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Abstract. This paper investigates energy-minimization finite-element approaches for the com-
putation of nematic liquid crystal equilibrium configurations. We compare the performance of these
methods when the necessary unit-length constraint is enforced by either continuous Lagrange mul-
tipliers or a penalty functional. Building on previous work in [1, 2], the penalty method is derived
and the linearizations within the nonlinear iteration are shown to be well-posed under certain as-
sumptions. In addition, the paper discusses the effects of tailored trust-region methods and nested
iteration for both formulations. Such methods are aimed at increasing the efficiency and robustness
of each algorithms’ nonlinear iterations. Three representative, free-elastic, equilibrium problems are
considered to examine each method’s performance. The first two configurations have analytical solu-
tions and, therefore, convergence to the true solution is considered. The third problem considers more
complicated boundary conditions, relevant in ongoing research, simulating surface nano-patterning.
A multigrid approach is introduced and tested for a flexoelectrically coupled model to establish scal-
ability for highly complicated applications. The Lagrange multiplier method is found to outperform
the penalty method in a number of measures, trust regions are shown to improve robustness, and
nested iteration proves highly effective at reducing computational costs.
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1. Introduction. Liquid crystals are substances that possess mesophases with
characteristics spanning those of isotropic liquids and solid crystals. That is, liquid
crystals are fluid, yet exhibit long-range structured ordering. This paper considers
nematic liquid crystals which consist of rod-like molecules whose average pointwise
orientation is represented by a vector, n(x, y, z) = (n1, n2, n3)T . This orientation
vector is known as the director and is assumed to be headless for nematics. Therefore,
n and −n are indistinguishable at any point in the domain Ω, due to molecular
symmetry. An important constraint on the director vector field is that n remain of
unit length pointwise throughout Ω. Thorough overviews of liquid crystal physics are
found in [12,21,51].

The deformable ordering of liquid crystal structures, coupled with the materi-
als’ birefringent and dielectric properties, has led to many important applications
and discoveries, most famously in display technologies. Additional modern appli-
cations include nanoparticle organization [56], photorefractive cells [14], and liquid
crystal elastomers designed to produce effective actuator devices such as light driven
motors [58] and artificial muscles [53]. Numerical simulations of liquid crystal equi-
librium configurations are used to optimize device designs, analyze experiments, and
suggest the presence of new physical phenomenon [1,4]. Many current technologies and
experiments, including bistable devices [15, 40], require simulations with anisotropic
physical constants on two- and three-dimensional domains.

To this end, a theoretically supported energy-minimization finite-element ap-
proach using Newton linearization and a Lagrange multiplier for the pointwise con-
straint was developed in [1,2]. The approach effectively enforces the unit-length con-
straint while converging to energy-minimizing configurations. However, alternative
approaches to efficiently impose unit-length conformance exist, such as the renormal-
ized Newton method presented in [46]. Penalty methods have also been applied to
liquid crystal equilibrium problems [4, 27, 30] and are utilized extensively to simplify
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the Leslie-Ericksen equations [22, 34] in nematohydrodynamics simulations [37–39].
In addition, penalty methods are used for unit-length constraints in certain ferromag-
netic problems [31].

In this paper, we focus on the Frank-Oseen free-elastic energy model and aim
to compare the performance of techniques enforcing the unit-length constraint via
Lagrange multipliers or with penalty methods employing augmentations to the free-
elastic energy functional. The energy model and approaches are discussed in Section
2. In Section 3, well-posedness for the intermediate Newton linearizations that arise
in the penalty method formulation is established. In addition to the incomplete New-
ton stepping discussed in [2], several tailored trust-region methods are investigated in
Section 4. These trust-region approaches include one- and two-dimensional subspace
minimization techniques [10, 11, 43]. A modified penalty method, which normalizes
the director after each step, is also introduced in this section. The resulting algo-
rithms are tested on three benchmark free-elastic problems in Section 5. Two of
the problems have analytical solutions and one simulates nano-patterned boundary
conditions relevant in ongoing research [4, 5]. In each of the experiments conducted,
the Lagrange multiplier method outperforms the penalty approaches in a number
of measures. Moreover, trust-regions are shown to improve convergence robustness
and nested iteration proves exceptionally effective at reducing overall computational
costs. In Section 6, a Braess-Sarazin-type multigrid scheme [3, 9] is introduced for
a flexoelectrically coupled problem with nano-patterned boundary conditions, which
demonstrates scalability for highly complicated models with coupled physics. Finally,
Section 7 gives some concluding remarks, and future work is discussed.

2. Energy Model and Minimization. While a number of free-elastic energy
models exist [20,25,51], we consider the Frank-Oseen free-elastic energy herein [51,55].
The equilibrium, free-elastic energy is represented by an integral functional depending
on deformations of the director field, n. Liquid crystal samples favor stable config-
urations attaining minimal free energy. As in [1, 2], let Ki, i = 1, 2, 3, be the Frank
constants [25] with Ki ≥ 0 by Ericksen’s inequalities [23], and let

Z = κn⊗ n + (I− n⊗ n) = I− (1− κ)n⊗ n,

where κ = K2/K3. In general, we consider the case that K2,K3 6= 0. Denote
the classical L2(Ω) inner product and norm as 〈·, ·〉0 and ‖ · ‖0, respectively, and
the standard Euclidean inner product and norm as (·, ·) and | · |. Throughout this
paper, we assume the presence of Dirichlet boundary conditions or mixed Dirichlet and
periodic boundary on a rectangular domain and, therefore, utilize the null Lagrangian
simplification discussed in [1, 2, 51]. Thus, the Frank-Oseen free-elastic energy for a
domain, Ω, is written∫

Ω

wF dV =
1

2
K1‖∇ · n‖20 +

1

2
K3〈Z∇× n,∇× n〉0. (2.1)

Note that if κ = 1, Z is reduced to the identity and the energy becomes a Div-
Curl system. The Frank constants may be determined experimentally for different
liquid crystal types, are often anisotropic (i.e. K1 6= K2 6= K3), and may depend on
temperature [21,28].

The one-constant approximation such that K1 = K2 = K3, discussed in [1,2,51],
is a widely applied simplification [13,37,45,51,57] of (2.1). This simplification signifi-
cantly reduces the complexity of the free-elastic energy functional for both theoretical
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analysis and computational simulation. However, it ignores anisotropic physical char-
acteristics, which play major roles in liquid crystal phenomena [5,33]. Therefore, both
the penalty and Lagrange multiplier methods considered here do not rely on such an
assumption.

2.1. Penalty and Lagrange Multiplier Energy Minimization. The admis-
sible equilibrium state for a liquid crystal sample is one that minimizes the system
free energy in (2.1), subject to the local constraint (n,n) = 1. Here, we discuss two
energy-minimization approaches, imposing this constraint via a penalty method or
with Lagrange multipliers. To compute the free-energy minimizing configurations, we
define the functional

F(n) = K1‖∇ · n‖20 +K3〈Z∇× n,∇× n〉0. (2.2)

Throughout this paper, we will make use of the spaces

H(div,Ω) = {v ∈ L2(Ω)3 : ∇ · v ∈ L2(Ω)},
H(curl,Ω) = {v ∈ L2(Ω)3 : ∇× v ∈ L2(Ω)3},

as well as

HDC(Ω) = {v ∈ H(div,Ω) ∩H(curl,Ω) : B(v) = g},

with norm ‖v‖2DC = ‖v‖20 +‖∇·v‖20 +‖∇×v‖20 and appropriate boundary conditions
B(v) = g. Here, we assume that g satisfies appropriate compatibility conditions
for the operator B. For example, if B represents full Dirichlet boundary conditions
and Ω has a Lipschitz continuous boundary, it is assumed that g ∈ H

1
2 (∂Ω)3 [26].

Furthermore, let HDC0 (Ω) = {v ∈ H(div,Ω) ∩ H(curl,Ω) : B(v) = 0}. Note that
if Ω is a Lipshitz domain and B imposes full Dirichlet boundary conditions on all
components of v, then HDC0 (Ω) = H1

0 (Ω)3 [26, Lemma 2.5].

2.2. Lagrange Multiplier Formulation. For this approach, the pointwise
unit-length constraint is imposed by a continuous Lagrange multiplier. Following [1,2],
the Lagrangian is defined as

L(n, λ) = F(n) +

∫
Ω

λ(x)((n,n)− 1) dV,

where λ ∈ L2(Ω). First-order optimality conditions, given by

Ln[v] =
∂

∂n
L(n, λ)[v] = 0, ∀v ∈ HDC0 (Ω),

Lλ[γ] =
∂

∂λ
L(n, λ)[γ] = 0, ∀γ ∈ L2(Ω),

are derived and linearized to yield the Newton update equations[
Lnn Lnλ

Lλn 0

] [
δn
δλ

]
= −

[
Ln

Lλ

]
, (2.3)

where each of the system components are evaluated at the current approximations
nk and λk, while δn = nk+1 − nk and δλ = λk+1 − λk are the desired updates to
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these approximations. The matrix-vector multiplication indicates the direction that
the derivatives in the Hessian are taken. That is,

Lnn[v] · δn =
∂

∂n
(Ln(nk, λk)[v]) [δn], Lnλ[v] · δλ =

∂

∂λ
(Ln(nk, λk)[v]) [δλ],

Lλn[γ] · δn =
∂

∂n
(Lλ(nk, λk)[γ]) [δn],

where the partials denote Gâteaux derivatives in the respective variables. The above
system represents a linearized variational system for which we seek solutions δn and
δλ. The complete system is found in [2].

2.3. Penalty Method Formulation. In order to define the penalty approach,
the free-energy functional in (2.2) is augmented with a weighted, positive term,

P(n) = K1〈∇ · n,∇ · n〉0 +K3〈Z∇× n,∇× n〉0 + ζ〈n · n− 1,n · n− 1〉0, (2.4)

where ζ > 0 represents a constant weight, penalizing deviations of the solution from
the unit-length constraint. Thus, in the limit of large ζ values, unconstrained mini-
mization of (2.4) is equivalent to the constrained minimization of (2.2). In order to
minimize P(n), we compute the Gâteaux derivative of P(n) with respect to n in the
direction v ∈ HDC0 (Ω). Hence, the first-order optimality condition is

Pn[v] =
∂

∂n
P(n)[v] = 0, ∀v ∈ HDC0 (Ω).

Computation of this derivative yields the variational problem

Pn[v] = 2K1〈∇ · n,∇ · v〉0 + 2K3〈Z∇× n,∇× v〉0
+ 2(K2 −K3)〈n · ∇ × n,v · ∇ × n〉0 + 4ζ〈v · n,n · n− 1〉0 = 0,

for all v ∈ HDC0 (Ω).
As with the Lagrangian formulation, the variational problem above contains non-

linearities. Therefore, Newton iterations are again applied, requiring computation of
the second-order Gâteaux derivative with respect to n. Let nk be the current approx-
imation for n and δn = nk+1−nk be the update that we seek to compute. Then, the
Newton linearizations are written

∂

∂n
(Pn(nk)[v]) [δn] = −Pn(nk)[v], ∀v ∈ HDC0 (Ω), (2.5)

where

∂

∂n
(Pn(nk)[v]) [δn] = 2K1〈∇ · δn,∇ · v〉0 + 2K3〈Z(nk)∇× δn,∇× v〉0

+ 2(K2 −K3)
(
〈δn · ∇ × v,nk · ∇ × nk〉0

+ 〈nk · ∇ × v, δn · ∇ × nk〉0 + 〈nk · ∇ × nk,v · ∇ × δn〉0

+ 〈nk · ∇ × δn,v · ∇ × nk〉0 + 〈δn · ∇ × nk,v · ∇ × nk〉0
)

+ 4ζ
(
〈nk · nk − 1,v · δn〉0 + 2〈δn · nk,v · nk〉0

)
. (2.6)

Completing (2.5) with the above second-order derivative computation yields a lin-
earized variational system. For each iteration, we compute δn satisfying (2.5) for all
v ∈ HDC0 (Ω) with the current approximation nk.
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3. Well-Posedness of the Penalty Newton Linearizations. Existence and
uniqueness of solutions to the discrete form of the linearization systems described in
(2.3) is established in [2] under reasonable assumptions. Here, we adapt these results
to the discrete form of the penalty method linearizations in Equation (2.5).

Let a(δn,v) denote the bilinear form defined in (2.6) for fixed nk and F (v) be
the linear functional on the right-hand side of the linearization in (2.5). Using finite
elements to approximate the desired update, δn, and considering a discrete space
Vh ⊂ HDC0 (Ω) yields the discrete linearized system,

a(δnh,vh) = F (vh), ∀vh ∈ Vh. (3.1)

Throughout the rest of this section, the developed theory applies exclusively to
discrete spaces. Therefore, except when necessary for clarity, we drop the subscript
h along with the notation, δn. For instance, we write a(u,v) to indicate the bilinear
form in (3.1) operating on the discrete space Vh × Vh. Furthermore, we refer to the
following set of assumptions.

Assumption 3.1. Consider an open bounded domain, Ω, with a Lipschitz-
continuous boundary. Further, assume that there exist constants 0 < α ≤ 1 ≤ β,
such that α ≤ |nk|2 ≤ β and Z(nk(x)) remains uniformly symmetric positive definite
(USPD) with lower and upper bounds on its Rayleigh quotient, η and Λ, respectively,
as in [2, Lemma 2.1]. Finally, assume that Dirichlet boundary conditions are applied.
While the assumption above, and the theory below, explicitly concern full Dirichlet
boundary conditions, the theory is equally applicable to mixed Dirichlet and periodic
boundary conditions on a rectangular domain.

In order to establish well-posedness of (3.1), we show that the functional, F (v),
is continuous and that the bilinear form, a(u,v), is continuous and coercive. Decom-
posing the bilinear form, a(u,v), and the linear form, F (v), into terms that contain
the penalty term and those that do not,

a(u,v) = â(u,v) + 2ζ
(
〈nk · nk − 1,v · u〉0 + 2〈u · nk,v · nk〉0

)
F (v) = F̂ (v) + 2ζ〈v · nk,nk · nk − 1〉0,

we then extend the results in [2].
Lemma 3.2. Under Assumption 3.1, F is a bounded linear functional on Vh.
Proof. From the bounds derived in [2, Lemma 3.6] and an application of the

Cauchy-Schwarz inequality,

|F (v)| ≤ |F̂ (v)|+ 2ζ‖nk · nk − 1‖0‖nk · v‖0
≤ CF ‖v‖DC + 2ζ‖nk · nk − 1‖0‖nk · v‖0,

where CF is a constant independent of mesh size, defined in [2]. Note that by assump-
tion α ≤ nk · nk ≤ β, where 0 < α ≤ 1 ≤ β. Then, letting Cµ = max(1− α, β − 1),

‖nk · nk − 1‖20 =

∫
Ω

(nk · nk − 1)2 dV ≤ C2
µ

∫
Ω

dV = C2
µ|Ω|.

Hence, ‖nk · nk − 1‖0 ≤ Cµ|Ω|
1
2 . In addition,

‖nk · v‖0 ≤
√
β‖v‖0 ≤

√
β‖v‖DC .

Thus,

|F (v)| ≤ CF ‖v‖DC + 2ζCµ|Ω|
1
2

√
β‖v‖DC .
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Lemma 3.3. Under Assumption 3.1, a(u,v) is continuous.
Proof. Using the bounds derived in [2, Lemma 3.7],

a(u,v) ≤ â(u,v) + 2ζ
(
|〈nk · nk − 1,u · v〉0|+ 2|〈u · nk,v · nk〉0|

)
≤ CA‖u‖DC‖v‖DC + 2ζ

(
|〈nk · nk − 1,u · v〉0|+ 2|〈u · nk,v · nk〉0|

)
,

where CA is the continuity constant defined in [2]. Note that,

|〈nk · nk − 1,u · v〉0| = |〈(nk · nk − 1)u,v〉0| ≤ ‖(nk · nk − 1)u‖0‖v‖0.

Furthermore,

‖(nk · nk − 1)u‖20 =

∫
Ω

(nk · nk − 1)2(u · u) dV ≤ C2
µ‖u‖20.

This implies that

‖(nk · nk − 1)u‖0 ≤ Cµ‖u‖0,

and

|〈nk · nk − 1,u · v〉0| ≤ Cµ‖u‖DC‖v‖DC .

Noting that

|〈u · nk,v · nk〉0| ≤ β‖u‖DC‖v‖DC ,

we bound

a(u,v) ≤
(
CA + 2ζ

(
Cµ + 2β

))
‖u‖DC‖v‖DC .

Following the theory established in [2], two coercivity lemmas for a(u,v) are proved.
The first proof addresses the case when κ = 1. The second considers coercivity when
κ lies in a neighborhood of unity, κ ∈ (1 − ε2, 1 + ε1). Let α0 > 0 be the coercivity
constant from [2, Lemma 3.7].

Lemma 3.4. Under Assumption 3.1, if κ = 1 and 2ζ|α − 1| < α0, there exists a
β0 > 0 such that β0‖v‖2DC ≤ a(v,v) for all v ∈ Vh.

Proof.

a(v,v) = â(v,v) + 2ζ〈nk · nk − 1,v · v〉0 + 4ζ〈v · nk,v · nk〉0

Using the coercivity of â(v,v) from [2, Lemma 3.7] and the fact that 〈v·nk,v·nk〉0 ≥ 0,

α0‖v‖2DC ≤ â(v,v) + 4ζ〈v · nk,v · nk〉0.

Observe that

〈nk · nk − 1,v · v〉0 =

∫
Ω

(nk · nk − 1)(v · v) dV.

If α ≤ nk · nk ≤ β for all x ∈ Ω with 0 < α ≤ 1 ≤ β, then (α− 1) ≤ 0, and

〈nk · nk − 1,v · v〉0 ≥ (α− 1)

∫
Ω

v · v dV ≥ (α− 1)‖v‖2DC . (3.2)
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Letting β0 = α0 − 2ζ|α− 1|,

β0‖v‖2DC ≤ â(v,v) + 4ζ〈v · nk,v · nk〉0 + 2ζ〈nk · nk − 1,v · v〉0.

Hence, if 2ζ|α− 1| < α0, then β0 > 0.
Therefore, a(u,v) is coercive for κ = 1 if ζ is not so large in comparison to the
pointwise lower bound on the director length as to overwhelm α0.

As in [2], the assumption that κ = 1 can be loosened to include some anisotropy
and retain coercivity of a(u,v). Let C > 0 such that ‖v‖20 ≤ C

(
‖∇ ·v‖20 + ‖∇×v‖20

)
(see [2]). Further, let α1 > 0 be defined as in the proof of [2, Lemma 3.8], where

K ′ = min(K1, ηK3) and α1 = K′

(C+1) . The following extends the results of [2, Lemma

3.8] to the penalty method.
Lemma 3.5 (Small Data). Under Assumption 3.1, if

β1 =
min(K1,K3)

C + 1
− 2ζ|α− 1| > 0,

there exists ε1, ε2 > 0, dependent on β = max |nk|2, such that for κ ∈ (1− ε2, 1 + ε1),
a(u,v) is coercive.

Proof. Let

ã(v,v) = K1〈∇ · v,∇ · v〉0 +K3〈Z(nk)∇× v,∇× v〉0 + 4ζ〈v · nk,v · nk〉0
+ 2ζ〈nk · nk − 1,v · v〉0.

From the proof of [2, Lemma 3.8], the fact that ζ > 0, and (3.2),

(α1 − 2ζ|α− 1|)‖v‖2DC ≤ ã(v,v). (3.3)

The USPD lower bound for Z(nk), η, may depend on κ [2, Lemma 2.1]. Thus, the
proof is split into three cases.

Case 1. κ = 1 + ε1, for ε1 > 0.
If this case holds, then η = 1. Hence, α1, defined for (3.3), is independent of κ. Since
K2 −K3 = K3(κ− 1), the discrete bilinear form of (2.6) becomes

a(v,v) =ã(v,v) + ε1K3

(
2〈v · ∇ × v,nk · ∇ × nk〉0 + 2〈nk · ∇ × v,v · ∇ × nk〉0

+ 〈v · ∇ × nk,v · ∇ × nk〉0
)
. (3.4)

Observe that from (3.3),

(α1 − 2ζ|α− 1|) ≤ ã(v,v) + ε1K3〈v · ∇ × nk,v · ∇ × nk〉0. (3.5)

Consider the magnitude of the terms in (3.4) not bounded from below in (3.5), denoted
as G(v,v). As in the proof of Lemma 3.8 in [2],

|G(v,v)| ≤ε1α3‖v‖2DC , (3.6)

where α3 is a constant defined in [2]. Utilizing (3.5) and (3.6),

a(v,v) ≥ α1‖v‖2DC − 2ζ|α− 1|‖v‖2DC − ε1α3‖v‖2DC = (β1 − ε1α3)‖v‖2DC .

It is, thus, sufficient to have ε1 < β1/α3, guaranteeing that (β1 − ε1α3) > 0.
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Case 2. κ = 1− ε2 > 0, for ε2 > 0, and K1 < K3.
Since κ < 1, η = 1 + (κ − 1)β = (1 − ε2β). For K1 < K3, there exists an ε2 small
enough, such that K1 < (1− ε2β)K3. This implies that, for small enough ε2,

α1 =
min(K1, (1− ε2β)K3)

(C + 1)
=

K1

(C + 1)
.

Therefore, α1 is again independent of κ. Since K2 − K3 = K3(κ − 1), the discrete
bilinear form of (2.6) becomes

a(v,v) =ã(v,v)− ε2K3

(
2〈v · ∇ × v,nk · ∇ × nk〉0 + 2〈nk · ∇ × v,v · ∇ × nk〉0

+ 〈v · ∇ × nk,v · ∇ × nk〉0
)
. (3.7)

The terms of (3.7), not already bounded from below in (3.3), are bounded, utilizing [2,
Lemma 3.8], as

|G(v,v)| ≤ ε2α4‖v‖2DC , (3.8)

where α4 is a constant defined in [2]. Using (3.3) and (3.8) implies that

a(v,v) ≥ α1‖v‖2DC − 2ζ|α− 1|‖v‖2DC − ε2α4‖v‖2DC ≥ (β1 − ε2α4)‖v‖2DC .

Thus, possibly requiring ε2 to be even smaller, choose ε2 < β1/α4, so that (β1−ε2α4) >
0.

In the case that κ < 1, the additional restriction that β < 1
1−κ for Z to be USPD

is necessary, which implies that ε2β < 1 is required. Therefore, for any fixed β, ε2
must also be taken small enough to satisfy this condition. Hence,

ε2 < min

(
β1

α4
,
K3 −K1

βK3
,

1

β

)
.

Case 3. κ = 1− ε2 > 0, for ε2 > 0, and K3 ≤ K1.
Here, again, η = (1− ε2β). For this case, it is clear that (1− ε2β)K3 < K1. Thus,

α1 =
(1− ε2β)K3

(C + 1)
.

Using the same α4 as in the previous case and similar arguments,

a(v,v) ≥ α1‖v‖2DC − 2ζ|α− 1|‖v‖2DC − ε2α4‖v‖2DC

=

(
K3

C + 1
− 2ζ|α− 1| − ε2βK3

C + 1
− ε2α4

)
‖v‖2DC

≥
(
β1 −

ε2βK3

C + 1
− ε2α4

)
‖v‖2DC .

Hence, in order for
(
β1 − ε2βK3

C+1 − ε2α4

)
> 0 to hold, it is necessary that

ε2 <
β1(C + 1)

K3β + α4(C + 1)
.
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Finally, ε2 must still be chosen sufficiently small with respect to β such that ε2β < 1,
as in Case 2. Therefore,

ε2 < min

(
β1(C + 1)

K3β + α4(C + 1)
,

1

β

)
.

Although the bounds on ε1 and ε2 are complicated, the only constant therein that
depends on ζ is α2. The remainder of the constants are independent of ζ.

The above lemmas allow for the formulation of the following summary theorem.

Theorem 3.6. Under Assumption 3.1, if the conditions of Lemma 3.4 or Lemma
3.5 are satisfied, the discrete variational problem in (3.1) is well-posed.

Proof. Lemmas 3.2 and 3.3 imply that F (v) and a(u,v) are continuous, re-
spectively. Lemmas 3.4 or 3.5 imply that a(u,v) is coercive. Therefore, by the
Lax-Milgram Theorem [8], (3.1) is a well-posed discrete variational problem.

Therefore, the discretization of the linearizations arising in the penalty method
are always well-posed under the assumption of small anisotropy in the system coeffi-
cients and sufficient conformance to the unit-length constraint. However, the penalty
parameter must be chosen appropriately to achieve accurate representation of the
unit-length constraint. If ζ is too small, constraint conformance becomes poor and
the functional minimum does not accurately represent the constrained minimum. Al-
ternatively, if ζ is too large, the solvability of the intermediate variational systems
degrades in two possible ways. The neighborhood admitting coercivity around κ = 1
shrinks and the system becomes increasingly ill-conditioned due to a decreasing co-
ercivity constant, or coercivity is lost entirely and the possibility of non-invertible
matrices appears. On the other hand, the proof of such well-posedness does not re-
quire establishing an inf-sup condition that necessitates subtle choices of finite-element
spaces, as used for the Lagrange multiplier approach in [1, 2].

4. Robust Newton Step Methods. The Newton method applied to the La-
grange multiplier formulation discussed in [1, 2] employs näıve incomplete Newton
stepping. That is, for a computed Newton update direction, δn, a constant damping
factor, 0 < ω ≤ 1, is applied such that the new iterate is given as nk+1 = nk + ωδn.
Such an approach aims to improve convergence robustness when dealing with an inac-
curate initial guess on coarse grids. However, this procedure may miss opportunities
to take larger steps in “good” descent directions that effectively reduce the free energy.

Trust-region techniques are specifically designed to improve the robustness and
efficiency of iterative procedures such as Newton’s method. Updates are confined
to a neighborhood, known as a trust region, where the accuracy of the linearized
first-order optimality conditions is “trusted”. These neighborhoods are expanded or
contracted based on a measure of the model fidelity for a computed update. Significant
research has produced both theoretical support and practical applications of such
techniques [43]. This section discusses the use of constrained and unconstrained trust-
region methods for the Lagrangian and penalty approaches discussed in Section 2. For
a general overview of trust-region methods, see [43].

4.1. Trust-Region Approaches for the Penalty Formulation. Using the
penalty functional in (2.4), the desired energy minimization is unconstrained. For
this subsection, we denote the discretized forms of ∂

∂n (Pn(nk)[v]) [δn] and Pn(nk)[v]
as Uk and fk, respectively. The quadratic model of the penalty functional, for a given
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nk, is written

Mk(δn) = P(nk) + fTk δn +
1

2
δnTUkδn. (4.1)

As a consequence of the well-posedness theory developed in Section 3, the matrix Uk
is positive definite for each iteration. Therefore, we follow the methodology in [11,48],
computing steps by solving a trust-region minimization problem.

We seek an efficiently computable correction, δn, that approximately minimizes
the model in (4.1). In the following, we introduce two approaches to computing step
length and direction for this problem. The performance of these techniques is vetted
in the numerical experiments below.

Incomplete Newton stepping is equivalent to taking a small step in the descent
direction, −U−1

k fk. This is an effective means of finding energy minimizing solutions
for both the penalty and Lagrangian methods. Therefore, in the first approach, a
simple step selection technique is used in which the step is chosen satisfying the
constrained minimization problem

δn(∆k) = argmin{P(nk) + fTk δn +
1

2
δnTUkδn :

|δn| ≤ ∆k, δn = µU−1
k fk}, (4.2)

where ∆k indicates the trust-region radius for iterate nk. Candidate solutions of (4.2)
are easily computed to be −U−1

k fk, the full Newton step, which may or may not be
inside the trust region, and ± ∆k

|U−1
k fk|

U−1
k fk, representing steps to the trust region

boundary.

An important aspect of trust-region methods is the adjustment of the trust-region
radius and application of a computed step. This typically involves a measure of a
computed step’s merit. For a computed step, δn, we compute the ratio,

ρk =
P(nk)− P(nk + δn)

Mk(0)−Mk(δn)
,

of the actual to the predicted reduction in P due to the computed step. The closer
ρk is to 1, the more accurately the quadratic model behavior matches that of the true
functional.

If the ratio, ρk, is deemed acceptable, the step is applied and the trust region
expands, remains static, or shrinks depending on the specific value of ρk. If ρk is too
small, the step is rejected, the trust-region radius is shrunk, and the process repeated.
To quantify, let 0 < η3 < η1 < η2 be positive constants, along with 0 < C1 < 1 < C3.
Further, let ∆̄ be a maximum limit on the trust-region size. Using these parameters,
the specific decision trees for accepting the step, and subsequently adjusting the trust
region, are given in Procedures 1 and 2, respectively.
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Procedure 1: Solution update.

if ρk > η3 then
Accept step: nk+1 = nk + δn.

else
Reject step: nk+1 = nk.

end

Procedure 2: TR size adjustment.

if ρk < η1 then
Shrink region: ∆k+1 = C1∆k.

else if ρk > η2 and |δn| = ∆k

then
Expand region:
∆k+1 = min(C3∆k, ∆̄).

else
Keep region constant:
∆k+1 = ∆k.

end

For our algorithm, if the components of the ratio, ρk, are very small and the
computed step lies on the interior of the trust region, representing a full step towards
satisfying the first-order optimality conditions, we choose to apply the step regardless
of ρk and the trust region remains static. In this way, the trust-region minimiza-
tion approach is used until we trust in the application of full Newton steps to obtain
the first-order optimality conditions. A set of typical values for the trust-region pa-
rameters discussed above are listed in Table 5.1 and used in the numerical methods
below.

A number of well-founded techniques improving trust-region step selection exist,
including dogleg and two-dimensional (2D) subspace methods [11,24,43,49]. Because
the 2D-subspace method subsumes both the simple step selection approach above and
dogleg methods, it is chosen as the alternative step selection computation here. Steps
are computed by solving

δn(∆k) = argmin{P(nk) + fTk δn +
1

2
δnTUkδn :

|δn| ≤ ∆k, δn = µ1fk + µ2U
−1
k fk}. (4.3)

Again, the candidate solutions for (4.3) are efficiently computable, amounting to solv-
ing for the zeroes of a fourth-order polynomial.

4.1.1. A Renormalization Penalty Method. In addition to the standard
penalty method discussed above, a modification is also considered in the numerical
experiments below. Once the approximation to the solution has been updated with
a computed and accepted step, the new approximation is renormalized at the finite-
element nodes. That is, the updated approximation is projected onto the unit sphere
at each finite-element node. This procedure is similar to that presented in [46] for a
Lagrange multiplier formulation. There, the approach is derived within a nullspace
method framework using the one constant approximation. Here, renormalization is
applied to the penalty method, with and without trust regions and nested iteration,
for anisotropic Frank constants.

This renormalization aims at improving unit-length conformance for solutions
computed by the penalty method. The expectation is that this will lead to enhanced
constraint conformance at lower penalty weights. However, unless the renormalization
scaling is relatively uniform across nodes, the Newton direction may be significantly
altered. Throughout this paper, this modification will be referred to as the “renor-
malization” penalty method.
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4.2. A Trust-Region Method for the Lagrange Multiplier Formulation.
Applications of trust-region techniques to optimization problems with nonlinear con-
straints have also been developed. However, certain challenges arise in the theory
and practical use of such methods [41]. Here, we consider existing trust-region ap-
proaches in the context of finite-element methods. For this subsection, let Wk be
the matrix associated with a finite-element discretization of the second-order deriva-
tive of (2.2) (i.e., the functional without the Lagrange multiplier term), given by
∂
∂n (Fn(nk)[v]) [δn]. For the trust-region approach, write the constraint

c(n) = 〈n · n− 1,n · n− 1〉0 = 0. (4.4)

The Gâteaux derivative of (4.4) is

∂

∂n
c(n)[v] = 4〈n · n− 1,n · v〉0. (4.5)

Finally, let ck be the column vector representing the finite-element discretized form
of (4.5) at iterate nk.

One of the significant advantages of finite-element discretizations is the inherent
sparsity of the resulting matrices. Trust-region algorithms in the Byrd-Omojokun
family [10, 44, 52] require computation of the generally non-sparse matrix Nk, whose
columns form an orthonormal basis for the orthogonal complement of ck, as well as
the formation and inversion of the matrix NT

k WkNk. In general, the matrix NT
k WkNk

is not sparse and quite large, as Wk has dimension m×m and Nk is m×(m−1), where
m is the number of discretization degrees of freedom for n. Storage and computation
with these dense matrices proves to be prohibitive, even on relatively small grids.
Therefore, any advantages garnered by the use of these trust regions is outweighed
by loss of the finite-element sparsity. Similarly, trust-region methods based on the
fundamental work in [54] suffer from sparsity fill-in issues for large matrices in the
context of finite-element methods.

To preserve sparsity properties, while still maintaining some advantages of a trust-
region approach, we implement a simple trust-region method specifically fitted to
the Lagrange multiplier formulation of the minimization problem. For the Lagrange
multiplier approach in Section 2.2, we compute a Newton update direction as in [2],
δχ = [δn δλ]T . This update is meant to bring nk and λk closer to satisfying the first-
order optimality conditions. Let L0(nk, λk) represent the finite-element discretized
form of the right-hand side of Equation (2.3) for nk and λk. Define the proportions
wk and wlim, such that 0 < wlim ≤ wk ≤ 1, where wlim is a lower bound for wk. For
a given step, wkδχ, the expected change in |L0(nk, λk)| is equal to wk|L0(nk, λk)|.
Therefore, we define the ratio

ρk =
|L0(nk, λk)| − |L0(nk + wkδn, λk + wkδλ)|

wk|L0(nk, λk)|
.

This ratio compares the change in the Lagrangian predicted by the linearized model
to the actual change in the true Lagrangian for a computed step.

Let 0 < η2 < η1 and winc, wdec ∈ (0, 1]. Since wk is a scaling factor, rather than
a radius length, step selection and trust-region adjustment differ slightly from the
procedures discussed above and are given in Procedures 3 and 4, respectively.
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Procedure 3: Solution update.

if ρk > η2 or wk = wlim then
Accept step: [nk+1 λk+1]T =
[nk λk]T + wkδχ.

else
Reject step:
[nk+1 λk+1]T = [nk λk]T .

end

Procedure 4: TR size adjustment.

if ρk < η2 then
Shrink region:
wk+1 = max(wlim, wk − wdec).

else if η2 < ρk < η1 then
Keep region constant:
wk+1 = wk.

else
Expand region:
wk+1 = min(wk + winc, 1).

end

5. Numerical Results. In this section, we compare the performance of the
methods outlined above for three benchmark equilibrium problems. The general al-
gorithm utilized by each method has three stages; see Algorithm 5. The outer stage
implements nested iteration (NI) [50] where, at each level, the approximation to the
solution is iteratively updated. These updates are computed via one of the methods
described above. In general, the iteration stopping criterion, on a given level, is based
on a set tolerance for the approximation’s conformance to the first-order optimal-
ity conditions in the standard Euclidean l2-norm. For the renormalization penalty
method, the Newton iteration tolerance is based on the reduction of the ratio of the
energy from the previous step to the current step rather than conformance to the first-
order optimality conditions. In the numerical experiments carried out below, both
tolerances were held at 10−4. The approximate solution is then transferred to a finer
grid. In the current implementation, these finer grids represent uniform refinements
of the initial coarse grid. However, adaptive refinement could also be performed.

The components of the variational problems in Equations (2.3) and (2.5) are
discretized with finite elements on each grid. Both formulations use Q2 × Q2 × Q2

elements for n, while the Lagrange multiplier approach uses P0 elements for λ, as
in [1, 2]. In this section, the arising matrices are inverted using the UMFPACK LU
decomposition [16–19]. In Section 6, we introduce an optimally scaling multigrid
method with improved time to solution. The algorithm’s discretizations and grid
management are performed with the widely used deal.II finite-element and scientific
computing library [6, 7].

Algorithm 5: General minimization algorithm with NI

0. Initialize solution approximation on coarse grid.
while Refinement limit not reached do

while Nonlinear iteration tolerance not satisfied do
1. Assemble discrete components of System (2.3) or (2.5) on current
grid, H.
2. Compute correction to current approximation.
3. Update current approximation.

end
4. Uniformly refine the grid to size h.
5. Interpolate solution uH → uh.

end
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Each of the problems below is posed on a unit-square domain in the xy-plane, such
that Ω = {(x, y) | 0 ≤ x, y ≤ 1}. It is assumed that this domain represents a uniform
slab. That is, the vector n may have nonzero z-component but ∂n

∂z = 0. Dirichlet
boundary conditions are applied at the y-edges and periodic boundary conditions are
assumed at the boundaries x = 0 and x = 1. The experiments to follow consider an
8× 8 coarse mesh ascending in 6 uniform refinements to a 512× 512 mesh.

For the numerical experiments, each of the trust-region methods discussed above
is applied. For the penalty trust-region methods, the initial trust region radius is
set to ∆init. At each refinement level, the trust-region radius is reset to ∆init plus
an incremental increase, ∆inc, with a maximum of ∆̄. The Lagrangian trust-region
approach sets the initial value of wk to winit. After each refinement, wk is reset to
winit plus wlev, up to a maximum of 1. These increments are due to the increasing
accuracy of the iterates at each grid level. These constants are outlined in Tables 5.1
and 5.2

η1 = 0.25 η2 = 0.75 η3 = 0.125 C1 = 0.5

C3 = 1.3 ∆inc = 0.3 ∆̄ = 100 ∆init = 0.3

Table 5.1: Trust-region parameters for the penalty formulation.

η1 = 0.5 η2 = 0.25 winc = 0.1 wdec = 0.1

wlev = 0.1 wmin = 0.1 winit = 0.2 −

Table 5.2: Trust-region parameters for the Lagrangian formulation.

The non-trust-region, incomplete Newton stepping approach is also performed for
both formulations as a comparison benchmark with an initial ω = 0.2, increasing by
0.2 at each refinement to a maximum of 1. The performance of each of these methods
is then compared. In the results to follow, all reported free energies are computed
using only the free elastic quantities without any augmentations, such as the penalty
terms.

5.1. Twist Equilibrium Configuration. The first set of boundary conditions
induce a classical twist equilibrium configuration [51]. For this experiment, and the
tilt-twist experiment in the next subsection, let the general form of the solution be

n =
(

cos(θ(y)) cos(φ(y)), cos(θ(y)) sin(φ(y)), sin(θ(y))
)
. (5.1)

Note that the known analytical solutions have a one-dimensional structure, but the
numerical experiments below are full two-dimensional simulations. For the twist con-
figuration, let θ0 = π

8 . At the boundaries θ(0) = −θ0, θ(1) = θ0, and φ(0) = φ(1) = 0.
The Frank constants for this problem are K1 = 1.0, K2 = 1.2, and K3 = 1.0. The
analytical equilibrium solution for these boundary conditions and Frank constants is
derived, under a rotated coordinate system, in [51]. The solution is given by

n = (cos(θ0(2y − 1)), 0, sin(θ0(2y − 1))),

with true free-elastic energy 2K2θ
2
0. This corresponds to an expected free energy

of 0.37011. The existence of an analytical solution for this problem allows for the
computation of an L2-error for each computed approximation.
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Type Free Energy L2-error Min. Dev. Max Dev. Cost TR Cost

Lagrangian 0.370110 2.076e-11 −1.43e-14 7.00e-15 1.350 1.340

Pen. ζ = 101 0.358832 1.589e-02 −3.96e-02 −3.59e-05 1.371 1.354

Pen. ζ = 102 0.368481 1.993e-03 −4.32e-03 −1.16e-05 1.376 1.355

Pen. ζ = 103 0.369931 2.107e-04 −4.32e-04 −3.68e-06 1.440 1.418

Pen. ζ = 104 0.370092 2.143e-05 −4.32e-05 −1.14e-06 1.448 1.420

Pen. ζ = 105 0.370108 2.154e-06 −4.32e-06 −3.32e-07 1.447 1.426

Pen. ζ = 106 0.370110 2.157e-07 −4.32e-07 −7.27e-08 − 1.436

Pen. ζ = 107 0.370110 2.158e-08 −5.05e-08 −9.98e-09 − 1.465

Pen. ζ = 108 0.370110 2.158e-09 −5.18e-09 −1.06e-09 − 1.516

Pen. ζ = 109 0.370110 2.168e-10 −5.19e-10 −1.06e-10 − 1.639

Table 5.3: Statistics for the twist equilibrium solution with the different formulations and
penalty weights. Included is the system free energy, the computed L2-error on the finest
grid, and the minimum and maximum deviations from unit director length at the
quadrature nodes. Approximations of the cost in WUs for the corresponding method with
no trust regions and simple trust regions are included. Dashes in the columns indicate
divergence.

Table 5.3 compares the performance of the Lagrange multiplier method to the
penalty method without renormalization. The runs were performed with nested iter-
ation and the approximate work, measured in terms of assembling and solving a single
linearization step on a 512×512 grid, referred to as a work unit (WU), is given for the
corresponding method with no trust regions and the simple trust region approaches,
respectively. The work approximation is computed by summing the number of non-
zeroes in each matrix across all grids and dividing by the number of non-zeroes in the
(fixed) sparsity pattern at the finest level. The non-trust-region, incomplete Newton
stepping discussed above diverged for penalty parameters of ζ = 106 and greater.
However, smaller damping parameters may yield convergence. Both penalty-method
trust-region approaches converged without modification.

The table demonstrates the superior performance of the Lagrange multiplier
method for this problem across all statistics with lower error, cost, and tighter con-
formance to the constraint. The penalty method does not match the free energy
obtained by the Lagrangian formulation until reaching a penalty weight of 106 and,
without trust regions, encounters divergence issues for these large penalty weights.
While trust regions do not significantly reduce overall computations costs, Table 5.3
suggests that they significantly improve robustness.

The results in Tables 5.4 and 5.5 show the performance of the renormalization
penalty method with and without trust regions. Table 5.5 provides additional statis-
tics for the 2D-subspace minimization trust-region approach discussed in Table 5.4.
For the twist equilibrium solution, the renormalization penalty method obtains bet-
ter error values for smaller penalty weights than the unmodified penalty method. In
Table 5.5, using the 2D-subspace minimization trust-region approach, we obtain an
error of 3.592e-09 with a penalty weight of only ζ = 105. Moreover, the minimum
and maximum deviation of the director at the quadrature nodes is closer to that of
the Lagrangian method. However, the performance improvements rely more heavily
on the penalty parameter. While an error measure closer to the Lagrange multiplier
formulation is achieved for ζ = 105, performance degrades at ζ = 106, with notable
jumps in costs for all methods recorded in Table 5.4. The increases in error are due to
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No Trust Region Simple Trust Region 2D Trust Region

Type L2-error Cost L2-error Cost L2-error Cost

Pen. ζ = 101 1.457e-02 1.338 1.457e-02 1.334 1.457e-02 1.334

Pen. ζ = 102 8.932e-05 1.338 8.931e-05 1.334 8.931e-05 1.334

Pen. ζ = 103 3.358e-06 1.339 3.357e-06 1.334 3.357e-06 1.335

Pen. ζ = 104 1.523e-07 1.340 1.116e-07 1.336 1.116e-07 1.336

Pen. ζ = 105 6.260e-08 8.113 3.595e-09 1.364 3.592e-09 1.340

Pen. ζ = 106 6.356e-06 81.120 1.688e-02 73.052 1.098e-07 2.731

Table 5.4: A comparison of renormalization penalty methods, with and without
trust-region approaches, for the twist solution. For each algorithm, the computed L2-error
on the finest grid and an approximation of the cost in WUs is included.

the algorithm beginning to emphasize the unit-length constraint over proper director
orientation. Correctly selecting the penalty weight represents a fundamental difficulty
for this method.

Type Free Energy L2-error Min. Dev. Max Dev. 2D TR Cost

Pen. ζ = 101 0.370168 1.457e-02 −4.58e-11 4.58e-11 1.334

Pen. ζ = 102 0.370111 8.931e-05 −1.68e-11 1.68e-11 1.334

Pen. ζ = 103 0.370110 3.357e-06 −5.18e-12 5.16e-12 1.335

Pen. ζ = 104 0.370110 1.116e-07 −1.45e-12 1.43e-12 1.336

Pen. ζ = 105 0.370110 3.592e-09 −3.16e-13 2.98e-13 1.340

Pen. ζ = 106 0.370110 1.098e-07 −4.04e-14 2.20e-14 2.731

Table 5.5: Statistics for the twist equilibrium solution with different penalty weights.
Here, the penalty method with renormalization and 2D-subspace minimization is
considered. Included is the system free energy, the computed L2-error on the finest grid,
the minimum and maximum deviations from unit director length at the quadrature nodes,
and an approximation of the cost in WUs for the corresponding method.

Figure 5.1a displays the number of iterations required to reach the specified itera-
tion tolerance within a nested iteration scheme alongside the final solution computed
by the Lagrange multiplier formulation in Figure 5.1b. Counts for both the Lagrange
multiplier approach and penalty formulation, with and without renormalization, for
a penalty parameter ζ = 103 are shown. In general, the trust-region methods sig-
nificantly reduce iteration counts on the coarse grids. However, on the finer grids,
this reduction is not sustained due to the efficiency of nested iteration. Because the
improved iteration counts are confined to the coarsest grids, overall cost reduction
is generally small. For example, the approximate cost for the Lagrange multiplier
method was reduced very slightly from 1.350 WUs to 1.340 WUs, only resulting in a
one second drop in overall time to solution.

Table 5.6 summarizes both the efficiency of nested iteration and highlights the
strengths of certain applications of trust-region methods. For all of the constraint
enforcement formulations, nested iteration offers very clear cost improvements. Cou-
pling nested iteration with the Lagrange multiplier method for this problem is quite
powerful, yielding the fastest overall run time and highest accuracy. Trust regions
have a clear impact on time to solution in the absence of nested iteration but offer
modest time to solution improvements when coupled with NI.
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Fig. 5.1: (a) Number of iterations required to reach iteration tolerance for each method
with NI. The penalty weight for the penalty formulation was ζ = 1000. Only the
2D-subspace minimization trust-region approach is displayed, as the behavior of simple
trust regions is similar. (b) The final computed solution for the Lagrangian formulation on
a 512 × 512 mesh (restricted for visualization).

Lagrangian

Method Solve Cost Run Time

No NI No TR 61 17, 975s

NI No TR 1.350 550s

No NI TR 10 3, 071s

NI TR 1.340 548s

Renormalization Penalty: ζ = 105

Method Solve Cost Run Time

No NI No TR 38 11, 838s

NI No TR 8.113 2, 272s

No NI TR 29 9, 172s

No NI TR 2D 32 10, 147s

NI TR 1.364 585s

NI TR 2D 1.340 584s

Unmodified Penalty: ζ = 105

Method Solve Cost Run Time

No NI No TR 142 41, 013s

NI No TR 1.474 593s

No NI TR 63 18, 425s

No NI TR 2D 64 19, 287s

NI TR 1.426 569s

NI TR 2D 1.424 574s

Unmodified Penalty: ζ = 109

Method Solve Cost Run Time

No NI No TR − −
NI No TR − −

No NI TR 1016 294, 349s

No NI TR 2D 1736 511, 874s

NI TR 1.639 641s

NI TR 2D 1.958 764s

Table 5.6: Twist statistics comparison for NI and trust region combinations. The solve
cost column displays an approximation of the work in WUs for the corresponding method.
The overall time to solution is also presented. Dashes in the columns indicate divergence.

If the penalty method is used, pairing nested iteration with trust regions increases
robustness and cost consistency. For example, the use of trust regions for the unmodi-
fied penalty method with ζ = 109 overcomes prominent divergence issues. In addition
to the improved error performance in Table 5.4, for ζ = 105, the renormalization
penalty method is generally faster than the unmodified penalty approach with the
same penalty weight. The slightly slower overall run times when NI is paired with
trust regions, in comparison with the unmodified penalty method, are due to the
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work involved in normalizing the director after each iteration. As discussed above, a
shortcoming of the renormalization penalty method is sensitivity to parameter choice.

5.2. Tilt-Twist Equilibrium Configuration. For this problem, n retains the
form in (5.1) and the same boundary conditions are applied with θ0 = π

4 and Frank
constants of K1 = 1.0, K2 = 3.0, and K3 = 1.2. Twist solutions incorporating a
nonplanar tilt deviating from parallel alignment with the xz-plane are investigated
in [35, 36]. It is shown that nonplanar twist solutions become available at a com-
putable threshold. This threshold is satisfied for the chosen parameters. The analyti-
cal, energy-minimizing, tilt-twist solution is defined implicitly for a rotated coordinate
system in [35,51]. The associated analytical, free-elastic energy for the chosen param-
eters is 3.59294.

For the tilt-twist equilibrium solution, the incomplete Newton stepping approach
converged for all of the penalty weights considered. Table 5.7 details the statistics
for the unmodified penalty method compared with the Lagrange multiplier method.
Again, the Lagrange multiplier method outperforms the penalty method in each cat-
egory. The free energy of the Lagrange multiplier method is not obtained by the
penalty method until ζ reaches 108.

It should be noted that the behavior of the error for the Lagrangian method, as
well as the penalty method for weights greater than 107, is affected by the implicit
definition of the true solution. The analytical solution for the tilt-twist equilibrium
configuration is implicitly defined by a complicated set of equations, which are solved
approximately at the appropriate quadrature points using Mathematica. Solving these
equations involves successive root finding for complicated integral equations where the
unknowns are limits of integration. Approximation error creates an artificial limit for
the computed error at accuracies smaller than 10−7.

Type Free Energy L2-error Min. Dev. Max Dev. Cost TR Cost

Lagrangian 3.59294 4.717e-07 −7.89e-10 7.88e-10 1.463 1.447

Pen. ζ = 101 2.15620 4.403e-01 −4.78e-01 −2.62e-04 1.458 1.333

Pen. ζ = 102 3.38037 4.597e-02 −5.01e-02 −1.17e-04 1.732 1.665

Pen. ζ = 103 3.56953 4.565e-03 −4.97e-03 −3.88e-05 1.732 1.665

Pen. ζ = 104 3.59052 4.606e-04 −5.00e-04 −1.21e-05 2.735 2.665

Pen. ζ = 105 3.59269 4.590e-05 −5.00e-05 −3.56e-06 2.743 2.667

Pen. ζ = 106 3.59291 4.253e-06 −5.01e-06 −8.05e-07 2.782 2.678

Pen. ζ = 107 3.59293 2.735e-07 −5.83e-07 −1.14e-07 2.809 2.723

Pen. ζ = 108 3.59294 4.340e-07 −6.00e-08 −1.22e-08 2.885 2.747

Pen. ζ = 109 3.59294 4.676e-07 −6.01e-09 −1.24e-09 3.218 2.879

Table 5.7: Statistics for the tilt-twist equilibrium solution with the different formulations
and penalty weights. Included is the system free energy, the computed L2-error on the
finest grid, and the minimum and maximum deviations from unit director length at the
quadrature nodes. Approximations of the cost in WUs for the corresponding method with
no trust regions and simple trust regions are included.

Considering Tables 5.8 and 5.9, the renormalization penalty method does not
perform as well as in the previous problem. Note that Table 5.9 details additional
statistics for the 2D-subspace minimization trust-region approach discussed in Table
5.8. Compared to the unmodified penalty method, computational costs remain stead-
ier, with the exception of the run without trust regions and a penalty weight of 106,
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No Trust Region Simple Trust Region 2D Trust Region

Type L2-error Cost L2-error Cost L2-error Cost

Pen. ζ = 101 4.354e-01 1.384 4.319e-01 1.337 4.424e-01 1.377

Pen. ζ = 102 3.691e-02 1.335 3.635e-02 1.333 3.578e-02 1.333

Pen. ζ = 103 4.708e-03 1.335 4.533e-03 1.332 4.493e-03 1.332

Pen. ζ = 104 1.085e-03 1.335 8.662e-04 1.332 8.536e-04 1.333

Pen. ζ = 105 1.650e-03 1.336 9.487e-04 1.333 7.012e-04 1.333

Pen. ζ = 106 9.414e-01 87.362 5.375e-04 1.341 7.344e-04 1.341

Table 5.8: A comparison of renormalization penalty methods, with and without
trust-region approaches, for the tilt-twist solution. For each algorithm, the computed
L2-error on the finest grid and an approximation of the cost in WUs is included.

and adherence to the unit-length constraint is improved. However, the method fails to
reach an equivalent accuracy before performance degrades. As with the simpler twist
problem, performance of the renormalization method is sensitive to an appropriate
choice of penalty weight.

Type Free Energy L2-error Min. Dev. Max Dev. 2D TR Cost

Pen. ζ = 101 3.92827 4.424e-01 −4.62e-09 4.62e-09 1.377

Pen. ζ = 102 3.59611 3.578e-02 −1.15e-09 1.14e-09 1.333

Pen. ζ = 103 3.59298 4.493e-03 −7.77e-10 7.76e-10 1.332

Pen. ζ = 104 3.59294 8.536e-04 −7.87e-10 7.85e-10 1.333

Pen. ζ = 105 3.59294 7.012e-04 −7.91e-10 7.90e-10 1.333

Pen. ζ = 106 3.59294 7.344e-04 −7.87e-10 7.86e-10 1.341

Table 5.9: Statistics for the tilt-twist equilibrium solution with varying penalty weights.
Here, the penalty method with renormalization and 2D-subspace minimization is shown.
Included is the system free energy, the computed L2-error on the finest grid, the minimum
and maximum deviations from unit director length at the quadrature nodes, and an
approximation of the cost in WUs for the corresponding method.

The method with renormalization does find the true free energy at a lower penalty
weight than the approach without renormalization. At a penalty weight of ζ = 104,
the penalty method without renormalization has a slightly lower error measure, but
has not accurately matched the true energy. While the unmodified method more accu-
rately resolves the orientation of the director in comparison with the renormalization
method, it slightly shrinks the director length to attain the moderately smaller free
energy.

Figure 5.2a presents similar behavior to Figure 5.1a, in that trust regions pro-
ductively reduce the number of iterations on the coarsest grids but have less effect
on iteration counts on the finest grids. This is again due to the efficiency of nested
iteration. Figure 5.2b displays the solution computed by the Lagrange multiplier ap-
proach. For the unmodified penalty method with NI and a penalty weight of ζ = 109,
trust regions only reduce the computational cost from 3.218 WUs to 2.879 WUs. This
results in only an 8.9% decrease in overall time to solution.

As shown in Table 5.10, improvements from the trust regions for the Lagrange
multiplier method are minor, decreasing computational costs from 1.463 WUs to 1.447
WUs and reducing overall time to solution by only 0.82%. Here, the renormalization
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Fig. 5.2: (a) Number of iterations required to reach iteration tolerance for each method
with NI. The penalty weight for the penalty formulation was ζ = 1000. Only the
2D-subspace minimization trust-region approach is displayed, as the behavior of simple
trust regions is similar. (b) The final computed solution for the Lagrangian formulation on
a 512 × 512 mesh (restricted for visualization).

Lagrangian

Method Solve Cost Run Time

No NI No TR 33 9, 853s

NI No TR 1.463 584s

No NI TR 9 2, 812s

NI TR 1.447 579s

Renormalization Penalty: ζ = 105

Method Solve Cost Run Time

No NI No TR 16 5, 119s

NI No TR 1.336 586s

No NI TR 18 5, 658s

No NI TR 2D 18 5, 817s

NI TR 1.333 575s

NI TR 2D 1.333 591s

Unmodified Penalty ζ = 105

Method Solve Cost Run Time

No NI No TR 39 11, 606s

NI No TR 2.743 939s

No NI TR 22 6, 598s

No NI TR 2D 22 6, 680s

NI TR 2.667 920s

NI TR 2D 2.667 949s

Table 5.10: Tilt-twist statistics comparison for NI and trust region combinations. The
solve cost column displays an approximation of the work in WUs for the corresponding
method. The overall time to solution is also presented.

penalty method is faster than the unmodified approach and, in some cases, even
slightly outpaces the Lagrange multiplier formulation. However, as shown in Tables
5.7 and 5.9 the associated error convergence is not comparable. In Table 5.10, results
for ζ = 109 are not reported due to untenably large run times without nested iteration.

5.3. Nano Patterned Boundary Conditions. In this numerical experiment,
we use Frank constants K1 = 1.0, K2 = 0.62903, and K3 = 1.32258. The applied
boundary conditions are the same as those used for the final experiment in [2]. Letting
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r = 0.25 and s = 0.95, the boundary conditions are defined as

n1 = 0, (5.2)

n2 = cos
(
r(π + 2 tan−1(Xm)− 2 tan−1(Xp))

)
, (5.3)

n3 = sin
(
r(π + 2 tan−1(Xm)− 2 tan−1(Xp))

)
, (5.4)

where Xm = −s sin(2π(x+r))
−s cos(2π(x+r))−1 and Xp = −s sin(2π(x+r))

−s cos(2π(x+r))+1 . These boundary conditions

are pictured in Figure 5.3b. The result is a sharp transition from vertical nematics
to planar-aligned rods followed by a rapid transition back to vertical alignment. Such
boundary conditions produce configuration distortions throughout the interior of the
domain and are important in physical applications [1, 4, 5]. Due to this complexity,
no analytical solution currently exists.

The more complicated nature of the nano-patterned boundary conditions is re-
flected in the data of Table 5.11. The overall approximate costs for the methods
with and without trust regions are larger than previous examples and the unit-length
constraint is more difficult to capture. Nonetheless, the Lagrange multiplier method
provides an accurate and cost effective approach. The penalty method without trust
regions diverges for penalty weights greater than ζ = 104. At higher penalty weights,
even the trust-region approach suffers jumps in computational costs. At ζ = 109, the
system becomes over constrained and accuracy begins to degrade. Hence, results for
this weight are not included.

Type Free Energy Min. Dev. Max Dev. Cost TR Cost

Lagrangian 3.89001 −6.92e-05 5.89e-05 2.864 2.779

Pen. ζ = 101 3.83657 −8.84e-02 1.96e-03 2.864 2.748

Pen. ζ = 102 3.86896 −4.01e-02 4.40e-03 2.864 2.749

Pen. ζ = 103 3.88331 −1.80e-02 7.32e-03 2.868 2.749

Pen. ζ = 104 3.88819 −6.58e-03 5.81e-03 2.886 2.757

Pen. ζ = 105 3.88965 −1.60e-03 2.01e-03 − 2.805

Pen. ζ = 106 3.88996 −2.90e-04 4.55e-04 − 3.736

Pen. ζ = 107 3.89001 −7.92e-05 1.01e-04 − 4.797

Pen. ζ = 108 3.89001 −6.76e-05 5.83e-05 − 22.328

Table 5.11: Statistics for the nano-patterned equilibrium solution with the different
formulations and penalty weights. Included is the system free energy and the minimum and
maximum deviations from unit director length at the quadrature nodes. Approximations of
the cost in WUs for the corresponding method with no trust regions and simple trust
regions are included. Dashes in the columns indicate divergence.

As with the tilt-twist equilibrium solution, the renormalization penalty method
approaches the Lagrangian formulation’s free energy and unit-length constraint bounds
earlier than the unmodified penalty method. It also yields a lower computational cost
for most penalty weights. However, as was seen in the tilt-twist data, matching the
energy earlier than the unmodified penalty approach does not directly indicate higher
accuracy in resolving the correct orientation of the director. Moreover, in Table 5.12,
divergence issues are apparent for the renormalization method at high penalty weights.

When considered with Table 5.11, Table 5.12 reinforces the conclusion that trust
regions positively influence the robustness of penalty method approaches. While
the simple trust-region approach works most effectively for the non-renormalization
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penalty method, the 2D-subspace minimization approach is more favorable for the
renormalization penalty formulation. Note that Table 5.13 details additional statis-
tics for the 2D-subspace minimization trust-region approach discussed in Table 5.12.

No Trust Region Simple Trust Region 2D Trust Region

Type Free Energy Cost Free Energy Cost Free Energy Cost

Pen. ζ = 101 3.89319 1.680 3.89351 1.518 3.89308 1.686

Pen. ζ = 102 3.89049 1.681 3.89051 1.666 3.89049 1.666

Pen. ζ = 103 3.89006 1.682 3.89006 1.666 3.89006 1.666

Pen. ζ = 104 3.89002 1.683 3.89002 1.669 3.89002 1.669

Pen. ζ = 105 − − 3.89001 2.133 3.89001 2.433

Pen. ζ = 106 − − − − 3.89001 5.418

Table 5.12: A comparison of renormalization penalty methods, with and without
trust-region approaches, for the nano-pattern solution. For each algorithm, the computed
free energy on the finest grid and an approximation of the cost in WUs is included. Dashes
in the columns indicate divergence.

Type Free Energy Min. Dev. Max Dev. 2D TR Cost

Pen. ζ = 101 3.89308 −7.06e-05 6.02e-05 1.686

Pen. ζ = 102 3.89049 −7.07e-05 6.02e-05 1.666

Pen. ζ = 103 3.89006 −7.09e-05 6.01e-05 1.666

Pen. ζ = 104 3.89002 −7.09e-05 6.01e-05 1.669

Pen. ζ = 105 3.89001 −7.08e-05 6.00e-05 2.433

Pen. ζ = 106 3.89001 −7.07e-05 5.98e-05 5.418

Table 5.13: Statistics for the nano equilibrium solution with the different formulations and
penalty weights. Here, the penalty method with renormalization and 2D-subspace
minimization is used. Included is the system free energy, the minimum and maximum
deviations from unit director length at the quadrature nodes, and an approximation of the
cost in WUs for the corresponding method.

Figure 5.3a displays the iteration counts as a function of grid size for both the
Lagrange multiplier formulation and the penalty method, with and without renor-
malization, at a penalty weight of ζ = 103. The solution computed by the Lagrange
multiplier method is shown in Figure 5.3b. Similar to the previous problems, trust
regions reduce iteration counts on the coarsest grids with reduced efficacy at the finer
levels, due to NI. The cost savings from trust regions within a nested iteration scheme
are slightly higher for this problem but persist as small improvements overall.

Table 5.14 reiterates the efficacy of nested iteration for efficient computation and
trust regions for robustness. For this problem, Table 5.14 also shows that the renor-
malization penalty method with nested iteration and trust regions has a somewhat
shorter overall run time than that of the Lagrange multiplier approach. Moreover,
the renormalization approach matches the free energy and unit-length conformance
of the Lagrangian formulation, see Tables 5.11 and 5.13. However, while the overall
run time and approximate cost of the approach is slightly larger, the accuracy of the
Lagrange multiplier formulation is expected to be much higher. For the Lagrange
multiplier approach, the l2-norm of the first-order optimality conditions is 7.386e-13,
whereas the same measure for the renormalization penalty method is 1.603e-02.
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Fig. 5.3: (a) Number of iterations required to reach iteration tolerance for each method
with NI. The penalty weight for the penalty formulation was ζ = 1000. Only the
2D-subspace minimization trust-region approach is displayed, as the behavior of simple
trust regions is similar. (b) The final computed solution for the Lagrangian formulation on
a 512 × 512 mesh (restricted for visualization).

Lagrangian

Method Solve Cost Run Time

No NI No TR 63 18, 861s

NI No TR 2.864 983s

No NI TR 10 3, 113s

NI TR 2.779 960s

Renormalization Penalty: ζ = 105

Method Solve Cost Run Time

No NI No TR 35 10, 918s

NI No TR − −
No NI TR 32 9, 893s

No NI TR 2D 34 10, 976s

NI TR 2.133 789s

NI TR 2D 2.433 901s

Unmodified Penalty ζ = 105

Method Solve Cost Run Time

No NI No TR 169 49, 654s

NI No TR − −
No NI TR 73 21, 415s

No NI TR 2D 75 22, 366s

NI TR 2.805 958s

NI TR 2D 3.530 1, 202s

Table 5.14: Nano-pattern statistics comparison for NI and trust region combinations. The
solve cost column displays an approximation of the work in WUs for the corresponding
method. The overall time to solution is also presented. Dashes in the columns indicate
divergence.

In all of the experiments above, the accuracy per unit cost of the Lagrange
multiplier method convincingly outperforms that of either of the penalty methods.
Moreover, the experimental results imply that nested iteration should be used when
considering any of the methods. While trust regions offer very slight improvements
in computation time, they readily improve robustness of the penalty method. Due
to their limited cost, it would be advantageous to include them for either method.
The simple trust-region approach works best for the unmodified penalty method with
stopping tolerances based on the first-order optimality conditions, whereas the 2D-
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subspace minimization trust regions are most effective for the renormalization penalty
method with an energy reduction based stopping tolerance. Though larger penalty
weights are generally necessary, the unmodified penalty method offers more consistent
error reduction and performance with respect to an increasing weight.

6. Multigrid Solver. With the superiority of the Lagrange multiplier approach
paired with nested iteration and trust regions established above, we demonstrate the
full efficiency of the approach on a problem with electric and flexoelectric coupling as
well as more complicated nano-patterened boundary conditions. In addition, a highly
efficient, coupled multigrid method for the associated linear systems is introduced.
The boundary conditions considered are a doubling of the nano-pattern described
by Equations (5.2) - (5.4), such that the pattern contains a second strip parallel to
the xy-plane. While there is no applied electric field, the curvature induced by the
nano-patterning generates an internal electric field due to the flexoelectric properties
of the liquid crystals [1, 42]. The flexoelectric free energy with appropriate boundary
conditions is given as

F(n, φ) = K1‖∇ · n‖20 +K3〈Z∇× n,∇× n〉0
− ε0ε⊥〈∇φ,∇φ〉0 − ε0εa〈n · ∇φ,n · ∇φ〉0
+ 2es〈∇ · n,n · ∇φ〉0 + 2eb〈n×∇× n,∇φ〉0.

The Frank constants used are K1 = K3 = 1.0 and K2 = 4.0, and the electric constants
are set to ε‖ = 7.0, ε⊥ = 7.0, εa = 0, and ε0 = 1.42809. For the flexoelectric constants,
using Rudquist notation [47], es = 1.5 and eb = −1.5.

For a full derivation of the Lagrange multiplier approach extended to include
electric and flexoelectric effects, see [1]. Using an electric potential, φ, the discretized
and linearized system is written

M

 n
φ
λ

 =

 A B1 B2

BT1 −D 0
BT2 0 0

 n
φ
λ

 =

 fn
fφ
fλ

 .
Define blocks of M as

Â =

[
A B1

BT1 −D

]
, B̂ =

[
B2

0

]
. (6.1)

Furthermore, let û = [n φ]T and f̂û = [fn fφ]T . With these block definitions, Braess-
Sarazin relaxation, originally formulated in [9] for Stokes flows, is used and takes the
form[

ûk+1

λk+1

]
=

[
ûk
λk

]
+

[
γbR B̂

B̂T 0

]−1([
f̂û
fλ

]
−
[

Â B̂

B̂T 0

] [
ûk
λk

])
, (6.2)

where R is an appropriate preconditioner for Â and γb is a weighting parameter. For
the multigrid approach, the matrix,[

γbR B̂

B̂T 0

]
,

is only approximately inverted, as in [3]. We use Q2 elements for both n and φ,
and, hence, the degrees of freedom for the components of n and φ are collocated. As
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suggested in [3], we construct the approximation, R, by extracting 4× 4-blocks of Â
corresponding to the nodally collocated degrees of freedom for n and φ. With careful
permutation of the degrees of freedom in Equation (6.2), R becomes a block-diagonal
matrix consisting of these 4× 4 collocation blocks.

Comparative studies of Braess-Sarazin-type relaxation schemes in a multigrid
framework for Stokes flows are found in [32], while numerical studies of their exten-
sion to multigrid methods for magnetohydrodynamic equations are performed in [3].
Here, as part of the underlying multigrid method, we use standard finite-element
interpolation operators and Galerkin coarsening.

We first focus on determining the optimal value of the relaxation parameter. Here,
and in the subsequent runs, the multigrid convergence tolerance, which is based on
a ratio of the current solution’s residual to that of the initial guess, remains fixed at
10−6 for each grid level and Newton step. The parameter γb was varied from 1.10 to
2.00 in increments of 0.05. Displayed in Figure 6.1a are the multigrid iteration counts,
averaged over Newton iterations, for a 512× 512 grid with respect to varying values
of γb. The parameter study suggests that a γb value of 1.20 is optimal for convergence
and, thus, we use this value. It is interesting to note that the iteration counts are
relatively insensitive to increases in γb above 1.20.
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Fig. 6.1: (a) The average number of multigrid iterations for varying γb on a 512× 512 grid.
(b) The average time to solution for the Braess-Sarazin multigrid scheme compared to the
UMFPACK direct solver.

Figure 6.1b exhibits average total setup and solve times for grid sizes from 8× 8
to 512× 512 for the UMFPACK direct solver and the Braess-Sarazin-type multigrid
scheme. Using Q2–Q2–P0 elements for n, φ, and λ, respectively, the matrices on the
512 × 512 grid are of dimension 4, 464, 644 × 4, 464, 644 with 289, 969, 900 nonzero
entries. Here, the Braess-Sarazin multigrid scheme is scaling optimally with the grid
size. Furthermore, there is a clear timing crossover at the 16×16 mesh, at which point
Braess-Sarazin becomes the faster solver. This timing intersection occurs considerably
earlier than the Vanka-type relaxation scheme discussed in [1].

Table 6.1 details a comparison of the UMFPACK direct solver’s performance to
that of the Braess-Sarazin-type multigrid scheme. With and without trust regions,
the computed free energy between the two solvers is identically 16.413. However,
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UMFPACK Solve Braess-Sarazin Solve

Trust-Region Type None Simple None Simple

System Assembly Time 136.1s 131.3s 136.8s 131.8s

Data Conversion Time − − 136.9s 132.6s

Linear Setup/Solve Time 1053.2s 1035.2s 436.8s 425.2s

Memory/Output Time 284.7s 283.2s 305.8s 302.6s

Total Time 1474.0s 1449.7s 1016.3s 992.2s

Table 6.1: A comparison of timing breakdowns for runs using the UMFPACK direct solver
or the Braess-Sarazin multigrid scheme. Each solver is run with and without trust regions.

Braess-Sarazin-type relaxation reduces overall runtime by nearly 33%. This speed up
is most notable when considering the fact that overall runtime for the multigrid solver
experiments includes porting variables to types compatible with the Trilinos computa-
tional library [29] and computing collocation information for the Braess-Sarazin-type
relaxation. Using the Lagrange multiplier formulation, nested iteration, multigrid,
and trust regions, we obtain a robust and efficient algorithm.

7. Summary and Future Work. We have discussed three approaches for im-
posing the pointwise unit-length constraint required by the Frank-Oseen free-energy
model for nematic liquid crystals, including a Lagrange multiplier formulation and
a penalty method, with and without renormalization. Theory establishing the well-
posedness of the intermediate discrete linearization systems for the penalty method
was presented. Such theory parallels the theory establishing the well-posedness of
the Lagrange multiplier linearization systems proved in [2]. In addition, trust-region
methods specifically tailored to each of the formulations were discussed and imple-
mented.

The ensuing algorithms were compared for three benchmark equilibrium prob-
lems. The experiments suggested that the Lagrange multiplier method coupled with
nested iteration is the most accurate and efficient approach for enforcing the unit-
length constraint. Trust-region schemes were shown to increase overall robustness
with very little extra cost and, therefore, should be considered when using either
constraint formulation. Furthermore, nested iteration was observed to be exceedingly
effective at reducing computational costs for all problems and methods. Finally, a
Braess-Sarazin-type multigrid method, based on work in [3], was introduced for the
Lagrange multiplier formulation and successfully applied to a highly difficult liquid
crystal problem with electric and flexoelectric coupling. The method quickly and
accurately computed the expected equilibrium configuration.

The current implementation utilizes uniform grid refinement to build the nested
iteration hierarchy of grids. Future work will include study of adaptive refinement
techniques. Because the energy minimization formulation does not yield an obvious a
posteriori error estimator, new techniques will be explored to flag cells for refinement.
With an accurate and efficient approach for liquid crystal equilibrium configurations
established, research into the application of energy-minimization finite-element ap-
proaches to liquid crystal flow problems will also be undertaken.
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