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Abstract

In this paper, we develop a local Fourier analysis of multigrid methods based on block-structured
relaxation schemes for stable and stabilized mixed finite-element discretizations of the Stokes
equations, to analyze their convergence behavior. Three relaxation schemes are considered: dis-
tributive, Braess-Sarazin, and Uzawa relaxation. From this analysis, parameters that minimize
the local Fourier analysis smoothing factor are proposed for the stabilized methods with dis-
tributive and Braess-Sarazin relaxation. Considering the failure of the local Fourier analysis
smoothing factor in predicting the true two-grid convergence factor for the stable discretization,
we numerically optimize the two-grid convergence predicted by local Fourier analysis in this
case. We also compare the efficiency of the presented algorithms with variants using inexact
solvers. Finally, some numerical experiments are presented to validate the two-grid and multi-
grid convergence factors.
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1. Introduction

In recent years, substantial research has been devoted to efficient numerical solution of the
Stokes and Navier-Stokes equations, due both to their utility as models of (viscous) fluids and
their commonalities with many other physical problems that lead to saddle-point systems (see,
for example [1], and many of the other references cited here). In the linear (or linearized) case,
solution of the resulting matrix equations is seen to be difficult, due to indefiniteness and the
usual ill-conditioning of discretized PDEs. In the literature, block preconditioners (cf. [1] and
the references therein) are widely used, due to their easy construction from standard multigrid al-
gorithms for scalar elliptic PDEs, such as algebraic multigrid [2]. However, monolithic multigrid
approaches [3, 4, 5, 6, 7] have been shown to outperform these preconditioners when algorithmic
parameters are properly chosen [8, 9]. The focus of this work is on the analysis of such mono-
lithic multigrid methods in the case of stable and stabilized finite-element discretizations of the
Stokes equations.
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Local Fourier analysis (LFA) [10, 11] has been widely used to predict the convergence behav-
ior of multigrid methods, to help design relaxation schemes and choose algorithmic parameters.
In general, the LFA smoothing factor provides a sharp prediction of actual multigrid convergence,
see [10], under the assumption of an “ideal” coarse-grid correction scheme (CGC) that annihi-
lates low-frequency error components and leaves high-frequency components unchanged. In
practice, the LFA smoothing and two-grid convergence factors often exactly match the true con-
vergence factor of multigrid applied to a problem with periodic boundary conditions [12, 13, 10].
Recently, the validity of LFA has been further analysed [14], extending this exact prediction to
a wider class of problems. However, the LFA smoothing factor is also known to lose its predic-
tivity of the true convergence in some cases [15, 16, 17]. In particular, the smoothing factor of
LFA overestimates the two-grid convergence factor for the Taylor-Hood (Q2 −Q1) discretization
of the Stokes equations with Vanka relaxation [16]. Even for the scalar Laplace operator, the
LFA smoothing factor fails to predict the observed multigrid convergence factor for higher-order
finite-element methods [15].

Two main questions interest us here. First, we look to extend the study of [16] to consider
LFA of block-structured relaxation schemes for finite-element discretizations of the Stokes equa-
tions. Secondly, we consider if the LFA smoothing factor can predict the convergence factors
for these relaxation schemes. Recently, LFA for multigrid based on block-structured relaxation
schemes applied to the marker-and-cell (MAC) finite-difference discretization of the Stokes equa-
tions was shown to give a good prediction of convergence [18], in contrast to the results of [16].
Thus, a natural question to investigate is whether the contrasting results between [18] and [16]
is due to the differences in discretization or those in the relaxation schemes considered. Here,
we apply the relaxation schemes of [18] to the Q2 − Q1 discretization from [16], as well as an
“intermediate” discretization using stabilized Q1 − Q1 approaches.

In recent decades, many block relaxation schemes have been studied and applied to many
problems, including Braess-Sarazin-type relaxation schemes [3, 19, 20, 4, 21], Vanka-type re-
laxation schemes [3, 22, 4, 16, 23, 24, 7], Uzawa-type relaxation schemes [25, 26, 27, 6, 28], dis-
tributive relaxation schemes [29, 5, 30, 31, 32] and other types of methods [33, 34]. Even though
LFA has been applied to distributive relaxation [35, 11], Vanka relaxation [16, 24, 36, 37], and
Uzawa-type schemes [26] for the Stokes equations, most of the existing LFA has been for relax-
ation schemes using (symmetric) Gauss-Seidel (GS) approaches, and for simple finite-difference
and finite-element discretizations. Considering modern multicore and accelerated parallel ar-
chitectures, we focus on schemes based on weighted Jacobi relaxation with distributive, Braess-
Sarazin, and Uzawa relaxation for common finite-element discretizations of the Stokes equations.

Some key conclusions of this analysis are as follows. First, while the LFA smoothing factor
gives a good prediction of the true convergence factor for the stabilized discretizations with dis-
tributive weighted Jacobi and Braess-Sarazin relaxation, it does not for the Uzawa relaxation (in
contrast to what is seen for the MAC discretization [18, 35]). For no cases does the LFA smooth-
ing factor offer a good prediction of the true convergence behaviour for the (stable) Q2 − Q1
discretization, suggesting that the discretization is responsible for the lack of predictivity, con-
sistent with the results in [15, 16]. For both stable and stabilized discretizations, we see that
standard distributive weighted Jacobi relaxation loses some of its high efficiency, in contrast to
what is seen for the MAC scheme [18, 35] but that robustness can be restored with an additional
relaxation sweep. Exact Braess-Sarazin relaxation is also highly effective, with LFA-predicted
W(1, 1) convergence factors of 1

9 in the stabilized cases and 1
4 in the stable case. To realize these

rates with inexact cycles, however, requires nested W-cycles to solve the approximate Schur
complement equation accurately enough in the stabilized case, although simple weighted Ja-
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cobi on the approximate Schur complement is observed to be sufficient in the stable case. For
Uzawa-type relaxation, we see a notable gap between predicted convergence with exact inver-
sion of the resulting Schur complement, versus inexact inversion, although some improvement
is seen when replacing the approximate Schur complement with a mass matrix approximation,
as is commonly used in block-diagonal preconditioners [38, 39, 40]. Overall, however, we see
that distributive weighted Jacobi (DWJ) (with 2 sweeps of Jacobi relaxation on the pressure
equation) outperforms both Braess-Sarazin relaxation (BSR) and Uzawa relaxation, for the sta-
bilized discretizations, while DWJ and inexact BSR offer comparable performance for the stable
discretization.

We organize this paper as follows. In Section 2, we introduce two stabilized Q1 −Q1 and the
stable Q2 − Q1 mixed finite-element discretizations of the Stokes equations in two dimensions
(2D). In Section 3, we first review the LFA approach, then discuss the Fourier representation for
these discretizations. In Section 4, LFA is developed for DWJ, BSR, and Uzawa-type relaxation,
and optimal LFA smoothing factors are derived for the two stabilized Q1 − Q1 methods with
DWJ and BSR. Multigrid performance is presented to validate the theoretical results. Section
5 exhibits optimized LFA two-grid convergence factors and measured multigrid convergence
factors for the Q2 − Q1 discretization. Furthermore, a comparison of the cost and effectiveness
of the relaxation schemes is given. Conclusions are presented in Section 6.

2. Discretizations

In this paper, we consider the Stokes equations,

−∆~u + ∇p = ~f , (1)
∇ · ~u = 0,

where ~u is the velocity vector, p is the (scalar) pressure of a viscous fluid, and ~f represents
a (known) forcing term, together with suitable boundary conditions. Because of the nature of
LFA, we validate our predictions against the problem with periodic boundary conditions on both
~u and p. Discretizations of (1) typically lead to a linear system of the following form:

Kx =

(
A BT

B −βC

) (
U

p

)
=

(
f
0

)
= b, (2)

where A corresponds to the discretized vector Laplacian, and B is the negative of the discrete
divergence operator. If the discretization is naturally unstable, then C , 0 is the stabilization
matrix, otherwise C = 0. In this paper, we discuss two stabilized Q1 −Q1 and the stable Q2 −Q1
finite-element discretizations.

The natural finite-element approximation of Problem (1) is: Find ~uh ∈ X
h and ph ∈ H

h such
that

a(~uh,~vh) + b(ph,~vh) + b(qh, ~uh) = g(~vh), for all~vh ∈ X
h
0 and qh ∈ H

h, (3)

where

a(~uh,~vh) =

∫
Ω

∇~uh : ∇~vh, b(ph,~vh) = −

∫
Ω

ph∇ · ~vh,

g(~vh) =

∫
Ω

~fh · ~vh,
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and Xh ⊂ H1(Ω), Hh ⊂ L2(Ω) are finite-element spaces. Here, Xh
0 ⊂ X

h satisfies homogeneous
Dirichlet boundary conditions in place of any non-homogenous essential boundary conditions on
Xh. Problem (3) has a unique solution only when Xh and Hh satisfy an inf-sup condition (see
[1, 41, 42, 43]).

2.1. Stabilized Q1 − Q1 discretizations

The standard equal-order approximation of (3) is well-known to be unstable [42, 1]. To
circumvent this, a scaled pressure Laplacian term can be added to (3); for a uniform mesh with
square elements of size h, we subtract

c(ph, qh) = βh2(∇ph,∇qh),

for β > 0. With this, the resulting linear system is given by(
A BT

B −βh2Ap

) (
U

p

)
=

(
f
0

)
= b,

where Ap is the Q1 Laplacian operator for the pressure. Denote S = BA−1BT , and S β = BA−1BT +

βC, where C = h2Ap. From [1], the red-black unstable mode p = ±1, can be moved from a zero
eigenvalue to a unit eigenvalue ( giving stability without loss of accuracy) by choosing β so that

pT S βp
pT Qp

= β
pT Cp
pT Qp

= 1, (4)

where Q is the mass matrix. Substituting the bilinear stiffness and mass matrices into (4), we
find β = 1

24 . We refer to this method as the Poisson-stabilized discretization (PoSD).
An L2 projection to stabilize the Q1 − Q1 discretization, proposed in [43], stabilizes with

C(ph, qh) = (ph − Π0 ph, qh − Π0qh), (5)

where Π0 is the L2 projection from Hh into the space of piecewise constant functions on the
mesh. We refer to this method as the projection stabilized discretization (PrSD). The 4 × 4
element matrix C4 of (5) is given by

C4 = Q4 − qqT h2,

where Q4 is the 4×4 element mass matrix for the bilinear discretization and q =
[

1
4

1
4

1
4

1
4

]T
.

In the projection stabilized method, we can write C = Q − h2P, where P is given by the 9-point
stencil

P =
1
4


1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4

 .
Applying (4) to C = Q − h2P, we find that β = 1 is the optimal choice.
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2.2. Stable Q2 − Q1 discretizations

In order to guarantee the well-posedness of the discrete system (2) with C = 0, the discretiza-
tion of the velocity and pressure unknowns should satisfy an inf-sup condition,

inf
qh,0

sup
~vh,~0

|b(qh,~vh)|
‖~vh‖1‖qh‖0

≥ Γ > 0,

where Γ is a constant. Taylor-Hood (Q2 − Q1) elements are well known to be stable [41, 1],
where the basis functions associated with these elements are biquadratic for each component of
the velocity field and bilinear for the pressure.

3. LFA preliminaries

3.1. Definitions and notations

In many cases, the LFA smoothing factor offers a good prediction of multigrid performance.
Thus, we will explore the LFA smoothing factor and true (measured) multigrid convergence for
the three types of relaxations considered here. We first introduce some terminology of LFA,
following [10, 11]. We consider the following two-dimensional infinite uniform grids,

G j
h =

{
x j := (x j

1, x
j
2) = (k1, k2)h + δ j, (k1, k2) ∈ Z2},

with

δ j =


(0, 0) if j = 1,
(0, h/2) if j = 2,
(h/2, 0) if j = 3,
(h/2, h/2) if j = 4.

The coarse grids, G j
2h, are defined similarly.

Figure 1: At left, the mesh used for Q1 discretization. At right, the mesh used for Q2 discretization. Points marked by ◦
correspond to G1

h, those marked by 3 correspond to G2
h, those marked by 2 correspond to G3

h and those marked by9
correspond to G4

h.
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Let Lh be a scalar Toeplitz operator defined by its stencil acting on G j
h as follows:

Lh
∧
= [sκ]h (κ = (κ1, κ2) ∈ V); Lhwh(x j) =

∑
κ∈V

sκwh(x j + κh), (6)

with constant coefficients sκ ∈ R (or C), where wh(x j) is a function in l2(G j
h). Here, V ⊂ Z2 is a

finite index set. Because Lh is formally diagonalized by the Fourier modes ϕ(θ, x j) = eiθ·x j/h =

eiθ1 x j
1/heiθ2 x j

2/h, where θ = (θ1, θ2) and i2 = −1, we use ϕ(θ, x j) as a Fourier basis with θ ∈[
− π

2 ,
3π
2
)2. High and low frequencies for standard coarsening (as considered here) are given by

θ ∈ T low =

[
−
π

2
,
π

2

)2
, θ ∈ T high =

[
−
π

2
,

3π
2

)2 ∖ [
−
π

2
,
π

2

)2
.

Definition 3.1. If, for all functions ϕ(θ, x j),

Lhϕ(θ, x j) = L̃h(θ)ϕ(θ, x j),

we call L̃h(θ) =
∑
κ∈V

sκeiθκ the symbol of Lh.

In what follows, we consider (3 × 3) linear systems of operators, which read

Lh =


L1,1

h L1,2
h L1,3

h
L2,1

h L2,2
h L2,3

h
L3,1

h L3,2
h L3,3

h

 =


−∆h 0 (∂x)h

0 −∆h (∂y)h

−(∂x)h −(∂y)h L3,3
h

 , (7)

where L3,3
h depends on which discretization we use.

For the stabilized Q1 − Q1 approximations, the degrees of freedom for both velocity and
pressure are only located on G1

h as pictured at left of Figure 1. In this setting, the Lk,`
h (k, ` =

1, 2, 3) in (7) are scalar Toeplitz operators. Denote L̃h as the symbol of Lh. Each entry in L̃h

is computed as the (scalar) symbol of the corresponding block of Lk,`
h , following Definition 3.1.

Thus, L̃h is a 3 × 3 matrix. All blocks in Lh are diagonalized by the same transformation on a
collocated mesh.

However, for the Q2 − Q1 discretization, the degrees of freedom for velocity are located
on Gh =

⋃4
j=1 G j

h, containing four types of meshpoints as shown at right of Figure 1. The
Laplace operator in (7) is defined by extending (6), with V taken to be a finite index set of
values, V = VN

⋃
VX

⋃
VY

⋃
VC with VN ⊂ Z2, VX ⊂

{
(zx + 1

2 , zy)|(zx, zy) ∈ Z2}, VY ⊂
{
(zx, zy +

1
2 )|(zx, zy) ∈ Z2}, and VC ⊂

{
(zx + 1

2 , zy + 1
2 )|(zx, zy) ∈ Z2

}
. With this, the (scalar) Q2 Laplace

operator is naturally treated as a block operator, and the Fourier representation of each block
can be calculated based on Definition 3.1, with the Fourier bases adapted to account for the
staggering of the mesh points. Thus, the symbols of L1,1

h and L2,2
h are 4 × 4 matrices. For more

details of LFA for the Laplace operator using higher-order finite-element methods, refer to [15].
Similarly to the Laplace operator, both terms in the gradient, (∂x)h and (∂y)h, can be treated as
(4×1)-block operators. Then, the symbols of L1,3

h and L2,3
h are 4×1 matrices, calculated based on

Definition 3.1 adapted for the mesh staggering. The symbols of L3,1
h and L3,2

h are the conjugate
transposes of those of L1,3

h and L2,3
h , respectively. Finally, L3,3

h = 0. Accordingly, L̃h is a 9 × 9
matrix for the Q2 − Q1 discretization.
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Definition 3.2. The error-propagation symbol, S̃h(θ), for a block smoother Sh on the infinite
grid Gh satisfies

Shϕ(θ, x) = S̃hϕ(θ, x), θ ∈
[
−
π

2
,

3π
2

)2
,

for all ϕ(θ, x), and the corresponding smoothing factor for Sh is given by

µloc = µloc(Sh) = max
θ∈T high

{∣∣∣λ(S̃h(θ))
∣∣∣ },

where λ is an eigenvalue of S̃h(θ).

In Definition 3.2, Gh = G1
h for the stabilized case (and S̃h(θ) is a 3 × 3 matrix) and Gh =⋃4

j=1 G j
h for the stable case (where S̃h(θ) is a 9 × 9 matrix).

The error-propagation symbol for a relaxation scheme, represented by matrix Mh, applied to
either the stabilized or stable scheme is written as

S̃h(p, ω, θ) = I − ωM̃−1
h (θ)L̃h(θ),

where p represents parameters within Mh, the block approximation toLh, ω is an overall weight-
ing factor, and M̃h and L̃h are the symbols for Mh andLh, respectively. Note that µloc is a function
of some parameters in Definition 3.2. In this paper, we focus on minimizing µloc with respect to
these parameters, to obtain the optimal LFA smoothing factor.

Definition 3.3. LetD be the set of allowable parameters and define the optimal smoothing factor
overD as

µopt = min
D

µloc.

If the standard LFA assumption of an “ideal” CGC holds, then the two-grid convergence
factor can be estimated by the smoothing factor, which is easy to compute. However, as expected,
we will see that this idealized CGC does not lead to a good prediction for some cases we consider
below. When the LFA smoothing factor fails to predict the true two-grid convergence factor, the
LFA two-grid convergence factor can still be used. Thus, we give a brief introduction to the LFA
two-grid convergence factor in the following.

Let

α = (α1, α2) ∈
{
(0, 0), (1, 0), (0, 1), (1, 1)

}
,

θα = (θα1
1 , θ

α2
2 ) = θ + π · α, θ := θ00 ∈ T low.

We use the ordering of α = (0, 0), (1, 0), (0, 1), (1, 1) for the four harmonics. To apply LFA to the
two-grid operator,

MTGM
h = S

ν2
h M

CGC
h S

ν1
h , (8)

we require the representation of the CGC operator,

MCGC
h = I − Ph(L∗2h)−1RhLh,

where Ph is the multigrid interpolation operator and Rh is the restriction operator. The coarse-grid
operator, L∗2h, can be either the Galerkin or rediscretization operator.
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Inserting the representations of Sh,Lh,L
∗
2h, Ph,Rh into (8), we obtain the Fourier representa-

tion of two-grid error-propagation operator as

M̃
TGM
h (θ) = S̃

ν2

h (θ)
(
I − P̃h(θ)(L̃∗2h(2θ))−1R̃h(θ)L̃h(θ)

)̃
S
ν1

h (θ),

where

L̃h(θ) = diag
{
L̃h(θ00), L̃h(θ10), L̃h(θ01), L̃h(θ11)

}
,

S̃h(θ) = diag
{
S̃h(θ00), S̃h(θ10), S̃h(θ01), S̃h(θ11)

}
,

P̃h(θ) =
(
P̃h(θ00); P̃h(θ10); P̃h(θ01); P̃h(θ11)

)
,

R̃h(θ) =
(
R̃h(θ00), R̃h(θ10), R̃h(θ01), R̃h(θ11)

)
,

in which diag{T1,T2,T3,T4} stands for the block diagonal matrix with diagonal blocks, T1,T2,T3,
and T4.

Here, we use the standard finite-element interpolation operators and their transposes for re-
striction. For Q1, the symbol is well-known [10] while, for the nodal basis for Q2, the symbol is
given in [15].

Definition 3.4. The asymptotic two-grid convergence factor, ρasp, is defined as

ρasp = sup{ρ(M̃h(θ)TGM) : θ ∈ T low}.

In what follows, we consider a discrete form of ρasp, denoted by ρh, resulting from sampling
ρasp over only a finite set of frequencies. For simplicity, we drop the subscript h throughout the
rest of this paper, unless necessary for clarity.

3.2. Fourier representation of discretization operators
3.2.1. Fourier representation of the stabilized Q1 − Q1 discretization

By standard calculation, the symbols of the Q1 stiffness and mass stencils are

ÃQ1 (θ1, θ2) =
2
3

(4 − cos θ1 − cos θ2 − 2 cos θ1 cos θ2),

M̃Q1 (θ1, θ2) =
h2

9
(4 + 2 cos θ1 + 2 cos θ2 + cos θ1 cos θ2),

respectively. The stencils of the partial derivative operators (∂x)h and (∂y)h are

BT
x =

h
12

−1 0 1
−4 0 4
−1 0 1

 , BT
y =

h
12

 1 4 1
0 0 0
−1 −4 −1

 ,
respectively, and the corresponding symbols are

B̃T
x (θ1, θ2) =

ih
3

sin θ1(2 + cos θ2), B̃T
y (θ1, θ2) =

ih
3

(2 + cos θ1) sin θ2,

where T denotes the conjugate transpose. Thus, the symbols of the stabilized finite-element
discretizations of the Stokes equations are given by

L̃(θ1, θ2) =


ÃQ1 0 B̃T

x

0 ÃQ1 B̃T
y

B̃x B̃y L̃3,3
h

 :=

 a 0 b1
0 a b2
−b1 −b2 −c

 .
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For the Poisson-stabilized discretization, the symbol of −L3,3
h is c = c1 = aβh2. For the projection

stabilized method, following (5), the symbol of −L3,3
h is

c2 =

(4 + 2 cos θ1 + 2 cos θ2 + cos θ1 cos θ2

9
−

(1 + cos θ1)(1 + cos θ2)
4

)
h2. (9)

For convenience, we write −C for the last block of Equation (2), and its symbol as −c in the rest
of this paper.

3.2.2. Fourier representation of stable Q2 − Q1 discretizations
The symbols of the stiffness and mass stencils for the Q2 discretization using nodal basis

functions in 1D are

ÃQ2 (θ) =
1
3h

(
14 + 2 cos θ −16 cos θ

2
−16 cos θ

2 16

)
, M̃Q2 (θ) =

h
30

(
8 − 2 cos θ 4 cos θ

2
4 cos θ

2 16

)
,

respectively [15]. Here, we note that the (1, 1) entries correspond to the symbols associated with
basis functions at the nodes of the mesh, while the (2, 2) entries correspond to the symbols asso-
ciated with cell-centre (bubble) basis functions. The off-diagonal entries express the interaction
between the two types of basis functions. Then, the Fourier representation of −∆h in 2D can be
written as a tensor product,

Ã2(θ1, θ2) = ÃQ2 (θ2) ⊗ M̃Q2 (θ1) + M̃Q2 (θ2) ⊗ ÃQ2 (θ1).

The tensor product preserves block structuring; that is, Ã2(θ1, θ2) is a 4 × 4 matrix, ordered
as mesh nodes, x-edge midpoints, y-edge midpoints, and cell centres. Each row of Ã2(θ1, θ2)
reflects the connections between one of the four types of degrees of freedom with each of these
four types. Similarly, there are four types of stencils for (∂x)h and (∂y)h.

The stencils and the symbols of (∂x)h for the nodal, x-edge, y-edge, and cell-centre degrees
of freedom are

BN =
h
18

 0 0 0
−1 0 1
0 0 0

 , B̃N(θ1, θ2) =
ih
9

sin θ1,

BX =
h

18

 0 0
−4 4
0 0

 , B̃X(θ1, θ2) =
2ih
9

sin
θ1

2
,

BY =
h

18

[
−1 0 1
−1 0 1

]
, B̃Y (θ1, θ2) =

2ih
9

sin θ1 cos
θ2

2
,

BC =
h

18

[
−4 4
−4 4

]
, B̃C(θ1, θ2) =

8ih
9

sin
θ1

2
cos

θ2

2
,

respectively. Denote B̃Q2,x(θ1, θ2)T = [B̃N ; B̃X; B̃Y ; B̃C].
Similarly to B̃Q2,x(θ1, θ2)T , the symbol of the stencil of (∂y)h can be written as

B̃Q2,y(θ1, θ2)T = [B̃N(θ2, θ1); B̃Y (θ2, θ1); B̃X(θ2, θ1); B̃C(θ2, θ1)].

9



Thus, the Fourier representation of the Q2 − Q1 finite-element discretization of the Stokes equa-
tions can be written as

L̃h(θ1, θ2) =


Ã2(θ1, θ2) 0 B̃Q2,x(θ1, θ2)T

0 Ã2(θ1, θ2) B̃Q2,y(θ1, θ2)T

B̃Q2,x(θ1, θ2) B̃Q2,y(θ1, θ2) 0

 . (10)

Note that the Fourier symbol for the Q2 − Q1 discretization is a 9 × 9 matrix, and that the LFA
smoothing factor for the Q2 approximation generally fails to predict the true two-grid conver-
gence factor [15, 16]. The same behavior is seen for the relaxation schemes considered here.
Therefore, we do not present smoothing factor analysis for this case and only optimize two-grid
LFA predictions numerically.

4. Relaxation for Q1 − Q1 discretizations

4.1. DWJ relaxation

Distributive GS (DGS) relaxation [5, 32] is well known to be highly efficient for the MAC
finite-difference discretization [10], and other discretizations [33, 44]. Its sequential nature is
often seen as a significant drawback. However, Distributive weighted Jacobi (DWJ) relaxation
was recently shown to achieve good performance for the MAC discretization [18]. Thus, we
consider DWJ relaxation for the finite-element discretizations considered here. The discretized
distribution operator can be represented by the preconditioner

P =

Ih 0 (∂x)h

0 Ih (∂y)h

0 0 ∆h

 .
Then, we apply blockwise weighted-Jacobi relaxation to the distributed operator

LP ≈ L∗ =

 −∆h 0 0
0 −∆h 0

−(∂x)h −(∂y)h −(∂x)2
h − (∂y)2

h + L3,3∆h

 , (11)

where we note that the operators (∂x)2
h and (∂y)2

h are formed by taking products of the discrete
derivative operators and, thus, do not satisfy the identity (∂x)2

h + (∂y)2
h = ∆h.

The discrete matrix form of P is

P =

(
I BT

0 −Ap

)
,

where Ap is the Laplacian operator discretized at the pressure points. For standard distributive
weighted-Jacobi relaxation (with weights α1, α2), we need to solve a system of the form

MDδx̂ =

(
α1diag(A) 0

B α2h2I

) (
δÛ
δ p̂

)
=

(
rU
rp

)
, (12)

then distribute the updates as δx = Pδx̂. We use h2 in the (2, 2) block of (12), because the
diagonal entries of the (2, 2) block will be of the form of a constant times h2 (up to boundary

10



conditions), for both stabilization terms. The error propagation operator for the scheme is, then,
I − ωPM−1

D L.
The symbol of the blockwise weighted-Jacobi operator, MD, is

M̃D(θ1, θ2) =


8
3α1 0 0
0 8

3α1 0
−b1 −b2 h2α2

 .
By standard calculation, the eigenvalues of the error-propagation symbol, S̃D(α1, α2, ω, θ) =

I − ωP̃M̃−1
D L̃, are

1 −
ω

α1
y1, 1 −

ω

α1
y1, 1 −

ω

α2
y2, (13)

where y1 = 3a
8 and y2 =

−b2
1−b2

2+ac
h2 .

Noting that y1 = 3a
8 is very simple, we first consider a lower bound on the optimal LFA

smoothing factor corresponding to y1.

Lemma 4.1.
µ∗ := min

(α1,ω)
max
θ∈T high

{∣∣∣1 − ω

α1
y1

∣∣∣} =
1
3
,

and this value is achieved if and only if ω
α1

= 8
9 .

Proof. It is easy to check that a =
2(4−cos θ1−cos θ2−2 cos θ1 cos θ2)

3 ∈ [2, 4] for θ ∈ T high. The mini-
mum of y1 is y1,min = 3

4 with (cos θ1, cos θ2) = (0, 1) or (1, 0) and the maximum is y1,max = 3
2

with (cos θ1, cos θ2) = (1,−1) or (−1, 1). Thus, µ∗ =
y1,max+y1,min

y1,max−y1,min
= 1

3 under the condition
ω
α1

= 2
y1,min+y1,max

= 8
9 .

Remark 4.1. The optimal smoothing factor for damped Jacobi relaxation for the Q1 finite-
element discretization of the Laplacian is 1

3 with ω
α

= 8
9 . Thus, this offers an intuitive lower

bound on the possible performance of block relaxation schemes that include this as a piece of
the overall relaxation.

From (13), we see that the only difference between the eigenvalues of DWJ relaxation for the
Poisson-stabilized and projection stabilized methods is in the third eigenvalue, which depends
on y2 and, consequently, on the stabilization term.

4.1.1. Poisson-stabilized discretization with DWJ relaxation
For the Poisson-stabilized case, y2 =

−b2
1−b2

2+ac
h2 with c = βαh2 and β = 1

24 . By standard
calculation, y2,min = 8

27 , with
(

cos θ1, cos θ2
)

= (−1,−1), and y2,max = 64
51 with

(
cos θ1, cos θ2

)
=

( 8
17 , 0) or (0, 8

17 ) .

Theorem 4.1. The optimal smoothing factor for the Poisson-stabilized discretization with DWJ
relaxation is 55

89 , that is,

µopt = min
(α1,ω,α2)

max
θ∈T high

{∣∣∣λ(S̃D(α1, α2, ω, θ))
∣∣∣} =

55
89
≈ 0.618,

and is achieved if and only if

ω

α2
=

459
356

,
136
267
≤
ω

α1
≤

96
89
. (14)

11



Proof. min
(α2,ω)

max
θ∈T high

{∣∣∣1 − ω

α2
y2

∣∣∣} =
y2,max − y2,min

y2,max + y2,min
=

55
89

with the condition that ω
α2

= 2
y2,max+y2,min

=

459
356 . Because 55

89 >
1
3 , we need to require |1− ω

α1
y1| ≤

55
89 for all y1 to achieve this factor. It follows

that 136
267 ≤

ω
α1
≤ 96

89 .

4.1.2. Projection stabilized discretization with DWJ relaxation
For the projection stabilized discretization, y2 depends on c2 given in (9), and standard cal-

culation gives y2,min = 8
27 with

(
cos θ1, cos θ2

)
= (−1,−1) and y2,max = 3

2 with (cos θ1, cos θ2) =

(− 1
2 , 1) or (1,− 1

2 ).

Theorem 4.2. The optimal smoothing factor for the projection stabilized discretization with DWJ
relaxation is 65

97 , that is,

µopt = min
(α1,ω,α2)

max
θ∈T high

{∣∣∣λ(S̃D(α1, α2, ω, θ))
∣∣∣} =

65
97
≈ 0.670,

and is achieved if and only if

ω

α2
=

108
97

,
128
291
≤
ω

α1
≤

108
97

. (15)

Proof. min
(α2,ω)

max
θ∈T high

{∣∣∣1 − ω

α2
y2

∣∣∣} =
y2,max − y2,min

y2,max + y2,min
=

65
97

with the condition that ω
α2

= 2
y2,max+y2,min

=

108
97 . Since 65

97 >
1
3 , we need to require |1− ω

α1
y1| ≤

65
97 for all y1 to achieve this factor, which leads

to 128
291 ≤

ω
α1
≤ 108

97 .

Comparing the Poisson-stabilized and projection stabilized discretizations using DWJ, we
see that the optimal LFA smoothing factor for the Poisson-stabilized discretization slightly out-
performs that of the projection stabilized discretization. In both cases, a stronger relaxation on
the (3, 3) block of (11) would be needed in order to improve performance to match the lower
bound on the convergence factor of 1

3 . A natural approach is to using more iterations to solve the
pressure equation in DWJ. We explore the LFA predictions for this case in the following.

4.1.3. Stabilized discretization with 2 sweeps of Jacobi for DWJ relaxation
Denote the (3, 3) block of (11) as G. We consider applying two sweeps of weighted-Jacobi

relaxation with equal weights, ωJ , on the pressure equation. As before, we note that G has
a constant diagonal entry proportional to h2, so we write weighted Jacobi relaxation on G as
I −G−1

J G for GJ = h2

ωJ
I. Thus, we can represent this relaxation scheme as solving

MD,Jδx̂ =

(
α1diag(A) 0

B Ĝ

) (
δÛ
δp̂

)
=

(
rU
rp

)
, (16)

where Ĝ =
(
2G−1

J −G−1
J GG−1

J

)−1
. The symbol of MD,J , is

M̃D,J(θ1, θ2) =


8
3α1 0 0
0 8

3α1 0
−b1 −b2

h2

2ωJ−ω
2
Jy2

 .
12



By standard calculation, the eigenvalues of the error-propagation symbol, S̃D,J(α1, ωJ , ω, θ) =

I − ωP̃M̃−1
D,JL̃, are

1 −
ω

α1
y1, 1 −

ω

α1
y1, 1 − ωy3, (17)

where y3 = ωJy2(2 − ωJy2), where the symbol of G is h2y2, with y2 defined as in (13). Note
that S̃D,J has the same eigenvalue, 1 − ω

α1
y1 as that of S̃D. A natural question is whether

min
(α1,ωJ ,ω)

max
θ∈T high

{∣∣∣1 − ωy3
∣∣∣} =

1
3

, which is shown in the following theorems.

Theorem 4.3. The optimal smoothing factor for the Poisson-stabilized discretization with 2
sweeps of Jacobi for DWJ relaxation is 1

3 , that is,

µopt = min
(α1,ωJ ,ω)

max
θ∈T high

{∣∣∣λ(S̃D,J(α1, ωJ , ω, θ))
∣∣∣} =

1
3
,

and is achieved if and only if ω
α1

= 8
9 and either

459
356
≤ ωJ ≤

51
64

(1 +

√
2

2
),

2

3
(

64
51ωJ(2 − 64

51ωJ)
) ≤ ω ≤

4
3
,

or

27
8

(1 −

√
2

2
) ≤ ωJ ≤

459
356

,

2

3
(

8
27ωJ(2 − 8

27ωJ)
) ≤ ω ≤

4
3
.

Proof. Recall that y3 = ωJy2(2 − ωJy2) := ξ(2 − ξ), where ξ = ωJy2. Let

µ∗∗ = min
(α1,ωJ ,ω)

max
θ∈T high

{∣∣∣1 − ωy3
∣∣∣}. (18)

We first show that µ∗∗ ≤ 1
3 under some conditions on the parameters, ωJ and ω. Let y3,min and

y3,max be the maximum and minimum of y3(ξ) = ξ(2 − ξ), respectively. If µ∗∗ ≤ 1
3 , then it must

be that
2

3y3,min
≤ ω ≤

4
3y3,max

. (19)

Next, we need to find what y3,min and y3,max are. As discussed earlier, y2 ∈ [ 8
27 ,

64
51 ]. Thus,

ξ ∈ [ 8
27ωJ ,

64
51ωJ], where ωJ > 0. Note that y3(ξ) = ξ(2−ξ) = −(ξ−1)2 +1 is a quadratic function

with the axis of symmetric, ξ = 1. Thus, the extreme values of y3(ξ) are achieved at the points
8
27ωJ , 64

51ωJ or 1. Based on 64
51ωJ ≤ 1 and 64

51ωJ ≥ 1, we consider two cases.

1. If 64
51ωJ ≤ 1, we have

y3,min =
8

27
ωJ

(
2 −

8
27
ωJ

)
, y3,max =

64
51
ωJ

(
2 −

64
51
ωJ

)
. (20)

Note that (19) indicates that y3,max ≤ 2y3,min. Combining with (20) leads to ωJ ≥
373
394 .

However, ωJ ≤
51
64 <

373
394 . Thus, there is no ωJ such that µ∗∗ ≤ 1

3 in this case.
13



2. To guarantee that |1 − ωy3| = |1 − ωξ(2 − ξ)| < 1, we require that 0 < ξ < 2. Assume that
1 ≤ 64

51ωJ < 2. It follows that 8
27ωJ < 1 ≤ 64

51ωJ . Recall that y3(ξ) = ξ(2−ξ) = −(ξ−1)2 +1.

• If ( 64
51ωJ − 1) ≥ (1 − 8

27ωJ), we have

459
356
≤ ωJ <

51
32
. (21)

Then, the extreme values of y3(ξ) are

y3,min =
64
51
ωJ

(
2 −

64
51
ωJ

)
, y3,max = y3(1) = 1. (22)

Substituting (22) in to (19), we have

2

3
(

64
51ωJ(2 − 64

51ωJ)
) ≤ ω ≤ 4

3
. (23)

To guarantee (23) makes sense, in combination with (21) gives

459
356
≤ ωJ ≤

51
64

(1 +

√
2

2
). (24)

Recall that there is another eigenvalue, 1 − ω
α1

y1, of S̃D,J . In order to obtain µopt = 1
3 ,

we thus require

459
356
≤ ωJ ≤

51
64

(1 +

√
2

2
),

2

3
(

64
51ωJ(2 − 64

51ωJ)
) ≤ ω ≤

4
3
,

ω

α1
=

8
9
.

• A similar argument holds if ( 64
51ωJ − 1) ≤ (1 − 8

27ωJ), leading to the second set of
conditions.

Note that the set of parameters values defined in Theorem 4.3 is not empty, with parameters
α1 = 3

2 , ω = 4
3 and ωJ = 1 in the set.

Theorem 4.4. The optimal smoothing factor for the projection stabilized discretization with two
sweeps of Jacobi for DWJ relaxation is 1

3 , that is,

µopt = min
(α1,ω,α2)

max
θ∈T high

{∣∣∣λ(S̃(α1, α2, ω, θ))
∣∣∣} =

1
3
,

and is achieved if and only if ω
α1

= 8
9 and either

108
97
≤ ωJ ≤

2
3

(1 +

√
2

2
),

2

3
(

3
2ωJ(2 − 3

2ωJ)
) ≤ ω ≤

4
3
,
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or

27
8

(1 −

√
2

2
) ≤ ωJ ≤

108
97

,

2

3
(

8
27ωJ(2 − 8

27ωJ)
) ≤ ω ≤

4
3
.

Proof. The proof is similar to that of Theorem 4.3.

Remark 4.2. Theorems 4.3 and 4.4 tell us that two sweeps of weighted-Jacobi relaxation on the
pressure equation in DWJ are required to achieve optimal performance. This is different than
the case of DWJ for the MAC discretization [18], where the optimal convergence factor of 3

5 is
attained with one sweep of relaxation on the pressure equation.

Remark 4.3. Red-black Gauss-Seidel relaxation [10] is an attractive tool for parallel computa-
tion as it typically offers better relaxation properties while retaining parallelism. However, due
to the added coupling of the finite-element operators considered here, four-colour or nine-colour
relaxation would be needed to decouple the updates. Thus, we restrict ourselves to weighted
Jacobi relaxation.

4.2. Braess-Sarazin relaxation

Although DWJ relaxation is efficient, we see clearly in the above that it “underperforms”
in relation to weighted Jacobi relaxation for the scalar Poisson problem unless additional work
is done on the pressure equation. Furthermore, proper construction of the preconditioner, P,
is not always possible or straightforward, especially for other types of saddle-point problems.
Considering these obstacles, we also analyse other block-structured relaxation schemes. Braess-
Sarazin-type algorithms were originally developed as a relaxation scheme for the Stokes equa-
tions [19], requiring the solution of a greatly simplified but global saddle-point system. The
(exact) BSR approach was first introduced in [19], where it was shown that a multigrid conver-
gence rate of O(k−1) can be achieved, where k denotes the number of smoothing steps on each
level. As a relaxation scheme for the system in (2), one solves a system of the form

MEδx =

(
αD BT

B −C

) (
δU
δp

)
=

(
rU
rp

)
, (25)

where D is an approximation to A, the inverse of which is easy to apply, for example I, or diag(A).
Solutions of (25) are computed in two stages as

S δp =
1
α

BD−1rU − rp, (26)

δU =
1
α

D−1(rU − BTδp),

where S = 1
α

BD−1BT + C, and α > 0 is a chosen weight for D to obtain a better approximation
to A. We consider an additional weight, ω, for the global update, δx, to improve the effectiveness
of the correction to both the velocity and pressure unknowns.

There is a significant difficulty in practical use of exact BSR because it requires an exact in-
version of the approximate Schur complement, S , which is typically very expensive. A broader
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class of iterative methods for the Stokes problem is discussed in [21], which demonstrated that
the same O(k−1) performance can be achieved as with exact BSR when the pressure correction
equation is not solved exactly. In practice, an approximate solve is sufficient for the Schur com-
plement system, such as with a few sweeps of weighted Jacobi relaxation or a few multigrid
cycles. In what follows, we take D = diag(A) and analyze exact BSR; to see what convergence
factor can be achieved. In numerical experiments, we then consider whether it is possible to
achieve the same convergence factor using an inexact solver. Note that some studies [3, 8, 45]
have shown the efficiency of inexact Braess-Sarazin relaxation. The symbol of ME is given by

M̃E(θ1, θ2) =


8
3α 0 b1

0 8
3α b2

−b1 −b2 −c

 .
The symbol of the error-propagation matrix for weighted exact BSR is S̃E(α, ω, θ) = I−ωM̃−1

E L̃.
A standard calculation shows that the determinant of L̃ − λM̃E is

πE(λ;α) = (1 − λ)(a −
8
3
αλ)

[
(1 − λ)(b2

1 + b2
2) + (

8
3
αλ − a)c

]
. (27)

We first establish a lower bound on the LFA smoothing factor for the stabilized method with
BSR.

Theorem 4.5. The optimal LFA smoothing factor for the Poisson-stabilized and projection sta-
bilized discretizations with exact BSR is not less than 1

3 .

Proof. From (27), two eigenvalues of M̃−1
E L̃ are given by

λ1 = 1, λ2 =
3a
8α
,

which are independent of the stabilization term, c. From Lemma 4.1, we know that for λ2, the
optimal smoothing factor is 1

3 , under the condition that ω
α

= 8
9 . Note that if |1 − ωλ1| ≤

1
3 , then

2
3 ≤ ω ≤ 4

3 . Because there is another eigenvalue, λ3, the optimal LFA smoothing factor is not
less than 1

3 .

Similarly to DWJ, we see that the Jacobi relaxation for the Laplacian discretization places a
limit on the overall performance of BSR. From (27), the third eigenvalue of M̃−1

E L̃ is λ3 = ac+b
8
3αc+b

,

where b = −(b2
1 + b2

2) ≥ 0 (because both b1 and b2 are imaginary). Thus, we only need to check
whether we can choose α and ω so that |1 − ωλ3| ≤

1
3 over all high frequencies, while also

ensuring |1 − ωλ1| ≤
1
3 and |1 − ωλ2| ≤

1
3 .

Theorem 4.6. The optimal smoothing factor for both the Poisson-stabilized and projection sta-
bilized discretizations with exact BSR is

µopt = min
(α,ω)

max
θ∈T high

∣∣∣λ(S̃(α, ω, θ))
∣∣∣ =

1
3
,

if and only if
ω

α
=

8
9
,

3
4
≤ α ≤

3
2
.
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Proof. Note that a ∈ [2, 4], and choose α such that 2 = amin ≤
8
3α ≤ amax = 4. If c is positive,

the following always holds

3
4α

=
amin
8
3α
≤

aminc + b
8
3αc + b

≤
ac + b

8
3αc + b

≤
amaxc + b

8
3αc + b

≤
amax

8
3α

=
3

2α
.

Furthermore, if ω
α

= 8
9 , we have

2
3

=
3

4α
·

8
9
α ≤ ωλ3 ≤

3
2α
·

8
9
α =

4
3
. (28)

For both discretizations, we can check that c > 0 over the high frequencies. From (28), it is easy
to see that |1 − ωλ3| ≤

1
3 , with α = 9

8ω ∈ [ 3
4 ,

3
2 ].

4.3. Inexact Braess-Sarazin relaxation

Here, we also consider solving the Schur complement equation, (26), by weighted Jacobi
relaxation with weight, ωJ . Following [21], we refer to this as inexact Braess-Sarazin relaxation
(IBSR). Let the corresponding block preconditioner be MI , given by

MI =

(
αD BT

B Ŝ + B(αD)−1BT

)
where Ŝ is the approximation of −S = −B(αD)−1BT −C used in (26). For one sweep of weighted
Jacobi relaxation, Ŝ is given by

Ŝ 1 = −
1
ωJ

diag(S ),

and for 2 sweeps of weighted Jacobi relaxation with equal weights, Ŝ is given by

Ŝ 2 = Ŝ 1

(
2I + Ŝ −1

1 S
)−1
.

By direct computation, B(αD)−1BT := S 0 can be written in terms of a 5 × 5 stencil:

S 0 =
h2

α


−1/192 −1/48 −1/24 −1/48 −1/192
−1/48 0 1/24 0 −1/48
−1/24 1/24 3/16 1/24 −1/24
−1/48 0 1/24 0 −1/48
−1/192 −1/48 −1/24 −1/48 −1/192

 . (29)

The symbol of S 0 is S̃ 0 = 3b
8α := ς for b = −b2

1−b2
2. In fact, ς = B̃(α̃D)−1B̃T . Let γ be the symbol

of Ŝ 1,

γ =

 − h2

24ωJ
( 9

2α + 8
3 ), for PoSD

− h2

24ωJ
( 9

2α + 14
3 ), for PrSD

Similarly, let η be the symbol of Ŝ + B(αD)−1BT ,

η =

 γ + ς, for one sweep (Ŝ 1)(
2 + τγ−1

)−1
γ + ς, for two sweeps (Ŝ 2)
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where

τ =

{
ς + c1, for PoSD
ς + c2, for PrSD

Finally, the symbol of MI is given by

M̃I(θ1, θ2) =


8
3α 0 b1

0 8
3α b2

−b1 −b2 η

 . (30)

The symbol of the error-propagation matrix for IBSR is S̃I(α, ω, θ) = I − ωM̃−1
I L̃. A standard

calculation shows that the determinant of L̃ − λM̃I is

πI(λ;α, ω, ωJ) = −(a −
8
3
αλ)

[
(b −

8αη
3

)λ2 + (aη −
8αc

3
− 2b)λ + ac + b

]
. (31)

From (31), we see there is an eigenvalue 3a
8α , which is the same as that of exact BSR. As

before, the question now becomes whether there is a choice of ω, α and ωJ such that convergence
equal to that of exact BSR can be achieved. We leave this as an open question for future work
and, instead, numerically optimize the two-grid convergence factor over these parameters.

Remark 4.4. A similar form to (30) occurs for inexact BSR applied to the stable Q2 − Q1 ap-
proximation, modifying the stencil of C to be zero, and accounting for the block structure shown
in (10).

4.4. Numerical experiments for stabilized discretizations

We now present LFA predictions, validating DWJ, (I)BSR, and the related Uzawa iteration
against measured multigrid performance for these schemes. We consider the homogeneous prob-
lem in (1), with periodic boundary conditions, and a random initial guess, x(0)

h .

Convergence is measured using the averaged convergence factor, ρ̂h = k

√
‖d(k)

h ‖2

‖d(0)
h ‖2

, with k = 100,

and d(k)
h = b − Kx(k)

h . The LFA predictions are made with h = 1/128, for both the smoothing
factor, µ, and two-grid convergence factor, ρh. For testing, we use standard W(ν1, ν2) cycles
with bilinear interpolation for Q1 variables and biquadratic interpolation for Q2 variables, and
their adjoints for restriction. We consider both rediscretization and Galerkin coarsening, noting
that they coincide for all terms except the stabilization terms that include a scaling of h2. The
coarsest grid is a mesh with 4 elements. Where significant differences arise, we also report
two-grid convergence rates for TG(ν1, ν2) cycles.

4.4.1. PoSD with DWJ
From the range of parameters allowed in (14), we select α1 = 1.451, α2 = 1.000, and

ω = 1.290 (for convenience, satisfying the equality in (14)) to compute the LFA predictions.
Figure 2 shows the spectrum of the two-grid error-propagation operators for DWJ relaxation
with rediscretization and Galerkin coarsening. Note that the two-grid convergence factor is the
same as the optimal smoothing factor for rediscretization, but not for Galerkin coarsening.
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Figure 2: The spectrum of the two-grid error-propagation operator using DWJ for PoSD. Results with rediscretization
are shown at left, while those with Galerkin coarsening are at right. In both figures, the inner circle has radius equal to
the LFA smoothing factor.

In order to see the sensitivity of performance to parameter choice, we consider the two-grid
LFA convergence factor with rediscretization coarsening. From (14), we know that there are
many optimal parameters. To fix a single parameter for DWJ, we consider the case of ω =
459
356 and, at the left of Figure 3, we present the LFA-predicted two-grid convergence factors for
DWJ with variation in α1 and α2. Here, we see strong sensitivity to “too small” values of both
parameters, for α1 < 1 and α2 < 0.9, including a notable portion of the optimal range of values
predicted by the LFA smoothing factor. At the right of Figure 3, we fix α2 = 356

459ω and vary ω
and α1. The two lines are the lower and upper bounds from (14), between which LFA predicts
the optimal convergence factor should be achieved. Note that not all of the allowed parameters
obtain the optimal convergence factor. Here, we see great sensitivity for large values of ω, but a
large range with generally similar performance as in the optimal parameter case.

Figure 3: The two-grid LFA convergence factor for the PoSD using DWJ and rediscretization. At left, we fix ω = 459
356

and vary α1 and α2. At right, we fix α2 = 356
459ω and vary ω and α1.
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In Table 1, we present the multigrid performance of DWJ with W-cycles for rediscretization
coarsening. These results show measured multigrid convergence factors that coincide with the
LFA-predicted two-grid convergence factors. Similar results are seen for V-cycles with redis-
cretization. For Galerkin coarsening, nearly identical W-cycle results are seen when ν1 + ν2 > 2,
but divergence is seen for W-cycles with ν1 + ν2 = 1 or 2, and for all V-cycles tested. In Table 2,
we report the multigrid performance of DWJ using 2 sweeps of Jacobi relaxation on the pressure
equation with rediscretization for PoSD. Here, we take α1 = 3/2, ωJ = 1, ω = 4/3 as in Theorem
4.3. We see that the LFA convergence factor accurately predicts the measured performance.

Table 1: W-cycle convergence factors, ρ̂h, for DWJ with rediscretization for PoSD, compared with LFA two-grid pre-
dictions, ρh. Here, the algorithmic parameters are α1 = 1.451, α2 = 1.000, ω = 1.290 and the LFA smoothing factor is
µ = 0.618.

Cycle W(0, 1) W(1, 0) W(1, 1) W(1, 2) W(2, 1) W(2, 2)
ρh=1/128 0.618 0.618 0.382 0.236 0.236 0.146
ρ̂h=1/64 0.564 0.568 0.349 0.215 0.214 0.133
ρ̂h=1/128 0.561 0.568 0.348 0.215 0.214 0.132

Table 2: W-cycle convergence factors, ρ̂h, for DWJ with 2 sweeps of Jacobi on the pressure equation for PoSD with
rediscretization, compared with LFA two-grid predictions, ρh. Here, the algorithmic parameters are α1 = 3/2, ωJ =

1, ω = 4/3 and the LFA smoothing factor is µ = 0.333.
Cycle W(0, 1) W(1, 0) W(1, 1) W(1, 2) W(2, 1) W(2, 2)
ρh=1/128 0.338 0.338 0.115 0.078 0.078 0.061
ρ̂h=1/64 0.324 0.324 0.112 0.074 0.075 0.074
ρ̂h=1/128 0.324 0.324 0.112 0.075 0.075 0.073

4.4.2. PrSD with DWJ
From the range of parameters allowed in (15), we choose α1 = 1, α2 = 1, ω = 108

97 . Figure 4
shows that the smoothing factor provides a good prediction for the two-grid convergence factor
with rediscretization, but not with Galerkin coarsening.
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Figure 4: The spectrum of the two-grid error-propagation operator using DWJ for PrSD. Results with rediscretization are
shown at left, while those with Galerkin coarsening are at right. In both figures, the inner circle has radius equal to the
LFA smoothing factor.

Similarly to the discussion above, we consider the sensitivity to parameter choice for DWJ
applied to PrSD. To fix a single parameter for DWJ, we consider the case of ω = 108

97 . At the
left of Figure 5, we present the LFA-predicted convergence factors for DWJ with variation in α1
and α2, again seeing a strong sensitivity to “too small” values of the parameters. At the right of
Figure 5, we fix α2 = 97

108ω. The two lines are the lower and upper bounds from (15), between
which LFA predicts the optimal convergence factor should be achieved. Note that not all of the
parameters in this range obtain the optimal convergence factor. We see that, for small α1, the
convergence factor is very sensitive to large values of ω.

Figure 5: The two-grid LFA convergence factor for the PrSD using DWJ and rediscretization. At left, we fix ω = 108
97

and vary α1 and α2. At right, we fix α2 = 97
108ω and vary ω and α1.

In Table 3, we present the multigrid performance of DWJ relaxation with W-cycles for re-
discretization coarsening. We see that the measured multigrid convergence factors match well
with the LFA-predicted two-grid convergence factors. For Galerkin coarsening, as in the case of
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PoSD, we see divergence when ν1 + ν2 ≤ 2, but performance matching that of rediscretization
for ν1 + ν2 > 2. Here, V-cycle results are similar to the W-cycle results for both rediscretization
and Galerkin coarsening approaches. In Table 4, we compare the LFA predictions with multigrid
performance for DWJ using 2 sweeps of Jacobi relaxation on the pressure equation. Here, we
take α1 = 3/2, ωJ = 1, ω = 4/3 as in Theorem 4.4, and observe a good match between the LFA
predictions and measured performance.

Table 3: W-cycle convergence factors, ρ̂h, for DWJ with rediscretization for PrSD, compared with LFA two-grid predic-
tions, ρh. Here, the algorithmic parameters are α1 = 1, α2 = 1, ω = 108/97 and the LFA smoothing factor is µ = 0.670.

Cycle W(0, 1) W(1, 0) W(1, 1) W(1, 2) W(2, 1) W(2, 2)
ρh=1/128 0.670 0.670 0.449 0.300 0.300 0.201
ρ̂h=1/64 0.652 0.652 0.436 0.291 0.292 0.196
ρ̂h=1/128 0.651 0.652 0.435 0.291 0.291 0.195

Table 4: W-cycle convergence factors, ρ̂h, for DWJ with 2 sweeps of Jacobi on the pressure equation for PrSD with
rediscretization, compared with LFA two-grid predictions, ρh. Here, the algorithmic parameters are α1 = 3/2, ωJ =

1, ω = 4/3 and the LFA smoothing factor is µ = 0.333.
Cycle W(0, 1) W(1, 0) W(1, 1) W(1, 2) W(2, 1) W(2, 2)
ρh=1/128 0.333 0.333 0.112 0.079 0.079 0.062
ρ̂h=1/64 0.324 0.324 0.112 0.074 0.075 0.074
ρ̂h=1/128 0.324 0.324 0.112 0.075 0.075 0.073

4.4.3. PoSD with BSR
Next, we consider BSR for PoSD, first displaying the two-grid LFA convergence factor as

a function of α for rediscretization coarsening with ω = 8
9α in Figure 6. Comparing the con-

vergence factor with µ2, for ν1 = ν2 = 1, we see a good match over the interior of the interval
3
4 ≤ α ≤

3
2 predicted by Theorem 4.6. For larger values of ν1 + ν2, this agreement deteriorates as

is typical when the behavior of coarse-grid correction becomes dominant. At the right of Figure
6, we see good agreement between ρ and µ when ν1 + ν2 = 1 with fixed α = 1. In both cases,
similar behaviour is seen with Galerkin coarsening.
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Figure 6: Two-grid and smoothing factors for BSR with rediscretization for PoSD. At left, comparing ρ with µ2 for
ν1 = ν2 = 1 with ω = 8

9α. At right, comparing ρ with µ for ν1 + ν2 = 1 with α = 1.

Motivated by the above, we use α = 1 and ω = 8
9 for multigrid experiments with redis-

cretization, solving the Schur complement equation exactly. Table 5 shows that the measured
multigrid convergence factors match well with the LFA-predicted two-grid convergence factors
for W-cycles with rediscretization coarsening, and similar results are seen for Galerkin coarsen-
ing.

Table 5: W-cycle convergence factors, ρ̂h, for BSR with rediscretization for PoSD, compared with LFA two-grid predic-
tions, ρh. Here, the algorithmic parameters are α = 1, ω = 8

9 and the LFA smoothing factor is µ = 0.333.

Cycle W(0, 1) W(1, 0) W(1, 1) W(1, 2) W(2, 1) W(2, 2)
ρh=1/128 0.333 0.333 0.111 0.079 0.079 0.062
ρ̂h=1/64 0.324 0.323 0.112 0.075 0.075 0.058
ρ̂h=1/128 0.323 0.323 0.112 0.075 0.075 0.058

In Table 6, we report the LFA prediction for IBSR with different parameters and one or two
sweeps of Jacobi relaxation on the approximate Schur complement for PoSD. Here, we clearly
see the benefit of two sweeps of relaxation on the approximate Schur complement over a single
sweep, as well as that better performance is possible when (numerically) optimizing all of the
parameters for IBSR independent of the optimization for exact BSR.

Table 6: LFA predictions: two-grid convergence factor, ρh=1/128, and smoothing factor, µ, of IBSR with rediscretization
for PoSD with ν1 + ν2 = 1.

Sweep α ω ωJ µ ρh=1/128

1 (Optimized) 1.2 1.1 0.7 0.679 0.679
1 1.0 8/9 1.0 0.669 0.735
2 (Optimized) 1.1 1.0 1.0 0.366 0.366
2 1.0 8/9 1.0 0.461 0.461

Table 7 shows that the LFA-predicted 2-grid convergence factors closely match those seen
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in practice. However, as shown in Table 8, significant degradation is seen when considering
W-cycles, particularly as ν1 + ν2 increases.

Table 7: Two-grid convergence factor, ρ̂h for IBSR with 2 sweeps of Jacobi with rediscretization for PoSD, compared
with LFA two-grid predictions, ρh, with optimized parameters, α = 1.1, ω = 1.0 and ωJ = 1.

Cycle TG(0, 1) TG(1, 0) TG(1, 1) TG(1, 2) TG(2, 1) TG(2, 2)
ρh=1/128 0.366 0.366 0.167 0.128 0.128 0.106
ρ̂h=1/64 0.352 0.353 0.160 0.120 0.120 0.100
ρ̂h=1/128 0.352 0.353 0.160 0.122 0.122 0.100

Table 8: W-cycles convergence factors, ρ̂h, for IBSR with 2 sweeps of Jacobi with rediscretization for PoSD, compared
with LFA two-grid predictions, ρh with optimized parameters, α = 1.1, ω = 1.0 and ωJ = 1.

Cycle W(0, 1) W(1, 0) W(1, 1) W(1, 2) W(2, 1) W(2, 2)
ρh=1/128 0.366 0.366 0.167 0.128 0.128 0.106
ρ̂h=1/64 0.456 0.453 0.245 0.197 0.200 0.167
ρ̂h=1/128 0.459 0.462 0.257 0.206 0.211 0.175

The gap between the results seen for exact BSR in Table 5 and those for IBSR in Table
8 is quite significant. To maintain the performance observed for exact BSR, we could simply
use more Jacobi iterations on the Schur complement system in IBSR; however, experiments
showed that this did not lead to a scalable algorithm. Instead, we consider solving the Schur
complement system by applying a multigrid W(1, 1)-cycle using weighted Jacobi relaxation with
weight ωJ , shown in Table 9. From Table 9, we observe that using only 1 or 2 W(1, 1)-cycles on
the approximate Schur complement achieves convergence factors essentially matching those in
Table 5, showing that the W(1, 1) cycle is the most cost effective.

Table 9: W-cycle convergence factors, ρ̂h, for IBSR with inner W(1, 1)-cycle for PoSD and (α, ω, ωJ) = (1, 8/9, 1). In
brackets, minimum value of the number of inner W(1, 1)-cycles that achieves the same convergence factors as those of
LFA predictions, ρh, for exact BSR.

Cycle W(0, 1) W(1, 0) W(1, 1) W(1, 2) W(2, 1) W(2, 2)
ρh=1/128 0.333 0.333 0.111 0.079 0.079 0.062
ρ̂h=1/64 0.368(2) 0.346(2) 0.131(2) 0.075(2) 0.075(2) 0.059(1)
ρ̂h=1/128 0.343(2) 0.351(2) 0.111(2) 0.075(2) 0.075(2) 0.063(1)

4.4.4. PrSD with BSR
We now consider BSR for PrSD. At the left of Figure 7, we see a good agreement between

the two-grid convergence factor and µ2 for ν1 = ν2 = 1 for some parameters in the range de-
fined in Theorem 4.6 when using rediscretization. A larger interval of agreement is seen for the
corresponding results for Galerkin coarsening. In both cases, agreement between the two-grid
convergence factor and µν1+ν2 degrades as ν1 + ν2 increases, as expected.

Note that Theorem 4.6 demonstrates that the smoothing factor for BSR is a function of ω
α

(but the same is not necessarily true for the convergence factor). In Figure 7, we plot the LFA
smoothing and convergence factors for BSR with rediscretization as a function ofω, with α = 0.8
and see that these factors generally agree, although the smoothing factor slightly underestimates
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the convergence factor. As two-grid convergence is, however, sensitive to the choice of α, the
smoothing factor generally underestimates the convergence factor for other values of α.

Figure 7: Two-grid and smoothing factors for BSR with rediscretization for PrSD. At left, comparing ρ with µ2 for
ν1 = ν2 = 1 with ω = 8

9α. At right, comparing ρ with µ for ν1 + ν2 = 1 with α = 4
5 .

Fixing ω = 8
9α with α = 1.2 (as suggested by Figure 7 for ν1 = ν2 = 1), Table 10 shows that

the measured multigrid convergence factors again match well with the LFA-predicted two-grid
convergence factors for W-cycles with rediscretization coarsening. Note, however, the degrada-
tion for ν1 +ν2 = 1, where the smoothing factor analysis predicts a convergence factor of 1

3 that is
not realized. The convergence factor of 1

3 can be achieved by choosing α = 4
5 and ω = 8

9α in the
BSR scheme with either W(1, 0) or W(0, 1) cycles, but these choices lead to a slight degradation
with ν1 +ν2 > 1. Similar results are seen for Galerkin coarsening with α = 1 and ω = 8

9αwith the
notable exception that the smoothing factor prediction was matched by both the two-grid LFA
convergence factor and true W-cycle convergence in this case for all experiments.

Table 10: W-cycle convergence factors, ρ̂h, for BSR with rediscretization for PrSD, compared with LFA two-grid pre-
dictions, ρh, with algorithmic parameters, α = 1.2 and ω = 8

9α.

Cycle W(0, 1) W(1, 0) W(1, 1) W(1, 2) W(2, 1) W(2, 2)
ρh=1/128 0.673 0.673 0.111 0.079 0.079 0.062
ρ̂h=1/64 0.585 0.585 0.112 0.075 0.075 0.058
ρ̂h=1/128 0.584 0.584 0.112 0.075 0.075 0.058

In Table 11, we report the LFA prediction for IBSR with one or two sweeps of Jacobi relax-
ation on the approximate Schur complement with different parameters for PrSD. As in the case
of PoSD, one sweep is not enough to obtain performance comparable to exact BSR, and there is
a significant advantage to independently optimizing the parameters for IBSR.
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Table 11: LFA predictions: two-grid convergence factor, ρh=1/128, and smoothing factor, µ, of IBSR with rediscretization
for PrSD with ν1 + ν2 = 1.

Sweep α ω ωJ µ ρh=1/128

1 (Optimized) 1.6 0.8 1 0.714 0.714
1 1.2 16/15 1.0 0.718 1.027
2 (Optimized) 1.2 0.9 1.2 0.494 0.445
2 1.2 16/15 1.0 0.431 0.549

Considering, then, the two-grid method with these optimized parameters and two relaxation
sweeps on the approximate Schur complement, Table 12 shows that two-grid LFA offers a good
prediction of performance. In Table 13, however, we see degraded performance when using
W-cycles.

Table 12: Two-grid convergence factors, ρ̂h for IBSR with 2 sweeps of Jacobi for PrSD with rediscretization, compared
with LFA two-grid predictions, ρh, with optimized parameters, α = 1.2, ω = 0.9 and ωJ = 1.2.

Cycle TG(0, 1) TG(1, 0) TG(1, 1) TG(1, 2) TG(2, 1) TG(2, 2)
ρh=1/128 0.445 0.445 0.319 0.262 0.262 0.225
ρ̂h=1/64 0.418 0.420 0.301 0.251 0.250 0.212
ρ̂h=1/128 0.420 0.420 0.304 0.250 0.249 0.212

Table 13: W-cycles convergence factors, ρ̂h for IBSR with 2 sweeps of Jacobi for PrSD with rediscretization, compared
with LFA two-grid predictions, ρh, with optimized parameters, α = 1.2, ω = 0.9 and ωJ = 1.2.

Cycle W(0, 1) W(1, 0) W(1, 1) W(1, 2) W(2, 1) W(2, 2)
ρh=1/128 0.445 0.445 0.319 0.262 0.262 0.225
ρ̂h=1/64 0.739 0.740 0.340 0.304 0.299 0.268
ρ̂h=1/128 0.736 0.735 0.342 0.309 0.311 0.276

Thus, we again consider solving the Schur complement system by applying a multigrid
W(1, 1)-cycle. Table 14 shows that this IBSR is seen to be effective, requiring 1 to 4 W(1, 1)
cycles on the Schur complement system to match the convergence seen in Table 10. Again,
W(1, 1) cycles seem to be the most cost effective option for the approximate Schur complement.

Table 14: W-cycle convergence factors, ρ̂h, for IBSR with inner W(1, 1)-cycle for PrSD and (α, ω, ωJ) =

(6/5, 16/15, 1.1). In brackets, minimum value of the number of inner W(1, 1)-cycles that achieves the same conver-
gence factors as those of LFA predictions, ρh, for exact BSR.

Cycle W(0, 1) W(1, 0) W(1, 1) W(1, 2) W(2, 1) W(2, 2)
ρh=1/128 0.673 0.673 0.111 0.079 0.079 0.062
ρ̂h=1/64 0.680(4) 0.677(1) 0.112(3) 0.075(2) 0.075(2) 0.059(1)
ρ̂h=1/128 0.659(1) 0.662(1) 0.112(3) 0.075(2) 0.075(2) 0.067(1)

4.5. Stabilized discretizations with Uzawa relaxation
Multigrid methods using Uzawa relaxation schemes [6, 26, 27] are popular approaches due

to their low cost per iteration. We consider Uzawa relaxation as a simplification of BSR, deter-
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mining the update as the (weighted) solution of

Mδx =

(
αD 0
B −Ŝ

) (
δU
δp

)
=

(
rU
rp

)
,

where αD is an approximation to A and −Ŝ is an approximation of the Schur complement,
−BA−1BT −C.

Here, we consider an analogue to exact BSR with D = diag(A). The choice of Ŝ is discussed
later. In this setting, we observe that minimizing the LFA smoothing factor does not minimize
the LFA convergence factor. Thus, we consider minimizing the two-grid convergence factor
numerically for ν1 + ν2 = 1 and ν1 = ν2 = 1 with rediscretization coarsening, and compare with
measured multigrid performance.

We consider three approximations to the Schur complement, starting from the true approx-
imate Schur complement, C + B(αdiag(A))−1BT . Motivated by the stable finite-element case,
we also consider replacing B(αdiag(A))−1BT in this matrix by a weighted mass matrix, yielding
Ŝ = C + δQ. Finally, motivated by the finite-difference case and efficiency of implementation,
we consider taking Ŝ = σh2I, for a scalar weight, σ, to be optimized by the LFA. Note that, due
to the constant-coefficient stencils assumed by LFA, this corresponds to using a single sweep of
Jacobi to approximate solution of either of the two above approximations.

For the case of C + B(αdiag(A))−1BT , the optimized LFA two-grid convergence factors for
ν1 + ν2 = 1 with rediscretization coarsening are 0.428 for PoSD and 0.436 for PrSD. These are
notably worse than the BSR smoothing factor of 1

3 , which is achieved for W(1, 0) or W(0, 1)
cycles. Here, W(1, 0) cycles reflect this convergence, achieving measured convergence factors
of 0.417 for PoSD and 0.526 for PrSD. Increasing the number of relaxation sweeps per iteration
yields some improvement in the predicted LFA convergence factors when optimizing parameters
again, but not enough to outperform repeated W(1, 0) cycles.

For the mass-matrix-based approximation, Ŝ = C + δQ, the optimized two-grid convergence
factors for ν1 + ν2 = 1 with rediscretization coarsening are 0.5 for PoSD and 0.417 for PrSD.
While poorer convergence might be expected in both cases, the addition of an extra parameter, δ,
allows a (slight) improvement for PrSD. In both cases, we observe consistent performance with
numerical experiments, achieving convergence factors of 0.493 for PoSD and 0.392 for PrSD
using W(0, 1) or W(1, 0) cycles.

Finally, for the diagonal approximation Ŝ = σh2I, we achieve notably better performance
optimizing with ν1 = ν2 = 1 than for ν1 + ν2 = 1. For PoSD, the optimized two-grid LFA
convergence factor is 0.382, while it is 0.497 for PrSD. In practice, we achieve slightly worse
convergence factors using W(1, 1) cycles with rediscretization coarsening, of 0.531 for PoSD and
0.543 for PrSD. These are both significantly worse than the convergence factors of 1

9 observed
using inexact BSR; however, it must be noted that W-cycles on the Schur complement system
were needed in that case. A better approximation to inverting the true approximate Schur com-
plement would be to apply multigrid to it, just as was done for IBSR above. Here, we observe
that significant work may be needed to achieve convergence similar to that of Uzawa where the
Schur complement is exactly inverted, requiring 10 W(1, 1)-cycles on the approximate Schur
complement to achieve a convergence factor of 0.416 for PoSD and 0.522 for PrSD, suggesting
that the Jacobi version of Uzawa is ultimately more efficient.

4.6. Comparing cost and performance
For convenience, we denote standard DWJ as DWJ(1) and DWJ with 2 sweeps of Jacobi

relaxation on the pressure equation as DWJ(2) in the following.
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The above results give a clear comparison of the effectiveness of the multigrid cycles with the
considered relaxation schemes, but not of their relative efficiencies. To translate from effective-
ness to efficiency, we must properly account for the cost per iteration of each relaxation scheme.
All schemes assume the residual is already calculated; for the 9-point stencils in A, B, and stabi-
lization terms, C, the cost of a single residual evaluation on a mesh with n points is (roughly) that
of 63n multiply-add operations, coming from the 7 nonzero blocks in the matrix. For DWJ(1),
the rest of the cost of relaxation is fairly easy to account, requiring one diagonal scaling opera-
tion on each of the three components of the solution vector, plus matrix-vector products with the
pressure Laplacian, Ap, and with both B and BT . Counting multiply-add operations for these on
a grid with n points, we have 3n for the diagonal scalings, and 9n each for the multiplication with
Ap and with Bx and By and their transposes, totalling 48n multiply-add operations. For DWJ(2),
we need 48n multiply-add operators plus the cost of the second sweep. For the second sweep,
we need to compute a residual related to G, the (3, 3) block of (11), and a diagonal scaling. Note
that the cost of the residual is 54n (9n each for the multiplication with Ap, C, and with Bx and By

and their transposes). In total, the cost of DWJ(2) is 103n multiply-add operators. For IBSR, fol-
lowing (26), we require two diagonal scaling operations on each of the velocity components, one
matrix-vector product with each of B and BT , and 2 or 3 W(1,1) cycles on the pressure variable.
To account for the costs of the W(1,1) cycles, we use the standard cost estimate for W-cycles, as
requiring 4 “Work Units” per iteration, where a Work Unit is the cost of forming a residual for the
pressure equation. Here, given the 25-point stencil structure seen in Equation (29), each Work
Unit requires 25 multiply-add operations, so the total cost of IBSR with 2 W(1,1) cycles on the
Schur complement is 4n + 36n + 200n = 240n multiply-add operations (and 340n multiply-add
operations if 3 W(1,1) cycles are needed). Finally, Uzawa relaxation with diagonal scaling on
the pressure has a cost less than that of DWJ(1), as it requires diagonal scaling again for all three
components of the solution, but only one matrix-vector multiplication, with B. These total 21n
multiply-add operations.

Accumulating the costs of a residual evaluation with these, we have total costs of 111n
multiply-add operations per sweep of DWJ(1), 166n multiply-add operations per sweep of DWJ(2),
303n multiply-add operations per sweep of IBSR with 2 W(1,1) cycles per Schur-complement
solve, and 84n multiply-add operations per sweep of Uzawa with diagonal scaling. Considering
these relative to one-another, we see that DWJ(1) has a cost of about 4/3 per cycle as Uzawa, that
DWJ(2) has a per-cycle cost of about 2 times that of Uzawa, and 1.5 times that of DWJ(1), that
IBSR has a per-cycle cost of about 3.6 times that of Uzawa, 2.7 and 1.8 times that of DWJ(1) and
DWJ(2), respectively. The per-cycle convergence factors observed above are 0.35 per cycle for
W(1,1) cycles of DWJ(1) for PoSD and 0.44 per cycle for W(1,1) cycles of DWJ(1) for PrSD,
0.11 per cycle for W(1,1) cycles of DWJ(2) and IBSR for both stabilizations, and 0.53 or 0.54
per cycle for W(1,1) cycles with Uzawa. Comparing efficiencies can now be easily done by ap-
propriately weighting these convergence factors relative to their work: if one iteration costs W
times that of another, and yields a convergence factor of ρ1, then we can easily compare ρ1/W

1
directly to the second convergence factor, ρ2, to see if the effective error reduction achieved by
the first algorithm in an equal amount of work to the second is better or worse than that achieved
by the second. Comparing DWJ(1) to Uzawa, then, for PoSD, we compare 0.353/4 ≈ 0.46 to
0.53 and see that DWJ(1) is more efficient. For PrSD, we compare 0.443/4 ≈ 0.54 and see that
DWJ(1) and Uzawa are similarly efficient for PrSD. Comparing DWJ(2) to Uzawa, we compare
0.111/2 ≈ 0.33 to 0.53(0.54), showing that DWJ(2) is much efficient than Uzawa. Comparing
DWJ(2) to DWJ(1), we compare 0.111/1.5 ≈ 0.23 to 0.35 (0.45) and see DWJ(2) is more efficient
than DWJ(1). Comparing IBSR to Uzawa, we compare 0.111/3.6 ≈ 0.54, and see that it as also
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comparable in efficiency to the others for the case of PrSD, but slightly less efficient than DWJ(1)
for PoSD. DWJ(2) and IBSR have the same per-cycle convergence factor, but the cost of DWJ(2)
(166n) is less than IBSR (303n). Thus DWJ(2) is more efficient than IBSR. Overall, DWJ(2)
outperforms Uzawa, IBSR and DWJ(1). We note that these results are a little different than those
seen for the MAC discretization in [18], where IBSR outperforms other schemes. Differences
seen in practice (and the influence of factors ignored in the LFA, such as boundary conditions)
are important to consider.

An important practical consideration commonly observed in the LFA literature (see, for ex-
ample, [18, 35]) is the influence of boundary conditions. In numerical experiments not shown
here, we often see significant degradation in convergence between the results for periodic bound-
ary conditions and those for Dirichlet boundary conditions, particularly for cases with larger
numbers of relaxation sweeps per cycle. For DWJ(2) with ν1 + ν2 = 1, changing from periodic
to Dirichlet boundary conditions results in convergence factors increasing from 0.324 reported
in Tables 2 and 4 to about 0.46 (PrSD) or 0.56 (PoSD) for two-grid cycles, and to about 0.64
(PrSD) and 0.7 (PoSD) for W-cycles. For IBSR with ν1 + ν2 = 1, however, the degradation is
much less, with W-cycle convergence rates of 0.38 for PoSD (still with 2 inner W(1,1)-cycles
for the Schur complement system) and 0.35 for PrSD (with α = 4/5, ω = 32/45, and 4 W(1,1)
cycles with ωJ = 1.1 for the Schur complement system). Clearly this difference in performance
is enough to change the balance above, with the added cost of IBSR with inner W-cycles paying
off over DWJ(2).

5. Relaxation for Q2 − Q1 discretization

As explored in [15], classical LFA smoothing factor analysis is unreliable for Q2 discretiza-
tions, making it unsuitable for analysis of the standard stable Q2−Q1 discretization of the Stokes
equations. Thus, we consider only numerical (“brute force”) optimization of two-grid LFA con-
vergence factors in this setting.

For DWJ, we find optimal convergence factors of 0.619 for ν1 + ν2 = 1 and 0.558 for ν1 =

ν2 = 1. While the former is quite comparable to convergence predicted and achieved for both
stabilized discretizations with ν1+ν2 = 1, we see a significant lack of improvement with increased
relaxation, in contrast to the equal-order case. The same is observed for multigrid W-cycle
performance, with W(1, 0) convergence measured at 0.620 and W(1, 1) convergence measured at
0.510.

For exact BSR, we find optimal convergence factors of 0.551 for ν1 + ν2 = 1 and 0.250 for
ν1 = ν2 = 1. While these are slightly larger than the comparable factors of 1

3 and 1
9 , respectively,

for the stabilized discretizations, they still reflect good performance of the underlying method.
At left of Figure 8, we show the spectral radius of the error-propagation symbol for exact BSR

as a function of Fourier frequency, θ, noting that predicted reduction over the high frequencies
is not as good as would be needed to equal two-grid convergence in the equal-order case. In
order to see how the convergence factor changes with the parameters α and ω, we display the
convergence factor as a function of α and ω at the right of Figure 8. The optimal choice, of
α = 1.1 and ω = 1.05, occurs in a narrow band of ω values, but larger range of α values lead to
reasonable results.
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Figure 8: At left, the spectral radius of the error-propagation symbol for exact BSR applied to the Q2 −Q1 discretization,
as a function of the Fourier mode, θ. At right, the LFA-predicted two-grid convergence factor for BSR applied to the
Q2 − Q1 discretization as a function of α and ω, with (ν1, ν2) = (1, 1).

As always, an inexact solve of the Schur complement system is needed to yield a practical
variant of BSR. While 2 sweeps of Jacobi appears sufficient to achieve scalable W-cycle con-
vergence when ν1 + ν2 > 2 (see Table 15), we find 3 sweeps are needed to achieve W(1, 1)
convergence factors of 0.240 (see Table 16), in contrast to results in [21] and for the equal-order
discretizations considered here, where a much stronger iteration was needed. Similar results were
seen for V(1, 1) cycles when 3 sweeps of Jacobi were used for the Schur complement system.

Table 15: W-cycles convergence factors, ρ̂h, for IBSR with 2 sweeps Jacobi for Q2−Q1 approximation with rediscretiza-
tion, compared with LFA two-grid predictions, ρh, for exact BSR with algorithmic parameters, α = 1.1, ω = 1.05 and
ωJ = 1.0.

Cycle W(0, 1) W(1, 0) W(1, 1) W(1, 2) W(2, 1) W(2, 2)
ρh=1/128 4.893 4.893 0.249 0.109 0.109 0.090
ρ̂h=1/64 NAN NAN 0.434 0.131 0.130 0.085
ρ̂h=1/128 NAN NAN 0.437 0.130 0.130 0.085

Table 16: W-cycles convergence factors, ρ̂h, for IBSR with 3 sweeps Jacobi for Q2−Q1 approximation with rediscretiza-
tion, compared with LFA two-grid predictions, ρh, for exact BSR with algorithmic parameters, α = 1.1, ω = 1.05 and
ωJ = 1.0.

Cycle W(0, 1) W(1, 0) W(1, 1) W(1, 2) W(2, 1) W(2, 2)
ρh=1/128 4.893 4.893 0.249 0.109 0.109 0.090
ρ̂h=1/64 491.373 492.094 0.240 0.104 0.104 0.085
ρ̂h=1/128 NAN NAN 0.240 0.104 0.104 0.085

Finally, we consider the same three variants of Uzawa relaxation as examined above for the
equal-order case. For Ŝ = B(αdiag(A))−1BT , the best convergence factor found for ν1 + ν2 = 1
was 0.729, while better convergence was predicted for Ŝ = δQ, with factor 0.554. This is to
be expected, perhaps, since the Q1 mass matrix is well-known to be a better approximation of
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the true Schur complement than the classical BSR approximate Schur complement. However,
approximating either by a single sweep of Jacobi, yielding Ŝ = σh2I, gives a convergence factor
0.717. While 2-grid cycles with ν1 + ν2 = 1 match the predicted convergence factor, W-cycles
did not converge for these parameters.

Comparing, then, the efficiency of inexact BSR and DWJ for the Q2 − Q1 discretization,
we see that inexact BSR, where W(1, 1) cycles achieve a convergence factor of 0.24 provides
roughly the same reduction as 3 cycles with 1 DWJ sweep per cycle, where LFA predicts ρ =

0.619. Noting that inexact BSR is relatively more expensive in this case, with cost dominated
by the two diagonal scalings per sweep on the Q2 velocity degrees of freedom, we suggest a
proper implementation study is needed to determine which, if either, provides best performance
in practice.

6. Conclusion

In this paper, LFA is presented for block-structured relaxation schemes for stabilized and
stable finite-element discretizations of the Stokes equations. The convergence and smoothing
factors exhibited here provide optimized parameters for DWJ with one or two sweeps of Jacobi
relaxation on the pressure equation and BSR for the stabilized discretizations. The convergence
of (inexact) BSR clearly outperforms multigrid with both standard DWJ and Uzawa relaxation.
However, standard DWJ can be improved by additional relaxation on the pressure equation,
and the improved version is more efficient than IBSR. While the LFA smoothing factor loses its
predictivity of the two-grid convergence factor for the stable Q2−Q1 discretization and for Uzawa
relaxation for both stabilized and stable discretizations, the two-grid LFA convergence factor
can still provide useful predictions. We consider as well the inexact case for BSR, with Jacobi
iterations or multigrid cycles used to approximate solution of the Schur complement system, as
is suitable for use on modern parallel and graphics processing unit (GPU) architectures. From
numerical experiments, we see that inexact BSR can be as good as the exact iteration for solving
the Stokes equations. The analysis and LFA predictions demonstrated here offer good insight
into the use of block-structured relaxation for other types of saddle-point problems, which will
be considered in future work.
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