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Abstract. In this paper, we employ local Fourier analysis (LFA) to analyze the convergence
properties of multigrid methods for higher-order finite-element approximations to the Laplacian
problem. We find that the LFA smoothing factor fails to accurately predict the observed multigrid
performance. This failure of the LFA smoothing factor is explained, and we propose a modification
to the analysis that yields a reasonable prediction to help choose the correct damping parameters
for relaxation. Finally, we present two-grid and multigrid experiments, and the corrected parameter
choice is shown to yield a significant improvement in the resulting two-grid and multigrid convergence
factors.
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1. Introduction. Multigrid methods [2, 7, 19, 23, 24] are very popular to solve
the linear systems that arise from the discretization of many PDEs. The choice of the
multigrid components, such as grid transfer operators and the relaxation scheme, has
a great influence on the performance of these algorithms. In this paper, we focus on
the Laplace problem,

(1.1)

{
−∆u(x) = f, x ∈ Ω,

u(x) = g, x ∈ ∂Ω,

discretized using higher-order finite elements. In the literature, there are many effi-
cient multigrid methods for problem (1.1), see [9, 21]. It is worthwhile, however, to
understand how these methods work efficiently. LFA [21, 24] has proven a good tool
for theoretical investigation and multigrid method design, including for the curl-curl
equation [1, 15], parabolic partial differential equations [6, 22], the Stokes equations
[10, 14, 15], and the Poisson equation [8, 17, 21].

Recently, some studies have reported that LFA fails to accurately predict some
multigrid results, see [5, 6]. In [6], LFA does not offer its usual predictivity of the
convergence behavior of the space-time diffusion equation and its generalizations.
However, in [5], the authors develop new tools to make up for the failure of standard
LFA to provide insight into the asymptotic convergence behaviour of multigrid meth-
ods for these problem. In [15], an LFA is presented for general problems, focusing on
analyzing the complementarity between relaxation and coarse-grid correction (CGC)
within multigrid solvers for systems of PDEs with finite-element discretizations. In
that paper, the smoothing factor of LFA overestimates the two-grid convergence fac-
tor for the Taylor-Hood (Q2 − Q1) discretization of the Stokes equations. However,
no further explanation is given. We show here that the failure might be related to
the Q2 approximation used for the velocity unknowns.

To our knowledge, the vast majority of existing LFA for the Poisson problem
focuses on discretization using finite differences or linear finite elements [19, 21, 24].
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In contrast, [8] studies the convergence of a multigrid method for the solution of
a linear second-order elliptic equation by discontinuous Galerkin methods. In [17],
the cell-centered finite-difference discretization on triangular grids is considered. A
variant of LFA is applied to discretization matrices arising from Galerkin B-spline
isogeometric analysis in [4], focusing on 2-level analysis in place of classical smooth-
ing analysis. Here, we focus on standard higher-order finite-element discretizations
of Poisson’s equation with weighted Jacobi relaxation, and use LFA to understand
performance. In contrast to the cases of standard finite-difference or (bi)linear finite-
element discretizations, we will see that the LFA smoothing factor does not offer a
good prediction of performance in the higher-order case.

In the literature, there are many studies about higher-order methods for different
types of PDEs. The spectral element method for second-order problems was studied
both numerically and theoretically in [16, 18], showing good smoothing properties of
simple Jacobi relaxation for the Laplace problem. The impact of different higher-
order finite-element discretizations for the Laplace problem on multigrid convergence,
with Richardson and Jacobi relaxation, was considered in [13]. Comparison of differ-
ent multigrid methods for higher-order finite-element discretizations, either as direct
solvers or preconditioners, was reported in [20]. There, the convergence behaviour was
seen to strongly depend on the polynomial order when multigrid is used as a precon-
ditioner, but not for multigrid as a solver. Other studies of higher-order finite-element
methods and multigrid include those for nonlinear problems [3] and the incompressible
Navier-Stokes equations [12, 11].

Supporting numerical results demonstrate some key conclusions of our analysis.
First, there is a notable gap between the classical LFA smoothing factor and the
two-grid convergence factor for these elements. The standard LFA assumption of
an “ideal” coarse-grid correction operator, which annihilates the low-frequency er-
ror components and leaves the high-frequency components unchanged is not true
for higher-order finite-element discretizations, where our results show that the CGC
reduces some high-frequency error quickly. Furthermore, minimizing the classical
smoothing factor does not minimize the corresponding convergence factor.

The outline of the paper is as follows. In Section 2, we recall the standard
definitions of LFA. In Section 3, we analyse the weighted Jacobi relaxation scheme for
the Q2 finite-element approximation in one dimension (1D) and show how to obtain
optimal parameters to minimize the convergence factor. We extend this analysis to
higher-order finite-elements in Section 4. In Section 5, two-grid LFA is presented for
biquadratic Lagrangian elements in two dimensions (2D), and we discuss the optimal
parameter choice. Conclusions are presented in Section 6.

2. Definitions and notations. In order to describe LFA for finite-element
methods, we first introduce some terminology. More details can be found, for ex-
ample, in [21]. We first consider one-dimensional infinite uniform grids, Gh. Let Lh
be a scalar Toeplitz operator acting on Gh

(2.1) Lh
∧
= [sκ]h (κ ∈ V ); Lhwh(x) =

∑
κ∈V

sκwh(x+ κh),

with constant coefficients sκ ∈ R (or C), where wh(x) is a function in l2(Gh). Here,
V is taken to be a finite index set of integers, V ⊂ Z. Note that since Lh is Toeplitz,
it is diagonalized by the standard Fourier modes ψ(θ, x) = eιθ·x/h, where ι2 = −1.
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Definition 2.1. If for all grid functions ψ(θ, x),

Lhψ(θ, x) = L̃h(θ)ψ(θ, x),

we call L̃h(θ) =
∑
κ∈V

sκe
ιθκ the symbol of Lh.

Here, we consider multigrid methods for finite-element discretizations with standard
geometric grid coarsening; that is, we construct a sequence of coarse grids by dou-
bling the mesh size in each spatial direction. High and low frequencies for standard
coarsening are given by

θ ∈ T low =
[
−π

2
,
π

2

)
, θ ∈ T high =

[
−π

2
,

3π

2

)∖[
−π

2
,
π

2

)
.

The error-propagation operator for a relaxation scheme, represented similarly by
a Toeplitz operator Mh, applied to a finite-element approximation is

Sh(ω, θ) = I − ωM−1h Lh,

where ω is an overall weighting factor.

Definition 2.2. The error-propagation symbol, S̃h(θ), for smoother Sh on the
infinite grid Gh satisfies

Shψ(θ, x) = S̃hψ(θ, x), θ ∈
[
− π

2
,

3π

2

)
,

for all ψ(θ, x), and the corresponding smoothing factor for Sh is given by

(2.2) µloc := µloc(Sh) = max
θ∈Thigh

{∣∣S̃h(θ)
∣∣ }.

Definition 2.3. Because the smoothing factor is a function of some parameters,
let D be the set of allowable parameters and define the optimal smoothing factor over
D as

µopt = min
D

µloc.

In what follows, we consider (q × q) linear systems of operators, which read

Lh =

L
1,1
h · · · L1,q

h
... · · ·

...

Lq,1h · · · Lq,qh

 .

The Li,jh (i, j = 1, 2, . . . , q) are scalar Toeplitz operators. Each entry in L̃h is computed

as the (scalar) symbol of the corresponding block of Li,jh , following Definition 2.1. For
simplicity, we reuse the notation in (2.2) for the case of block symbols as described in
the following.

On a collocated mesh, all blocks in Lh are diagonalized by the same transfor-
mation. However, in our setting, we consider Gh = Gh,N

⋃
Gh,C , for quadratic La-

grangian elements, with

(2.3) Gh,N =
{
xk,N := kh, k ∈ Z

}
, and Gh,C =

{
xk,C := kh+ h/2, k ∈ Z

}
.
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Here Gh contains two types of meshpoints, the nodes of the mesh and the cell centres.
The coarse grid, G2h, is defined similarly. Each block Li,jh in Lh for i, j = 1, 2 is defined
as in (2.1), with V taken to be either a finite index set of integer (VN ) or half-integer
(VC) values, with VN ⊂ Z and VC ⊂

{
z+ 1

2 |z ∈ Z
}

. The operators discussed later are
naturally treated as block operators, and the Fourier representation of each block can
be calculated based on Definition 2.1, with Fourier bases adapted to account for the
staggering of the mesh points. In Definition 2.2, the symbol S̃h(θ) will be a matrix,

thus,
∣∣S̃h(θ)

∣∣ is replaced by
∣∣λ(S̃h(θ))

∣∣, the absolute value of the eigenvalues of S̃h(θ),
in (2.2).

The resulting Fourier functions are ϕ(θ, xk) ∈ span
{
ϕN (θ, xk), ϕC(θ, xk)

}
on Gh,

in which

ϕN (θ, xk)=
(
eιθ·xk,N/h 0

)T
, ϕC(θ, xk) =

(
0 eιθ·xk,C/h

)T
,

where T denotes the (non-conjugate) transpose of the row vectors. Because ϕ(θ, xk)
is periodic in θ with period 2π, we consider the domain θ ∈

[
− π

2 ,
3π
2

)
.

3. LFA for quadratics in 1D. Here, we consider the discretization of problem
(1.1) in 1D, using quadratic (Q2) finite elements, and nodal basis functions defined at
the nodes of the mesh and cell centres (but the analysis could be modified for other
bases), and will focus on weighted Jacobi relaxation.

3.1. Quadratic Lagrangian Elements. For these quadratic Lagrangian el-
ements, the elementary contributions to the stiffness and mass matrices as 3 × 3
symmetric matrices are

EK =
1

3h

 7 −8 1
−8 16 −8
1 −8 7

 , EM =
h

30

 4 2 −1
2 16 2
−1 2 4

 ,

respectively. We can decompose the resulting stencils into connections among and
between the degrees of freedom (DOFs) located at the nodes of the mesh and those
located at cell centres. The node-to-node connections yield the stencils

1

3h

[
1 14 1

]
and

h

30

[
−1 8 −1

]
.

The node-to-centre stencils are given by

1

3h

[
−8 ? −8

]
and

h

30

[
2 ? 2

]
,

with transposed connections between centres and nodes, where ? stands for the degree-
of-freedom position in the off-diagonal blocks. The centre-to-centre stencils are diag-
onal,

1

3h

[
16
]

and
h

30

[
16
]
.

On the infinite grid Gh, each of these stencils defines a Toeplitz operator on `2(Gh,∗)
and, so, the block systems can be block diagonalized by considering the invariant
subspace given by linear combinations of ϕN (θ, x) and ϕC(θ, x). The resulting block
symbols of the stiffness and mass operators are

(3.1) Ãh(θ) =
1

3h

(
14 + 2 cos θ −16 cos θ2
−16 cos θ2 16

)
, B̃h(θ) =

h

30

(
8− 2 cos θ 4 cos θ2

4 cos θ2 16

)
,
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respectively. The error-propagation symbol of weighted Jacobi relaxation is given by

(3.2) S̃h(θ) = I − ωM̃−1h (θ)Ãh(θ),

where M̃h(θ) is the symbol of the diagonal operator,

(3.3) Mh =
1

3h

(
14I 0
0 16I

)
.

Using (3.1) and (3.3), we plot the distribution of eigenvalues of M̃−1h (θ)Ãh(θ), at the

left of Figure 1. Note that as a block symbol, M̃−1h (θ)Ãh(θ) has 2 eigenvalues, each
of which can be seen to be a continuous function of θ/π.
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Fig. 3.1. At left, the distribution of the two eigenvalues of M̃−1
h (θ)Ãh(θ) as a function of θ/π.

At right, the distribution of the two eigenvalues of M̃−1
h (θ)Ãh(θ), as a function of cos θ.

To derive an analytical expression for the eigenvalues of M̃−1h (θ)Ãh(θ), we note

that the determinant of M̃−1h (θ)Ãh(θ)− λI is

(λ− 1)(λ− 1− cos θ

7
)− 4

7
(1 + cos θ).

Let λ+ and λ− be the eigenvalues of M̃−1h (θ)Ãh(θ); from above, we have

λ± =
14 + cos θ ±

√
cos2(θ) + 112 cos θ + 112

14
.

Taking x = cos θ, then we can write

λ+(x) =
14 + x+

√
x2 + 112x+ 112

14
, λ−(x) =

14 + x−
√
x2 + 112x+ 112

14
.

It is easy to check that

λ+(x)max = λ+(1) =
15

7
, λ+(x)min = λ+(−1) = 1,

λ−(x)max = λ+(−1) =
6

7
, λ−(x)min = λ−(1) = 0.
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We plot λ+(x), λ−(x) at the right of Figure 1.
Throughout this paper, we denote λmax,H and λmin,H as the biggest and smallest

eigenvalues over only the high frequency range, respectively. Since λ−(x) < λ+(x),
for high frequencies (x ∈ [−1, 0]), we have

λmax,H = λ+(0) =
7 + 2

√
7

7
, λmin,H = λ−(0) =

7− 2
√

7

7
.

Thus, the classical optimal choice of ω that minimizes the resulting smoothing
factor for relaxation scheme (3.2) is given by

(3.4) ω∗ =
2

λmin,H + λmax,H
= 1,

and the corresponding smoothing factor is

µ∗2 = min
ω

max
θ∈Thigh

∣∣λ(S̃h(ω, θ))
∣∣ =

2
√

7

7
≈ 0.760.

Note, however, that this choice of ω∗ leads to a diverging relaxation scheme, as |1−
ω∗λ+(1)| > 1. While this might be acceptable assuming ideal CGC, it is worrisome
from the perspective of robustness of the resulting multilevel algorithm. Thus, we
consider another relaxation weight,

(3.5) ω∗∗ =
2

λ∗max + λmin,H
=

14

22− 2
√

7
≈ 0.838,

where λ∗max is the biggest of all eigenvalues; that is λ∗max = λ+(1) = 15
7 . For this

choice, the corresponding smoothing factor is

µ∗∗2 = max
θ∈Thigh

∣∣λ(S̃h(ω∗∗, θ))
∣∣ =

4 +
√

7

11−
√

7
≈ 0.795.

To understand and compare these choices, we now consider two-grid LFA and
measured two-grid performance. We use the notation TG(ν1, ν2) and V (ν1, ν2) to
indicate the cycle type and the number of pre- and postsmoothing steps employed.

Here, we use the defects d
(k)
h (k = 1, 2, · · · , with d

(k)
h = b−Ahx(k)h ) to experimentally

measure the convergence factor as ρ̂
(k)
h = k

√
‖d(k)h ‖2
‖d(0)h ‖2

(see [21]), with k = 100. We

consider the homogeneous problem, Ahxh = b = 0, with discrete solution xh ≡ 0, and

start with a random initial guess, x
(0)
h , to test the multigrid convergence factor. The

coarsest grid is a mesh with 4 elements. Rediscretization is used to define the coarse-
grid operator (CGO). For comparison, we present the LFA-predicted convergence
factors, ρh, for two-grid cycles with ν1 prerelaxation and ν2 postrelaxation steps (see
(3.14) ). We consider periodic boundary conditions.

In Table 1, we use ω∗ as the weight. Note that the LFA convergence factor is larger
than the smoothing factor. As noted earlier, while we see convergence for ν1 +ν2 < 3,
we see divergence when ν1 + ν2 = 3, 4 for the two-grid method. Furthermore, even
though the smoothing factor fails to predict the convergence factor, we see that the
measured convergence factor matches well with the LFA-predicted two-grid conver-
gence factor. For ω = ω∗∗, Table 2 shows a good improvement in the convergence
factor compared with the choice of ω∗. We again see a good agreement between the
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measured convergence factor and the LFA-predicted convergence factor, but now the
two-grid convergence factor is smaller than the smoothing factor, in contrast to the
case of ω∗. Moreover, while the smoothing factor for the choice of ω∗∗ is larger than
that of ω∗, the two-grid factor is much better.

Table 1
Two-grid convergence factors for the Q2 approximation with ω∗ in 1D

PPPPPPPρ̂h

Cycle
TG(0, 1) TG(1, 0) TG(1, 1) TG(1, 2) TG(2, 1) TG(2, 2)

ω = ω∗ = 1.000, µ∗ = 0.760

ρh=1/128 0.821 0.821 0.985 1.118 1.119 1.279

ρ̂
(100)

h=1/128 0.813 0.815 0.974 1.096 1.102 1.255

ρ̂
(100)

h=1/256 0.814 0.814 0.972 1.104 1.100 1.263

Table 2
Two-grid convergence factors for the Q2 approximation with ω∗∗ in 1D

PPPPPPPρ̂h

Cycle
TG(0, 1) TG(1, 0) TG(1, 1) TG(1, 2) TG(2, 1) TG(2, 2)

ω = ω∗∗ = 14
22−2

√
7
≈ 0.838, µ∗∗ = 0.796

ρh=1/128 0.526 0.526 0.495 0.372 0.372 0.302

ρ̂
(100)

h=1/128 0.522 0.521 0.491 0.365 0.366 0.296

ρ̂
(100)

h=1/256 0.521 0.522 0.491 0.366 0.366 0.298

3.2. Two-grid LFA in 1D. Two natural questions are raised by these results.
First, why is the LFA smoothing factor such a bad predictor of performance? Secondly,
is ω∗∗ the best choice for a weight, in terms of two-grid performance? To answer these
questions, we consider two-grid LFA in more details.

Definition 3.1. The 2h-harmonics, F2h(θ), are given by

F2h(θ) = span{ϕh(θ0, x), ϕh(θ1, x)},

with θ = θ0 ∈ T low := Θ2h, and θα = θ + απ, where α = 0, 1.

To apply LFA to the two-grid operator,

(3.6) MTGM
h = Sν2h M

CGC
h Sν1h ,

we require the representation of the CGC operator,

MCGC
h = I − PA−12hRAh.

Inserting the representations of Sh, Ah, A2h, R, P into (3.6), we obtain the Fourier
representation of two-grid error-propagation operator as

M̂TGM
h (θ) = Ŝν2h (θ)

(
I − P̂ (θ)(Ã2h(2θ))−1R̂(θ)Âh(θ)

)
Ŝν1h (θ),

where

Âh(θ) = diag
{
Ãh(θ), Ãh(θ + π)

}
,Ŝh(θ) = diag

{
S̃h(θ), S̃h(θ + π)

}
,

P̂h(θ) =
(
P̃h(θ); P̃h(θ + π)

)
,R̂h(θ) =

(
R̃h(θ), R̃h(θ + π)

)
,
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and

Ã2h(2θ) =
1

6h

(
14 + 2 cos(2θ) −16 cos θ
−16 cos θ 16

)
,

in which diag{A,B} stands for the block diagonal matrix with diagonal blocks, A and
B.

The symbols Ãh(θ) and Ãh(θ + π) are as given above, while the symbols for
relaxation are

S̃h(θ) = I − ωM̃−1h (θ)Ãh(θ), S̃h(θ + π) = I − ωM̃−1h (θ + π)Ãh(θ + π).

To derive symbols for the grid-transfer operators, we first consider an arbitrary re-

striction operator characterized by a constant coefficient stencil R
∧
= [rκ]2hh . Then, an

infinite grid function wh : Gh → R (or C) is transferred to the coarse grid, G2h, in the
following way:

(Rwh)(x) =
∑
κ∈V

rκwh(x+ κh) (x ∈ G2h).

In our case, we have two types of grid points on the fine and coarse grids, so the restric-
tion operator can also be decomposed based on the partitioning of DOFs associated
with nodes of the mesh and cell centres.

Let ϕh(θα, x) = eιθ
αx/h. We have the following equality

(3.7) ϕh(θα, x) = eιαπx/hϕ2h(2θ0, x), for all x ∈ G2h.

Note that ϕh(θα, x) coincides on G2h,N with the respective grid function ϕ2h(2θ0, x),
since eιαπx/h ≡ 1 in (3.7), when x = 2jh for j ∈ Z. However, eιαπx/h = (−1)α when
x = 2(j + 1

2 )h coincides with a point in G2h,C .
Using this for x ∈ G2h, we have

(Rϕh)(θα, ·)(x) =
∑
κ∈V

rκe
ι(x+κh)θα/h =

∑
κ∈V

rκe
ικθαeιαπx/hϕ2h(2θ0, x).

Definition 3.2. We call R̃(θα) =
∑
κ∈V

rκe
ικθαeιαπx/h :=

∑
κ∈V

r̃κ the restriction

symbol of R.

Remark 3.3. If the restriction operator is defined on a collocated mesh, we have
only G2h,N , and eιαπx/h ≡ 1 in Definition 3.2, which coincides with the definition of
the classical restriction symbol [24, Section 6.2.3].

We consider biquadratic interpolation, and the corresponding adjoint operator
for the restriction of the corrections. In stencil notation, the restriction operators are
given by

(3.8) RN
∧
= [(rN )κ]h =

[
0 − 1

8 0 3
8 1(?) 3

8 0 − 1
8 0

]
h
,

and

(3.9) RC
∧
= [(rC)κ]h =

[
0 3

4 1(?) 3
4 0

]
h
,
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where N,C stand for the node and centre points, respectively, and the ? denotes the
position (on the coarse grid) at which the discrete operator is applied. Note that these
stencils include contributions from both find-grid nodes and centers to the coarse-grid
quantities. We illustrate these in Figure 2.

| | | | |× × × × h

| | |× × 2h
N

-1
8

3
8 1 3

8
-1

8

| | |× × h

×| | 2h
C

3
4 1 3

4

Fig. 3.2. At left, RN -restriction operator. At right, RC-restriction operator.

As with the fine-grid matrix, both RN and RC require values from nodes and cen-
tres on the fine grid. We decomposeRN as [RN (N), RN (C)] andRC as [RC(N), RC(C)]
defined in the following

(3.10) RN (N) = [1], RN (C) = [−1

8

3

8
?

3

8
− 1

8
],

(3.11) RC(N) = [1], RC(C) = [
3

4
?

3

4
],

then apply Definition 3.2 to each piece separately to obtain the symbol of the restric-
tion operator.

Theorem 3.4. Define R as in (3.8) and (3.9). Then the Fourier representation
of R is given by the (2× 4)-matrix

R̂(θ) =
(
R̃(θ0) R̃(θ1)

)
=

(
1

3 cos( θ2 )−cos(
3θ
2 )

4 1
−3 sin( θ2 )−sin(

3θ
2 )

4

1
3 cos( θ2 )

2 −1
3 sin( θ2 )

2

)
.

Proof. Let x ∈ G2h and consider a fine-grid mode ϕ(θα, y) = βNϕN (θα, y) +
βCϕC(θα, y) for y = x + κh ∈ Gh. Clearly the value of [Rϕ(θα), ·](x) depends on
whether x is a node on the coarse grid (and (3.8) is used) or x is a cell centre on the
coarse grid (and (3.9) is used). From (3.10) and (3.11), we write the symbol for R in
matrix form,

R̃(θα) =

(
R̃N (N, θα) R̃N (C, θα)

R̃C(N, θα) R̃C(C, θα)

)
,(3.12)

acting on the vector
(
βN βC

)T
, where T denotes the (non-conjugate) transpose of

the row vectors.
From (3.10), (3.11), and Definition 3.2, we obtain the symbols

R̃N (N, θα) = 1, R̃N (C, θα) =
3

4
cos
(θα

2

)
− 1

4
cos
(3θα

2

)
,

R̃C(N, θα) = (−1)α, R̃C(C, θα) =
3

2
cos
(θα

2

)
(−1)α.

Concatenating R̂(θ) =
(
R̃(θ0) R̃(θ1)

)
gives the symbol in the statement of the

theorem.
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A similar calculation (see [15]) gives the symbol of biquadratic interpolation as

(3.13) P̂ (θ) =


1
2

1
2

3 cos( θ2 )−cos(
3θ
2 )

8

3 cos( θ2 )

4
1
2 − 1

2
−3 sin( θ2 )−sin(

3θ
2 )

8

3 sin( θ2 )

4

 ,

satisfying the usual relationship that P̂ (θ) = 1
2 (R̂(θ))H , where H denotes the conju-

gate transpose.
We again use rediscretization for the CGO, which matches the Galerkin CGO.

The asymptotic two-grid convergence factor, ρasp, is defined as

(3.14) ρasp = sup{ρ(M̂(θ)TGM) : θ ∈ Θ2h}.

In what follows, we consider a discrete form of ρasp, denoted by ρh, resulting from
sampling ρasp over only finite set of frequencies. We consider only the case of a single
relaxation; that is ν1 + ν2 = 1. Without loss of generality, let ν1 = 1, giving the
two-grid representation as

(3.15) M̂TGM
h (θ) =

(
I − P̂ (θ)(Ã2h(2θ))−1R̂(θ)Âh(θ)

)
Ŝh(θ).

3.3. A lower bound on convergence in 1D. To gain some insight and a lower
bound on convergence, we consider now the limiting behavior when θ → 0. When
θ = 0, the two eigenvalues of

S̃h(θ + π) = I − ωM̃−1h (θ + π)Ãh(θ + π),

are 1− ω, 1− 6
7ω and the eigenvector corresponding to 1− ω is v1 =

(
0 1

)T
.

From (3.13), when θ = 0, we have the representation of interpolation

P̂ (0) =


1
2

1
2

1
4

3
4

1
2 − 1

2
0 0

 ,

and vector v̂1 =
(
0 0 0 1

)T
is not in the range of interpolation. Taken together,

this tells us v̂1 is an eigenvector of M̂TGM
h (θ) in the limit as θ → 0, allowing us to

establish a lower bound on convergence.

Theorem 3.5. For M̂TGM
h (θ) defined as in (3.15),

trace
(

lim
θ→0
M̂TGM

h (θ)
)

= 2− 79

28
ω.

Proof. By standard calculation, we have

lim
θ→0
M̂TGM

h (θ) =


7−15ω

14
−7+15ω

14
−7+6ω

28 0
− 7−15ω

28 −−7+15ω
28 −−7+6ω

56 0
− 7−15ω

14 −−7+15ω
14 −−7+6ω

28 0
0 0 0 1− ω

 .

Thus, trace
(

lim
θ→0
M̂TGM

h (θ)
)

=
7− 15ω

14
− −7 + 15ω

28
− −7 + 6ω

28
+ 1− ω = 2− 79

28
ω.
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Note that P̃ (0) is full-rank, so there must be two zero eigenvalues of lim
θ→0
M̂TGM

h (θ).

As 1 − ω is also an eigenvalue of lim
θ→0
M̂TGM

h (θ), Theorem 3.5 tells us that the other

eigenvalue is 2 − 79
28ω − (1 − ω) = 1 − 51

28ω. In order to minimize the spectral radius

of lim
θ→0
M̂TGM

h (θ), we have the following result.

Lemma 3.6.

(3.16) min
ω

{
max{|λ∗|} : λ∗ ∈ λ

(
lim
θ→0
M̂TGM

h (θ)
)}

=
23

79
≈ 0.291,

and only ω = ω∗∗∗ = 56
79 achieves the minimum.

Proof. Note that the four eigenvalues of lim
θ→0
M̂TGM

h (θ) are 0, 0, 1−ω, and 1− 51
28ω.

Setting |1− ω| = |1− 51
28ω|, gives ω = 56

79 .

Corollary 3.7. For any ω, the optimal two-grid convergence factor for a single
relaxation (i.e., ν1 + ν2 = 1) is not less than 23

79 , and this factor can be achieved if
and only if ω = ω∗∗∗.

Corollary 3.7 only tells us that the two-grid convergence factor has a lower bound,
but we do not know whether it can be achieved or not. We show this numerically.
For the remaining part of this paper, let µ and ρ be the LFA-predicted smoothing
and two-grid convergence factors, respectively, computed with h = 1

64 . For ρ, we
consider only one step of pre-smoothing (which gives the same results as one step
of post-smoothing). We plot the predicted smoothing and convergence factors as a
function of ω in 1D. The left of Figure 3 indicates that when the classical smoothing
factor achieves its optimal value, the corresponding ω does not minimize the two-grid
convergence factor. The choices of ω∗ and ω∗∗ in (3.4) and (3.5) both are clearly not
the best choice. The left of Figure 3 shows that the optimal ω is ω∗∗∗ = 56

79 ≈ 0.709,
as proposed in Corollary 3.7. We explore the reasons for this below.

To see that the prediction of Lemma 3.6 is not a coincidence, we plot the two-grid
convergence factor and max

{
|1 − ω|, |1 − 51

28ω|
}

as a function of ω. Comparing the
left and right of Figure 3 indicates that, for all ω, the two-grid convergence factor is
given by max

{
|1− ω|, |1− 51

28ω|
}

.

0 0.5 1 1.5
0

0.5

1

1.5

2

0 0.5 1 1.5
0

0.5

1

1.5

2

max| *|

Fig. 3.3. At left, LFA-predicted two-grid convergence and smoothing factors as a function of
ω. At right, LFA-predicted two-grid convergence factor and max{|λ∗|} as a function of ω for the
Q2 approximation in 1D.
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3.3.1. Two-grid and multigrid performance in 1D. Table 3 confirms that
ω∗∗∗ provides the best observed convergence factor, compared with the choices ω∗

and ω∗∗, shown in Tables 1 and 2. Table 3 also confirms that a single pre- or post-
relaxation offers the most cost-effective cycle. Table 4 shows that similar convergence
factors are obtained for full V -cycles.

Table 3
Two-grid convergence factors for the Q2 approximation with ω∗∗∗ in 1D

PPPPPPPPρ̂h

Cycle
TG(0, 1) TG(1, 0) TG(1, 1) TG(1, 2) TG(2, 1) TG(2, 2)

ω = ω∗∗∗ = 56
79
≈ 0.709, µ = 0.822

ρh=1/128 0.291 0.291 0.249 0.090 0.090 0.064

ρ̂
(100)
h=1/128 0.289 0.290 0.245 0.088 0.088 0.063

ρ̂
(100)
h=1/256 0.289 0.289 0.246 0.088 0.088 0.063

Table 4
Multigrid convergence factors for the Q2 approximation with ω∗∗∗ in 1D

PPPPPPPPρ̂h

Cycle
V (0, 1) V (1, 0) V (1, 1) V (1, 2) V (2, 1) V (2, 2)

ω = ω∗∗∗ = 56
79
≈ 0.709, µ = 0.822

ρh=1/128 0.291 0.291 0.249 0.090 0.090 0.064

ρ̂
(100)
h=1/128 0.281 0.282 0.246 0.080 0.081 0.068

ρ̂
(100)
h=1/256 0.284 0.280 0.246 0.083 0.082 0.068

3.4. A modified two-grid analysis. To better understand the failure of classi-
cal smoothing analysis for the Q2 approximation, we first consider why the smoothing
factor is a good predictor of performance for the Q1 approximation. In the Q1 case,
we denote the CGC operator as M̂CGC

1,h (θ), and the symbol of the relaxation scheme

as Ŝ1,h(θ), which are both 2× 2 matrices. Here we use linear interpolation for P and
R = PH . By standard calculation, we have

M̂CGC
1,h (θ) =

(
sin2( θ2 ) cos2( θ2 )
sin2( θ2 ) cos2( θ2 )

)
.

In the standard LFA smoothing analysis, we assume an “ideal” CGC operator, Qh, in
place of the true CGC, M̂CGC

1,h (θ), that annihilates the low-frequency error components
and leaves the high-frequency components unchanged, see [21]. A natural choice for
Qh is as a projection operator, (

0 0
0 1

)
.

To compute the convergence factor, we replace the CGC operator in (3.14) by Qh,
giving

(3.17) sup{ρ(QhŜ1,h(θ)) : θ ∈ Θ2h}.
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Remark 3.8. Note that (3.17) is equivalent to form (2.2).

From the form of Qh we can consider optimizing the smoothing factor by working only
over the high frequencies as in Definition 2.3. In Figure 4, we plot the LFA-predicted
two-grid convergence factor (3.14) and the smoothing factor as a function of ω and see
that the smoothing factor perfectly captures the LFA-predicted two-grid convergence
behavior.

0 0.5 1 1.5
0

0.5

1

1.5

2

Fig. 3.4. LFA-predicted two-grid convergence and smoothing factors as a function of ω for the
Q1 approximation in 1D.

However, as shown above in Subsection 3.1, generalizing Qh to
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

 ,

does not give a good prediction of the two-grid convergence factor for the Q2 approx-
imation. Instead, we note that for the Q1 case,

lim
θ→0
M̂CGC

1,h (θ) =

(
0 1
0 1

)
,

and, if we replace Qh by this limit, then the eigenvalues of QhŜ1,h(θ) do not change.

This suggests that using lim
θ→0
M̂CGC

1,h (θ) as the ideal CGC operator may improve the

robustness of the smoothing factor. We now extend this approximation for two-grid
analysis of the Q2 approximation.

Define

(3.18) Q0 := lim
θ→0

(
I − P̂ (θ)(Ã2h(2θ))−1R̂(θ)Âh(θ)

)
.

By standard calculation,

Q0 =


1
2 − 1

2 − 1
4 0

− 1
4

1
4

1
8 0

− 1
2

1
2

1
4 0

0 0 0 1

 .
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To see how well Q0 works as an idealized CGC operator when predicting the
two-grid convergence factor, let

(3.19) ρ0 = ρ0(ω) = sup{ρ(Q0Ŝh(θ)) : θ ∈ Θ2h}.

We plot ρ as a function of ω, compared with the LFA-predicted two-grid convergence
factor ρ. Figure 5 shows that ρ0 provides a much better prediction than the classical
smoothing factor. Note that for smaller values of ω, ρ0 slightly overpredicts the con-
vergence factor, as Q0 captures poorly the true effects of CGC for values of θ near
±π2 . We see that the optimal parameter of ρ0 is very close to the optimal parameter
for the two-grid convergence factor, ρ. Whether further improvement is possible is an
open question.

0 0.5 1 1.5
0

0.5

1

1.5

2

0

Fig. 3.5. ρ and ρ0, as a function of ω for the Q2 approximation in 1D.

We now consider a modified two-grid error-propagation operator,

M̂MTGM(θ) := Q0Ŝ(θ), θ ∈ Θ2h,

which gives a good prediction for the convergence of multigrid for the Q2 approxi-
mation. Now, we consider minimizing the spectral radius of M̂MTGM(θ); that is, to
minimize ρ0.

By standard calculation, we have

Ŝ(θ) =


1− ω(1 + cos(θ)

7 ) 8
7 cos( θ2 )ω 0 0

cos( θ2 )ω 1− ω 0 0

0 0 1− ω(1− cos(θ)
7 ) − 8

7 sin( θ2 )ω
0 0 − sin( θ2 )ω 1− ω

 .

Because Q0 has rank 2, M̂MTGM(θ) has at most rank 2. By a straightforward cal-
culation (done using a computer algebra system), the four eigenvalues of Q0Ŝ(θ) are
given by

λ(θ) = 1− g±(θ)ω, 0, 0,
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where g±(θ) is

112 + 44 cos( θ2 ) + 2 cos(θ)±
√

2
(
1381 + 44(cos( θ2 ) + cos( 3θ

2 ))− 412 cos(θ) + cos(2θ)
)

112
.

We can check that g±(θ) is an increasing function over [−π2 , 0] and a decreasing
function over [0, π2 ]. We plot g±(θ) as a function of θ over [−π2 ,

π
2 ] in Figure 6.

-1 0 1
0.8

0.85

0.9

0.95

1

g
-(

)

-1 0 1
1.74

1.76

1.78

1.8

1.82

g
+
(

)

Fig. 3.6. At left, g−(θ) as a function of θ. At right, g+(θ) as a function of θ.

The extreme values of g±(θ) are obtained at θ = 0 and θ = ±π2 ; that is,

g+(0) =
51

28
, g−(0) = 1,

g+(±π
2

) =
56 + 11

√
2 +
√

690

56
<

51

28
,

g−(±π
2

) =
56 + 11

√
2−
√

690

56
< 1.

Thus,

ρ0 = sup{ρ(Q0Ŝh(θ)) : θ ∈ Θ2h} = max

{∣∣1− 51

28
ω
∣∣, ∣∣1− g−(±π

2
)ω
∣∣}.

Then, the optimal parameter minimizing ρ0 is given by

ω0,opt =
2

51
28 + 56+11

√
2−
√
690

56

≈ 0.760,

and the corresponding predicted smoothing factor is

ρ0,opt =
51
28 −

56+11
√
2−
√
690

56

51
28 + 56+11

√
2−
√
690

56

≈ 0.385.

Recall the optimal parameter and the true two-grid convergence factor are ω∗∗∗ =
0.709, ρ = 0.291, respectively. Compared with the true two-grid convergence, ρ0 over-
predicts the convergence factor based on the mode θ = ±π2 . However, this modified
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M̂MTGM(θ) still offers useful information and a reasonable predictor of performance.
Whether this “ideal” predictor can be used for other higher-order finite-element ap-
proximations will be explored in the following sections.

Remark 3.9. Improved two-grid behavior can be achieved by considering different
weights for the DOFs at nodes and those at cell centres for Jacobi relaxation; that is,
putting distinct parameters in each diagonal block in the diagonal operator in (3.3).
Then, the LFA shown above can be extended to this relaxation scheme to optimize
the two-grid convergence factor, resulting in somewhat better convergence.

4. Higher-order finite-element methods. In this section, we consider the
finite-element spaces Qp for p = 3, 4 and again examine the relationship between the
LFA smoothing and two-grid convergence factors. In order to distinguish the block
symbols for different p, we use superscripts in the matrices and block symbols in this
section.

4.1. Cubic Lagrangian Elements. For cubic Lagrangian elements (Q3), using
nodal finite-element basis functions defined at the mesh nodes and the 1/3 and 2/3
points of the element, the elementary contributions to the stiffness matrix can be
written as

EK
(3)
h =

1

40h


296 −189 54 −13
−189 432 −297 54

54 −297 432 −189
−13 54 −189 296

 .

The corresponding symbol of stiffness operator is

Ã
(3)
h (θ) =

1

h


148−13 cos θ

20
54e−

2
3
ιθ−189e

1
3
ιθ

40
54e

2
3
ιθ−189e−

1
3
ιθ

40
54e

2
3
ιθ−189e−

1
3
ιθ

40
54
5 − 297e

1
3
ιθ

40
54e−

2
3
ιθ−189e

1
3
ιθ

40 − 297e−
1
3
ιθ

40
54
5

 ,

ordered as mesh nodes, then the 1/3 points and 2/3 points, respectively. The error-
propagation symbol of weighted Jacobi relaxation is given by

(4.1) S̃(3)h (θ) = I − ω
(
M̃

(3)
h (θ)

)−1
Ã

(3)
h (θ),

where

M̃
(3)
h (θ) =

1

h

 37
5 0 0
0 54

5 0
0 0 54

5

 .

In Figure 7, we plot the eigenvalues of
(
M̃

(3)
h (θ)

)−1
Ã

(3)
h (θ). Considering the high

frequencies, we see λmin,H = 0.085 is obtained at θ = π
2 , and λmax,H = 2.394 is

obtained at θ = π.
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-0.5 0 0.5 1 1.5
/

0

0.5

1

1.5

2

2.5

Fig. 4.1. The distribution of eigenvalues of
(
M̃

(3)
h (θ)

)−1
Ã

(3)
h (θ) as a function of θ/π

Thus, the classical optimal choice of ω for (4.1) is given by

ω∗3 =
2

λmin,H + λmax,H
= 0.807,

and

µ∗3 = min
ω

max
θ∈Thigh

∣∣λ(S̃(3)h (ω, θ))
∣∣ =

λmax,H − λmin,H

λmax,H + λmin,H
≈ 0.931.

Denote the cubic finite-element interpolation operator as R(3) and the corresponding
symbol as R̃(3). Similarly to Theorem 3.4, we can write the symbol of restriction,
R(3)(θα), as

R̃(3)(θα) =

1− eιθ
α

16 −
e−ιθ

α

16
5
16e

1
3 ιθ

α

+ 1
16e
− 5

3 ιθ
α 5

16e
− 1

3 ιθ
α

+ 1
16e

5
3 ιθ

α

9
16e

1
3 ιθ

α

β 15
16e
− 1

3 ιθ
α

β (1− 5
16e

ιθα)β
9
16e
− 1

3 ιθ
α

β2 (1− 5
16e
−ιθα)β2 15

16e
1
3 ιθ

α

β2

 ,

where β = (e
2
3 ιπ)α. Thus, the symbol of R(3) is the 3× 6 matrix

R̂(3)(θ) =
(
R̃(3)(θ0) R̃(3)(θ1)

)
, where θ = θ0 ∈ Θ2h.

The Fourier representation of P (3) is given by the 6× 3 matrix,

P̂ (3)(θ) =
1

2

(
R̂(3)(θ)

)H
.

We plot the smoothing factor and LFA-predicted two-grid convergence factor as
a function of ω for cubic elements in 1D. Figure 8 indicates that when the smoothing
factor achieves its optimal value, the corresponding ω does not minimize the two-grid
convergence factor. From Figure 8, note that the optimal convergence factor, ρ, is
0.491 with ω = 0.650, but the corresponding smoothing factor is 0.943, which is larger
than the smoothing factor of 0.931 for ω∗3 = 0.807 given above.

As the LFA smoothing factor again fails to predict the convergence factor, we
extend the modification above to yield a new prediction based on M̂MTGM(θ) , cal-
culating Q0 again using the limit in (3.18). We plot ρ0, compared with the true
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convergence factor at the right of Figure 8, and see that using Q0 accurately predicts
the true convergence factor, except for a small overestimate for ω less than 0.65, as
Q0 captures poorly the true effects of CGC for values of θ near ±π2 . We observe that
when θ = 0, ρ0 underestimates the true two-grid convergence factor. However, the
optimal parameter of M̂MTGM(θ) is very close to the true optimal parameter for the
two-grid convergence factor.

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

1.4

0 0.2 0.4 0.6 0.8 1
0.4

0.6

0.8

1

1.2

1.4

0

Fig. 4.2. At left, the LFA-predicted two-grid convergence and smoothing factors as a function
of ω. At right, ρ and ρ0 as a function of ω for the Q3 approximation in 1D.

4.2. Quartic Lagrangian Elements. For quartic Lagrangian elements (Q4),
using nodal finite-element basis functions defined at the mesh nodes and the 1/4, 1/2,
and 3/4 points of the element, the elementary contributions to the stiffness matrix
can be written as

EK
(4)
h =

1

945h


9850 −6848 3048 −1472 347
−6848 16640 −14208 5888 −1472
3048 −14208 22320 −14208 3048
−1472 5888 −14208 16640 −6848

347 −1472 3048 −6848 9850

 ,

and the corresponding symbol of stiffness operator is

Ã
(4)
h (θ) =

1

h


9850+347(η−4+η4)

945 − 6848η+1472η−3

945
1016η−2+1016η2

315 − 6848η−1+1472η3

945

− 6848η−1+1472η3

945
3328
189 − 4736η

315
5888η2

945
1016η2+1016η−2

315 − 4736η−1

315
496
21 − 4736η

315

− 6848η+1472η−3

945
5888η−2

945 − 4736η−1

315
3328
189

 ,

where η = e
ιθ
4 , with both ordered as mesh nodes, then the 1/4, 1/2, and 3/4 points

of the mesh (followed by the right-hand node in EK
(4)
h ).

The error-propagation symbol of weighted Jacobi relaxation is

S̃(4)h (θ) = I − ω
(
M̃

(4)
h (θ)

)−1
Ã

(4)
h (θ),
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where

M̃
(4)
h (θ) =

1

h


1970
189 0 0 0
0 3328

189 0 0
0 0 496

21 0
0 0 0 3328

189

 ,

Using these symbols, we plot the distribution of eigenvalues of
(
M̃

(4)
h (θ)

)−1
Ã

(4)
h (θ) in

Figure 9. From Figure 9, we see that the smallest eigenvalue over the high frequencies,
λmin,H = 0.036 is obtained at θ = π

2 or 3π
2 . Similarly, λmax,H = 2.557 is achieved with

θ = π
2 or 3π

2 .

-0.5 0 0.5 1 1.5
/

0
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(
/

)

Fig. 4.3. The distribution of eigenvalues of
(
M̃

(4)
h (θ)

)−1
Ã

(4)
h (θ) as a function of θ/π

Thus, the optimal ω for the classical smoothing factor and the corresponding
smoothing factor are

(4.2) ω∗4 =
2

λmin,H + λmax,H
= 0.772, µ∗4 = 0.973,

respectively.
As in the Q2 case, the biggest eigenvalue over all frequencies is λ∗max = 2.789 >

λmax,H, obtained at θ = 0. We, thus, consider the case of

ω∗∗4 =
2

λmin,H + λ∗max

= 0.708.

Then, the corresponding smoothing factor is

(4.3) µ∗∗4 = max
θ∈Thigh

∣∣λ(S̃(4)h (ω∗∗, θ))
∣∣ =

λ∗max − λmin,H

λ∗max + λmin,H
= 0.975.

Denote the quartic interpolation operator as R(4) and the corresponding symbol as
R̃(4). Similarly to Theorem 3.4, we can write the symbol of restriction, R(4)(θα), as

R̃(4)(θα) =


1 35

128ξ + 3
128ξ

5 − 5
128ξ

−7 − 5
128ξ

−3 0 35
128ξ

−1 + 3
128ξ

−5 − 5
128ξ

7 − 5
128ξ

3

0 ( 35
32ξ
−1 − 5

32ξ
3)γ γ ( 15

32ξ + 7
32ξ

5)γ
γ2 (− 35

64ξ
−3 + 45

64ξ)γ
2 0 ( 45

64ξ
−1 − 35

64ξ
3)γ2

0 ( 7
32ξ
−5 + 15

32ξ
−1)γ3 γ3 (− 5

32ξ
−3 + 35

32ξ)γ
3

 ,
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where ξ = e
ιθα

4 , γ = (e
1
2 ιπ)α. Thus, the symbol of R(4) is the 4× 8 matrix

R̂(4)(θ) =
(
R̃(4)(θ0) R̃(4)(θ1)

)
, where θ = θ0 ∈ Θ2h.

The Fourier representation of P (4) is given by the 8× 4 matrix,

P̂ (4)(θ) =
1

2

(
R̂(4)(θ)

)H
.

We plot the LFA smoothing and two-grid convergence factors as a function of ω for
this algorithm. At the left of Figure 10, we see that the LFA smoothing factor again
fails to predict the two-grid convergence factor, and that the optimal convergence
factor ρ is 0.608 with ω = 0.640. The choices of ω in (4.2) and (4.3) both fail.

We present the results of the modified prediction using M̂MTGM(θ) here again
defining Q0 following (3.18). At the right of Figure 10, we compare ρ0 with ρ, as a
function of the relaxation parameter, ω, seeing that ρ0 matches well with the true
convergence, except for a small overestimation for small ω, as Q0 captures poorly the
true effects of CGC for values of θ near ±π2 . We also observe that when θ = 0, ρ0 is
exactly the true two-grid convergence factor, which is the same as in the case of the
Q2 approximation.
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Fig. 4.4. At right, LFA-predicted two-grid convergence and smoothing factors as a function of
ω. At right, ρ and ρ0 as a function of ω for the Q4 approximation in 1D.

5. LFA for the Q2 approximation in 2D. In this section, we consider LFA for
problem (1.1) in 2D, using biquadratic finite elements and the nodal basis functions
defined at the mesh nodes, edge midpoints and element centres. We order the DOFs
of the Q2 approximation as nodes first, then midpoints of the edges parallel to the
x-axis (the “x-edges”), followed by the midpoints of the edges parallel to the y-axis
(the “y-edges”), and then the element centres. In this way, the grids in 2D are defined
as

Gh = Ghx
⊕

Ghy ,

where

x := (x, y) ∈ Gh if and only if x ∈ Ghx and y ∈ Ghy ,

where Ghx and Ghy are defined as in 1D, see (2.3). Here, we consider hx = hy = h.
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Thus, Gh can be rewritten as Gh = G1
h

⋃
G2
h

⋃
G3
h

⋃
G4
h with

Gj
h =



Gh,N
⊕

Gh,N if j = 1,

Gh,C
⊕

Gh,N if j = 2,

Gh,N
⊕

Gh,C if j = 3,

Gh,C
⊕

Gh,C if j = 4.

We refer to G1
h,G

2
h,G

3
h, and G4

h as the NN -, CN -, NC-, and CC-type points on the
grid Gh, respectively.

5.1. Representation of the stiffness and mass operators. It is known that
the stiffness and mass matrices for the Q1 approximation in 2D can be written using
tensor products of their 1D analogues. However, for the Q2 approximation in 2D,
we must carefully consider the ordering of the DOFs and the block structure of the
resulting system. Assume that the stiffness and mass matrices in 1D are ordered by
nodes and centres in 2× 2-block matrices, given by

A(2) =

(
Ann Anc
Acn Acc

)
, B(2) =

(
Bnn Bnc
Bcn Bcc

)
,

respectively. For the 2D case, we use the Tracy-Singh product to preserve block
structuring in the product. Let A be an (s × t)-block matrix, whose (i, j)-block is
denoted by Aij , and B be a (p×q)-block matrix, whose (i, j)-block is denoted by Bij .
The Tracy-Singh product of A and B is defined by the pairwise Kronecker product
for each pair of blocks in matrices A and B, that is,

A◦B =


A11

−
⊗B · · · A1t

−
⊗B

...
. . .

...

As1
−
⊗B · · · Ast

−
⊗B

 ,whereAi,j
−
⊗B =

Aij ⊗B11 · · · Aij ⊗B1q

...
. . .

...
Aij ⊗Bp1 · · · Aij ⊗Bpq

 ,

where ⊗ is the standard Kronecker product. Then, the stiffness and mass matrices in
2D are given by

A2 = A(2) ◦ B(2) + B(2) ◦ A(2), B2 = B(2) ◦ B(2),

respectively, and the ordering of the 4 × 4 block system corresponds to the indexing
of the Gj

h given above. Similarly, if the biquadratic restriction matrix in 1D is given
in block form as

R(2) =

(
Rnn Rnc
Rcn Rcc

)
,

then the corresponding restriction matrix in 2D is given by

R2 = R(2) ◦ R(2),

with the same block ordering as the blocks in A2.
Using the Tracy-Singh product for the discretized operators allows us to compute

symbols using standard Kronecker products. Given the symbols of the stiffness and
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mass operators for the Q2 approximation in 1D, Ãh(θ) and B̃h(θ), respectively, the
symbols of the stiffness and mass matrices in 2D are given by

Ã2(θ1, θ2) = Ãh(θ2)⊗ B̃h(θ1) + B̃h(θ2)⊗ Ãh(θ1),

B̃2(θ1, θ2) = B̃h(θ2)⊗ B̃h(θ1),

respectively.
The above discussion is not limited to Q2, and extends to Qk as follows.

Remark 5.1. The stiffness and mass matrices for the Qk discretization in 2D can
be written as

Ak = A(k) ◦ B(k) + B(k) ◦ A(k), Bk = B(k) ◦ B(k),

respectively, where A(k) and B(k) are stiffness and mass matrices for the Qk discretiza-
tion in 1D, respectively.

Remark 5.2. The symbols of the stiffness and mass matrices for the Qk discretiza-
tion in 2D are as follows

Ãk(θ1, θ2) = Ã
(k)
h (θ2)⊗ B̃(k)

h (θ1) + B̃
(k)
h (θ2)⊗ Ã(k)

h (θ1),

B̃k(θ1, θ2) = B̃
(k)
h (θ2)⊗ B̃(k)

h (θ1),

respectively, where Ã
(k)
h and B̃

(k)
h are the stiffness and mass symbols for the Qk

discretization in 1D, respectively.

Remark 5.3. The restriction matrix corresponding to the Qk approximation in
2D is given by

Rk = R(k) ◦ R(k),

with the same block ordering as Ak if R(k) is ordered consistently with A(k).

5.2. Fourier representation of grid transfer operators. Now we turn to the
representation of biquadratic interpolation and its adjoint operator, restriction, in 2D.
The extension of the restriction operator given in (3.8) and (3.9) from 1D to 2D with
blocks ordered as mesh nodes, x-edge midpoints, y-edge midpoints, and cell centres
can be written asR = {RNN ,RCN ,RNC ,RCC}, respectively. Let R̃NN , R̃CN , R̃NC ,

and R̃CC be their Fourier representations. We show the representation of transfer
operators is given by tensor products of their symbols in 1D.

Let

α = (α1, α2) ∈
{

(0, 0), (1, 0), (0, 1), (1, 1)
}
,

θα = (θα1
1 , θα2

2 ) = (θ1 + α1π, θ2 + α2π), θ := θ(0,0).

We use the ordering of α = (0, 0), (1, 0), (0, 1), (1, 1) for the four harmonics.

Definition 5.4. Assume that T = [tκ1
] and S = [sκ2

] are two stencil operators
in 1D. The 2D stencil S

⊗
T is given by

S
⊗

T := [rκ]h, with rκ = tκ1
sκ2

, and κ = (κ1, κ2),

so that R is the outer product of S and T .
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We use this outer-product notation to simplify the computation of the symbol of
the restriction operator in block form. Rewrite (3.8) and (3.9) as

(5.1) RN =
[
− 1

8 0 3
8 1(?) 3

8 0 − 1
8

]
,

and

(5.2) RC =
[
3
4 1(?) 3

4

]
,

respectively, by discarding the points outside the stencil of restriction. Then, the four
restriction stencils in 2D for the Q2 approximation can be denoted by

(5.3) RIxIy = RIy
⊗

RIx := [rκ]IxIy ,

where Ix, Iy ∈ {N,C}.
We can extend Definition 3.2 to a “standard” restriction operator in 2D as follows.

Definition 5.5. Let T (θα) = [tκ] be a restriction stencil in 2D given as T =
T2
⊗
T1. We call

(5.4) T̃ (θα) =
∑
κ∈V

tκe
ικ·θα

eιπα·x/h :=
∑
κ∈V

t̃κ =
∑

(κ1,κ2)∈V

t̃κ1
t̃κ2
,

the restriction symbol of T .

Here, by “standard”, we mean the restriction operator is associated with only one
type of meshpoint.

Remark 5.6. It is easy to check that in (5.4),

T̃ (θα) =
∑

(κ1,κ2)∈V

t̃κ1 t̃κ2 =
∑
κ1

∑
κ2

t̃κ1 t̃κ2 = T̃1(θα1
1 )T̃2(θα2

2 ),

where T̃1(θα1
1 ) and T̃2(θα2

2 ) are the restriction symbols for T1 and T2, respectively, due
to the tensor product of T2 ⊗ T1.

Note that RIxIy draws values from four types of meshpoints on the fine grid.
Similarly to 1D, the stencil RIxIy can be split into 4 types of substencils, and the
Fourier representation of RIxIy can be written as a (1× 4)-matrix as follows,
(5.5)

R̃IxIy (θα) =
(
R̃IxIy,NN (θα) R̃IxIy,CN (θα) R̃IxIy,NC(θα) R̃IxIy,CC(θα)

)
.

The subscript JxJy of R̃IxIy,JxJy (θα) (Jx, Jy ∈ {N,C}) denotes the contributions of
the JxJy-type points on the fine grid to the IxIy points on the coarse grid.

Thus, we can use Definition 5.5 to calculate R̃IxIy,JxJy (θα).

Theorem 5.7. The entries in R̃IxIy (θα) in (5.5) are given by,

(5.6) R̃IxIy,JxJy (θα) = R̃Iy (Jy, θ
α2
2 )R̃Ix(Jx, θ

α1
1 )

where Ix, Iy, Jx, Jy ∈ {N,C}. Note that the notation for the right-hand side of (5.6)
is defined in the proof of Theorem 3.4.
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Proof. Consider a 2D Fourier mode with frequency with θα, restricted to the
coarse grid by the tensor product restriction operators given in (5.3). BecauseRIxIy =
RIy

⊗
RIx , RIxIy can be split into four substencils RIxIy,JxJy , where Jx, Jy ∈ {N,C},

with corresponding symbol R̃IxIy,JxJy . Since the tensor product preserves the stencil
structure, RIxIy,JxJy = RIy (Jy)⊗RIx(Jx), where RIy (Jy) stands for the substencil of
RIy corresponding to the contributions from Jy-type points on the find grid, see (3.10)

and (3.11). Thus, R̃IxIy,JxJy can be calculated based on Definition 5.5. According to

Remark 5.6, R̃IxIy,JxJy = R̃Ix(Jx, θ
α1
1 )R̃Iy (Jy, θ

α2
2 ).

Corollary 5.8. The symbol of restriction in 2D can be written as a tensor prod-
uct of the restriction symbols in 1D, that is, R̃(θα) is the 4× 4-matrix given by

R̃(θα) = R̃(θα2
2 )⊗ R̃(θα1

1 ),

ordered as mesh nodes, x-edge midpoints, y-edge midpoints, and cell centres.
Furthermore, the Fourier representation of R is given by the (1× 4)-block-matrix

R̂(θ) =
(
R̃(θ(0,0)) R̃(θ(1,0)) R̃(θ(0,1)) R̃(θ(1,1))

)
.

The Fourier representation of P is given by a (16× 4)-matrix and

P̂ (θ) =
1

4

(
R̂(θ)

)H
.

This approach can be extended to Qk or any other nodal basis for Q2 as long as
the 2D node points are given as a tensor-product of 1D meshes.

Corollary 5.9. The restriction symbol for the Qk discretization in 2D can be
written as a tensor product of the corresponding restriction symbols in 1D. That is,

R̃
(k)

(θα) is the k2 × k2-matrix given by

R̃
(k)

(θα) = R̃(k)(θα2
2 )⊗ R̃(k)(θα1

1 ),

ordered correspondingly to the order of R̃(k)(θα1
1 ). Furthermore,

P̂
(k)

(θ) =
1

4

(
R̂

(k)
(θ)
)H
.

5.3. A lower bound on convergence in 2D. Here, we also discuss the weighted
Jacobi relaxation for the Q2 approximation in 2D. The symbol of the two-grid error
propagation operator is

M̂TGM
h (θ) =

(
I − P̂ (θ)Â2h(2θ)−1R̂(θ)Â2(θ)

)
Ŝ2(θ),

where

Â2h(2θ) = Ã2h(2θ2)⊗ B̃2h(2θ1) + B̃2h(2θ2)⊗ Ã2h(2θ1),

Â2(θ) = diag
{
Ã2(θ(0,0)), Ã2(θ(1,0)), Ã2(θ(0,1)), Ã2(θ(1,1))

}
,

Ŝ2(θ) = diag
{
S̃(θ(0,0)), S̃(θ(1,0)), S̃(θ(0,1)), S̃(θ(1,1))

}
,

R̂(θ) =
(
R̃(θ(0,0)), R̃(θ(1,0)), R̃(θ(0,1)), R̃(θ(1,1))

)
,

P̂ (θ) =
1

4

(
R̂(θ)

)H
,
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in which

S̃(θα) = I − ωM̃−12 Ã2(θα), with

M̃2 =


112
45 0 0 0
0 176

45 0 0
0 0 176

45 0
0 0 0 256

45

 .

First, we take a look at the eigenvalues of M̃−12 Ã2(θ). The left of Figure 11 shows

the eigenvalue distribution of M̃−12 Ã2(θ) over [−π2 ,
3π
2 ]2. Note that both the smallest

and the biggest eigenvalues are achieved over the low frequencies, [−π2 ,
π
2 ]2. As shown

at the right of Figure 11 and discussed in more detail below, the standard smoothing
analysis fails to predict the two-grid convergence factor in this case as well.

0
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42
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Fig. 5.1. At left, the distribution of eigenvalues, λ, of M̃−1
2 Ã2(θ) as a function of θ = (θ1, θ2).

At right, LFA-predicted two-grid convergence and smoothing factors as a function of ω for the Q2

approximation in 2D.

Motivated by the analysis in Subsection 3.3, we consider the limiting behavior of
M̂TGM

h (θ) when θ → 0. We first look at the range of the restriction operator when

θ = (0, 0). From Corollary 5.8, we can calculate R̂(0), given by

R̃(0, 0) =


1 1

2
1
2

1
4

1 3
2

1
2

3
4

1 1
2

3
2

3
4

1 3
2

3
2

9
4

 , R̃(π, 0) =


1 0 1

2 0
−1 0 − 1

2 0
1 0 3

2 0
−1 0 − 3

2 0

 ,

R̃(0, π) =


1 1

2 0 0
1 3

2 0 0
−1 − 1

2 0 0
−1 − 3

2 0 0

 , R̃(π, π) =


1 0 0 0
−1 0 0 0
−1 0 0 0
1 0 0 0

 .

Note that the dimensions of the null spaces of R̃(π, 0), R̃(0, π) and R̃(π, π) are 2, 2,

and 3, respectively. Because P̂ (0) = 1
4R̂(0)H , we can easily identify seven vectors
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that are not treated by coarse-grid correction, and provide a lower bound on the
two-grid convergence behavior.

To find the seven vectors (and the associated eigenvalues of lim
θ→0
M̂TGM

h (θ)), we

consider the high frequencies corresponding to (θ01, θ
0
2) = (0, 0). Let T2 = M̃−12 Ã2(π, 0),

T3 = M̃−12 Ã2(0, π), and T4 = M̃−12 Ã2(π, π). By standard calculation, we have

T2 =


29
28 0 − 1

2 0
0 1 0 − 6

11
− 7

22 0 1 0
0 − 3

8 0 1

 , T3 =


29
28 − 1

2 0 0
− 7

22 1 0 0
0 0 1 − 6

11
0 0 − 3

8 1

 , T4 =


15
14 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Standard calculation shows that T2 has two eigenvalues, λ̂1,2 = 1 ±
√

9
44 , with the

corresponding eigenvectors x1,2 =
(

0 1 0 ±
√

11
16

)
, which are the in the null space

of R̃(π, 0)H . Denote x̂1,2 =
(
z x1,2 z z

)T
, where z stands for a zero vector

with size 1 × 4. Similarly, it is easy to check that λ̂3,4 = 1 ±
√

9
44 are the two

eigenvalues of T3 corresponding to eigenvectors x3,4 =
(

0 0 1 ±
√

11
16

)
. Denote

x̂3,4 =
(
z z x3,4 z

)T
.

Finally, the structure of T3 tells us that it has three eigenvalues: λ̂5,6,7 = 1 and
the corresponding eigenvectors are x5 =

(
0 1 0 0

)
, x6 =

(
0 0 1 0

)
, x7 =(

0 0 0 1
)
, which are in the null space of R̃(π, π)H . Denote x̂5 =

(
z z z x5

)T
,

x̂6 =
(
z z z x6

)T
, x̂7 =

(
z z z x7

)T
.

The above discussion gives seven eigenvalues of the two-grid operator lim
θ→0
M̂TGM

h (θ),

leading to the following results.

Lemma 5.10.

(5.7) min
ω

{
max

{
|λ∗∗|

}
: λ∗∗ = 1− ωλ̂j , 1 ≤ j ≤ 7

}
=

√
9

44
≈ 0.453,

and only ω = ω∗2 = 1 achieves the minimum.

Proof. Since the smallest and largest values of λ̂j(j = 1, 2, · · · , 7) are 1 −
√

9
44

and 1 +
√

9
44 , respectively, the optimal ω for (5.7) is ω∗2 = 2

1+
√

9
44+1−

√
9
44

= 1. It

follows 1− ω∗2
(

1−
√

9
44

)
=
√

9
44 .

Corollary 5.11. For any ω, the optimal convergence factor for the two-grid
algorithm using a single weighted Jacobi relaxation (i.e., ν1 + ν2 = 1) on the Q2

discretization in 2D, is not less than
√

9
44 , and this factor can be achieved if and only

if ω = ω∗2 .

5.3.1. Two-grid and multigrid performance in 2D. In order to see how the
parameter ω∗2 performs in practice in a multigrid method, we present two-grid and
multigrid results. Table 5 shows that ω∗2 achieves the best possible results, with mea-
sured multigrid convergence factors that coincide with the LFA-predicted convergence
factors. The same convergence factor is also obtained using full V -cycles, shown in
Table 6.
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Table 5
Two-grid convergence factors for the Q2 approximation in 2D

PPPPPPPPρ̂h

Cycle
TG(0, 1) TG(1, 0) TG(1, 1) TG(1, 2) TG(2, 1) TG(2, 2)

ω = ω∗2 = 1.000, µ = 0.842

ρh=1/128 0.452 0.452 0.288 0.123 0.123 0.091

ρ̂
(100)
h=1/128 0.442 0.442 0.280 0.119 0.119 0.088

ρ̂
(100)
h=1/256 0.442 0.442 0.280 0.119 0.119 0.088

Table 6
Multigrid convergence factors for the Q2 approximation in 2D

PPPPPPPPρ̂h

Cycle
V (0, 1) V (1, 0) V (1, 1) V (1, 2) V (2, 1) V (2, 2)

ω = ω∗2 = 1.000, µ = 0.842

ρh=1/128 0.452 0.452 0.288 0.123 0.123 0.091

ρ̂
(100)
h=1/128 0.442 0.442 0.280 0.117 0.117 0.097

ρ̂
(100)
h=1/256 0.442 0.442 0.281 0.116 0.117 0.097

5.4. A modified two-grid analysis for the Q2 approximation in 2D. Con-
sidering the classical LFA smoothing and convergence factors, The right of Figure 11
indicates that the optimal ω minimizing the two-grid convergence factor is 1, and that
the LFA smoothing factor fails to predict the two-grid convergence factor for the Q2

finite-element approximation in 2D.
In contrast, we plot the LFA-predicted two-grid convergence factor and max{|λ∗∗|}

as defined in (5.7) as a function of ω, at the left of Figure 12. This shows that for
all ω, the two-grid convergence factor is given by max{|λ∗∗|}, and that convergence
is dominated by the harmonic space associated with θ = (0, 0).

The modified prediction given by defining Q0 using the limit in (3.18) and ρ0
as in (3.19) can also be extended to this case. We plot ρ0, compared with the true
convergence factor at the right of Figure 12. We see that ρ0 again overpredicts the
convergence factor, as Q0 captures poorly the true effects of CGC for values of (θ1, θ2)
near (±π2 ,±

π
2 ). However, ρ0 still offers a reasonable prediction of convergence and of

the optimal relaxation parameter.
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Fig. 5.2. At left, LFA-predicted two-grid convergence factor and max{|λ∗∗|} as a function of
ω. At right, LFA-predicted two-grid convergence factor and ρ0, for the Q2 approximation in 2D.

6. Conclusion. In this paper, we apply LFA to analyse and optimize the two-
grid convergence factor for multigrid methods with higher-order finite-element ap-
proximations, especially focusing on optimal parameter choice for quadratic Lagrange
elements in 1D and 2D. We find that minimizing the classical LFA smoothing factor
fails to accurately predict the two-grid convergence factor. Ideal CGC operators are
provided to overcome this failure, and optimal parameters that minimize the two-grid
convergence factor are chosen based on the LFA results. With these parameters, we
see good agreement between the measured convergence factor and predicted LFA con-
vergence factor with periodic boundary conditions. Compared with the traditional
parameter choice, based on minimizing the smoothing factor, we note a big improve-
ment in performance with the corrected parameters. This may also explain why the
LFA smoothing factor cannot predict the two-grid convergence factor for higher-order
finite-element approximations to other types of PDEs, such as the Q2 −Q1 approxi-
mation to the Stokes equations, which was observed in [10].
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