the classical AMG and SA methods, there is still much to be done in improving the

robustness of the multigrid framework. While it is unrealistic to expect such methods

to solve all matrix equations, we believe it is possible to further extend the class of

problems for which efficient, adaptive multigrid solution is possible.

The αAMG method of Section 5.2 removes the assumption on the local charac-

ter of algebraically smooth error of classical AMG, but does not escape the implicit

assumption of a one-dimensional near null space that is typical of discretizations of

scalar, second-order PDEs. Expanding the definition of interpolation to allow fitting of

multiple prototypical smooth-error vectors is the next step in improving the generality

of this method.

As long as the size of the coarse-grid interpolatory set, |Ci|, is greater than the

number of prototypes to be fit, we have the freedom to fit all prototypes as accurately

as we wish (in fact, they can be fit exactly, although the eigenvector approximation

criterion should be the guiding principle in this fit). We view the choice of this fit as a

choice on collapsing the fine-fine grid connections. While we choose a one-dimensional

modification of the coefficients in Aff in the single prototype case (dividing them all

by a constant factor for each i), multiple prototypes would require a multi-dimensional

modification.

There are two approaches to the computational task of defining interpolation

based on multiple prototypes. A straightforward approach would require recomputing

the interpolation operator every time new information (in the form of a new prototype)

becomes available. We can also consider an approach where interpolation is updated

when a new prototype becomes available, fitting exactly the character of the prototype
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that is missed by the current interpolation by adding an update to the existing operator.

This approach seems simpler computationally, but it may be no easier to ensure that

the update does not pollute the interpolation of the previous prototypes than it is to

simply recompute the complete interpolation operator.

Once we are able to develop effective interpolation operators based on multiple

prototypes, we will need to further explore the setup phase of αAMG to determine how

to most effectively generate the needed prototypes. Our experience with the αSA algo-

rithm should prove valuable here. The recursive form of the setup procedure, where the

role of relaxation in the first cycle is always replaced by the current solver in subsequent

cycles, ensures that error exposed in the setup phase is always algebraically smooth and

also not effectively reduced by the current coarse-grid correction. Thus, it should be a

very good prototype upon which to augment the current interpolation scheme.

One interesting idea is to explore the interaction of multigrid and the precondi-

tioned conjugate gradient algorithm (PCG). Through the relationship with the Lanczos

algorithm, we can find the smoothest mode of the preconditioned matrix, M−1A, where

M−1 represents the action of a multigrid V-cycle in very little additional work than

the PCG iteration itself. Thus, given a tentative multigrid cycle, we could use it as

a solver for Ax = b in PCG and, if the iteration is slow to converge, generate the

necessary information to improve the solver at the same time as we iterate to find the

solution. While this combination proved to be ineffective for scalar second-order PDEs,

it may be effective for systems where multiple prototypes, all rich in the algebraically

smooth components, are used together to represent the near null space of A. A similar

idea, using block PCG to iterate on Ax = 0 simultaneously with Ax = b, was recently

explored in [30].

Chapter 5 deals primarily with the choices of interpolation in an adaptive multi-

grid setting. Of no less importance is the appropriate choice of a coarse grid. Compatible

relaxation (CR) [61] may be a natural complement to the schemes considered here.
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Just as we start with a sample of algebraically smooth error to determine inter-

polation, CR uses the same sort of prototypical error to choose the coarse grid. This

arises naturally because of the need for complementarity in a multigrid process. Given a

sample of the error that we are primarily interested in correcting, points may be tested

as coarse-grid nodes by measuring the suitability of the correction to this component

that they induce.

Exactly how to measure this suitability is a question of much current debate.

Theory of Brandt [18] suggests that the suitability may be indicated simply by the

relative size of the prototypical error when the matrix has been properly scaled [61]. Such

scaling may, however, be counter-intuitive in the case of discretizations of discontinuous-

coefficient diffusion problems, where all points are equally useful as coarse-grid nodes

but the scaling induces a predisposition to choosing nodes where the fine-grid diffusion

coefficient is small. The theory of Falgout and Vassilevski [43] can be used to suggest

that such a scaling of the matrix is unnecessary if the smoother is taken into account

in measuring the relative size of the prototype’s nodal values.

Knowing that interpolation of the form A−1
ffAfc leads to an exact coarse-grid

correction, although dense Galerkin coarse-grid operators, choosing interpolation may

be viewed as trying to approximate A−1
ff with a local operator. The ith column of

A−1
ff may be approximated by relaxation on the problem Affxi = êi, where êi is the

ith canonical unit basis vector. Thus, the suitability of a particular node, i, to be a

coarse-grid point may be measured by the performance of a local relaxation on the

vector that is chosen to be 1 at point i and zero elsewhere. Such an approach also has

the advantage that it exposes strong connections between i and its neighbors with the

presence of large values in the relaxed vector. A similar local-relaxation-based approach

considers the ability of a coarse-grid node to correct the particular prototypical error

by assessing the reduction in the local size of the prototype when node i is fixed to 0

(as if it is exactly corrected from the coarse grid) and relaxation on the homogeneous
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problem is performed.

Once the quality of the fine-grid points as coarse-grid nodes has been assessed, a

subset must be selected to form the actual coarse grid. This is typically done through

a maximal independent set algorithm, weighted by the coarse-grid candidate measures.

This approach can, however, run into ambiguity in the case of ties in candidate measures,

where a suboptimal choice in tie-breaking may lead to a significant increase in V-cycle

complexity. An alternative is to use the candidate measures to threshold points into

potential coarse-grid nodes and poor coarse-grid candidates, then weight the maximal

independent set algorithm based on the number of strong connections, as in classical

AMG.

Regardless of the details of the compatible relaxation scheme, there appears to

be some advantage in closely integrating CR with the choice of interpolation within

αAMG. Both rely on the exposure and use of a prototype of algebraically smooth error,

and thus work may be saved by computing this component once for both uses. Early

tests of this integration have shown slight improvements in convergence factors for many

problems, such as those discussed in Section 5.2.5. Another important question in this

integration is updating of the coarse grid as better prototypes of algebraically smooth

error become available. Success was achieved in αSA while performing aggregation once,

independent of the prototype set; however, slight improvements in the coarse grid may

be more practical in the AMG framework where the coarse grid is simply a subset of

the fine grid.

While the theory presented in Section 5.3 has contributed to our understanding

of the adaptive process and the automatic exposure of algebraically smooth compo-

nents, the lack of uniform control over the convergence bound suggests that this is an

incomplete understanding. The αAMGr framework is an attractive two-level setting for

considering convergence of the αAMG method, and we hope to utilize it to achieve a

more satisfying result. Necessary conditions for αAMG V-cycle convergence would also
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be of significant interest to us and, hopefully, enable us to improve our choices in the

overall adaptive scheme.

Finally, the computational codes developed for this thesis have been primarily

research-oriented codes. Practical applications require significantly more energy in-

vested in performance, optimization, and parallelization than we have yet devoted. The

lion’s share of the computation in the adaptive MG methods presented here is in oper-

ations, such as matrix-vector and matrix-matrix products, that can be easily tuned and

easily parallelized to achieve the performance necessary to be competitive with other

methods that may be less attractive mathematically, but for which there exist more effi-

cient implementations. Such optimizations can be implemented to improve performance

of the current code, whereas parallel development would require more effort, although

may be achievable within the HYPRE/BoomerAMG packages [44, 53].
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