
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS
Numer. Linear Algebra Appl. 0000; 00:1–24
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/nla

Preconditioning a mass-conserving discontinuous Galerkin
discretization of the Stokes Equations

James H. Adler1, Thomas R. Benson1∗, and Scott P. MacLachlan2

1Department of Mathematics, Tufts University, 503 Boston Ave., Medford, MA 02155 USA
2Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL, Canada

A1C 5S7

SUMMARY

The incompressible Stokes equations are a widely-used model of viscous or tightly confined flow
in which convection effects are negligible. In order to strongly enforce the conservation of mass at
the element scale, special discretization techniques must be employed. In this paper, we consider
a discontinuous Galerkin (DG) approximation in which the velocity field is H(div,Ω)-conforming
and divergence-free, based on the BDM1 finite-element space, with complementary space (P0) for the
pressure. Due to the saddle-point structure and the nature of the resulting variational formulation, the
linear systems can be difficult to solve. Therefore, specialized preconditioning strategies are required in
order to efficiently solve these systems. We compare the effectiveness of two families of preconditioners
for saddle-point systems when applied to the resulting matrix problem. Specifically, we consider block-
factorization techniques, in which the velocity block is preconditioned using geometric multigrid, as
well as fully-coupled monolithic multigrid methods. We present parameter study data and a serial
timing comparison, and we show that a monolithic multigrid preconditioner using Braess-Sarazin
style relaxation provides the fastest time to solution for the test problem considered. Copyright c©
0000 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: block-factorization preconditioners, monolithic multigrid, discontinuous Galerkin,
Stokes equations

1. INTRODUCTION

The incompressible Stokes equations in domain Ω can be written

−∇ · (2νε(u)) +∇p = f in Ω (1)

∇ · u = 0 in Ω, (2)

together with appropriate boundary conditions. Here, u is the fluid velocity, p is the pressure,
f is an applied external force, ν is the fluid viscosity, and ε(u) = 1

2 (∇u +∇uT ) is the strain-
rate tensor. These equations represent a model of viscous or tightly confined flow in which
convection effects may be ignored [1]. The conservation of mass equation, (2), is important in
a variety of applications, especially when coupled to more complex physics [2], where numerical
instabilities can arise when this is not satisfied exactly.

In order to address the conservation issue, we consider a stable mixed finite-element
formulation using discontinuous Galerkin (DG). The DG method that we consider here was

∗Correspondence to: Department of Mathematics, Tufts University, 503 Boston Ave., Medford, MA 02155 USA

Copyright c© 0000 John Wiley & Sons, Ltd.

Prepared using nlaauth.cls [Version: 2010/05/13 v2.00]



2

introduced for the Stokes problem in [3] and for the Navier-Stokes problem in [4], both of
which show that the approximate velocity field is H(div,Ω)-conforming and divergence-free
almost everywhere, which is not generally true in the case of H1(Ω)-conforming discretizations
(e.g. Taylor-Hood). This is accomplished by the use of the first-order finite-element spaces of
Brezzi, Douglas, and Marini (BDM1) for velocity [21], such that ∇ · u is piecewise constant
on a triangulation. Using the P0 space for pressure results in a discretization for which weak
satisfaction of ∇ · u = 0 is equivalent to strong satisfaction of the incompressibility condition.

This discretization was also developed in [2] for an incompressible magnetohydrodynamics
(MHD) system. In [5], the authors extend the results of [3,4] to the case of the Stokes equations
with the particular boundary condition that we consider (described in Section 2), showing the
H(div,Ω)-conforming DG method to be stable and optimally convergent, as well as to provide
a divergence-free velocity approximation.

After discretization, the resulting linear system is of saddle-point type. Such systems arise
not only in incompressible fluid dynamics, but also in finance and economics, solid mechanics,
and many other fields. An extensive review of saddle-point problems can be found in [6]. As a
result of the relative ubiquity of systems of this type, efficient solvers and preconditioners are
necessary and are abundantly studied [7–13]. A common choice of preconditioner is the class
of block-factorization approaches [1,14]. In the context of the Stokes equations, these methods
typically require a preconditioner for the velocity block and a suitable approximation to the
pressure Schur complement. The velocity and pressure are effectively decoupled. Alternatively,
monolithic multigrid methods for these problems have also been proposed [15–17]. These
methods operate on both the velocity and the pressure simulataneously.

In contrast to either of the aforementioned classes of preconditioners for saddle-point
problems, solver strategies specifically tailored to the DG-method used here have also been
presented. In [5], the authors consider an auxiliary space preconditioner [18] that requires
projections to the curl space, which, in turn, require solving auxiliary systems corresponding to
scalar Laplacians. Numerical results in [5] use a direct solver as a preconditioner for the stiffness
matrix corresponding to the velocity block, noting that research is needed to develop effective
approximations to the velocity block; such approximations are developed here in the context
of block-factorization preconditioners. In [19], a multigrid approach for the velocity block is
presented, using a vertex-based block-SOR type relaxation scheme similar to the element-
based block-SOR method that we discuss in Section 3. This method is proposed within the
context of an augmented Uzawa method. While these approaches show that efficient solution
of these linear systems is possible, the question of the effectiveness of classical preconditioning
strategies has not yet been considered.

In this paper, we examine the two families of common preconditioners described above,
namely block factorization methods and monolithic multigrid methods specifically designed
for the BDM1-P0 discretization. First, we compare with standard block-diagonal and block-
triangular preconditioners. Here, the diagonal block corresponding to the discretization of
velocity is approximated using a multigrid cycle and the diagonal block corresponding to
the Schur complement is approximated by the pressure-space mass matrix. Within the
multigrid method, we consider both point and block relaxation techniques. Finally, we consider
monolithic multigrid methods that treat the coupled system at once, using either Braess-
Sarazin relaxation [15] or Vanka relaxation [16]. Both of these methods will require some
modification from their original forms as a result of the discretization being used. After
describing the details of the preconditioners, we show parameter study results and timing
comparisons to find the best scalable method for this discretization.

The remainder of this paper is organized as follows. In Section 2, the continuous and discrete
problems are developed in greater detail, and the BDM1-P0 finite-element method is described.
Then the preconditioners are explained in depth, with the block-factorization preconditioning
approaches in Section 3 and the monolithic multigrid preconditioners in Section 4. Finally,
numerical results are shown in Section 5 in which we examine parameter choices for each

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



3

preconditioner and comment upon the performance of the resulting solvers for a test problem
on both a uniform mesh and an unstructured mesh.

2. THE PROBLEM AND DISCRETIZATION

We consider the Stokes Equations, as given in Equations (1) and (2), on a domain Ω ⊂ R2.
Here, we take the known fluid viscosity, ν, to be constant throughout the domain.

Remark. With ν constant, by enforcing the divergence-free constraint, we can write the
divergence of the strain-rate tensor as a scaled vector-Laplacian:

∇ · (2νε(u)) = 2ν∇ 2u.

However, we do not make this simplification when implementing the bilinear form for the
numerical studies; we discretize the full strain-rate tensor.

We consider the case of enclosed flow and, therefore, impose upon the boundary, ∂Ω, a
no-flux condition:

u · n = 0 on ∂Ω, (3)

where n is an outward-pointing unit normal vector. We also impose a condition on the
tangential component of the normal stresses

((2νε(u)− pI)n) · t = 0 on ∂Ω, (4)

where t denotes a vector pointing in the tangential direction on the boundary.
In the usual way, we define the spaces

H1
0(Ω) = {v ∈ H1(Ω): v · n = 0 on ∂Ω}

and L2(Ω)/R as the the quotient space of equivalence classes of elements of L2(Ω) that differ
by a constant. This gives the following variational formulation.

Weak Form (Continuous). Find (u, p) ∈ H1
0 × L2(Ω)/R that satisfies

a(u,v) + b(v, p) = (f,v) ∀v ∈ H1
0(Ω)

b(u, q) = 0 ∀q ∈ L2(Ω)/R.
(5)

The bilinear forms are

a(u,v) := 2ν

∫
Ω

ε(u) : ε(v) dx ∀u,v ∈ H1
0(Ω),

b(v, q) := −
∫

Ω

q∇ · v dx ∀v ∈ H1
0(Ω), p ∈ L2(Ω)/R.

(6)

The linear form is

(f ,v) :=

∫
Ω

f · v dx ∀v ∈ H1
0(Ω). (7)

2.1. Formulation of the discontinuous Galerkin discretization

Let Th be a shape-regular partition of Ω into triangles, T . Then, partition the set of all edges
Eh = E0

h + E∂h , where E0
h is the set of interior edges and E∂h is the set of boundary edges. Also

define
H1(Th) = {φ ∈ L2(Ω): φ|T ∈ H1(T ),∀T ∈ Th},

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



4

and similarly for vectors (denoted H1(Th)) and tensors (denoted H1(Th)). The other spaces
that we require are:

H(div; Ω) := {v ∈ L2(Ω): ∇ · v ∈ L2(Ω)}
H0(div; Ω) := {v ∈ H(div; Ω) : v · n = 0 on ∂Ω}.

We note that H(div; Ω) is a Hilbert space with norm

‖v‖2H(div;Ω) := ‖v‖20,Ω + ‖∇ · v‖20,Ω ∀v ∈ H(div; Ω),

where ‖v‖0,Ω denotes the standard L2-norm on Ω.
Consider e ∈ E0

h, shared by two elements T 1 and T 2; the value of a function f , be it a scalar,
a vector, or a tensor function, on element T 1 is denoted f1 and on element T 2 is denoted f2.
Furthermore, the unit normal to edge e pointing outward from T 1 is denoted n1 and from T 2

is denoted n2. Also, let vt := (v · t)t be the tangential component of a vector v on an edge.
Now we define the average operators (see, e.g., [20]) for scalar functions φ ∈ H1(Th), vector
fields v ∈ H1(Th), and tensor fields τ ∈ H(Th) to be

{φ} =
1

2
(φ1 + φ2) {v} =

1

2
(v1 + v2) {τ} =

1

2
(τ 1 + τ 2)

on interior edges. On a boundary edge, we take {φ}, {v}, and {τ} to be the trace of φ, v, and
τ , respectively.

For φ ∈ H1(T ), the jump operator is defined to be

JφK = φ1n1 + φ2n2 on e ∈ E0
h and JφK = φn on e ∈ E∂h .

For v ∈ H1(Th), the jump operator is defined to be

JvK = v1 � n1 + v2 � n2 on e ∈ E0
h and JvK = v � n on e ∈ E∂h ,

where v � n = (vnt + nvt)/2.
Now we introduce the two finite-element spaces Vh and Qh. To discretize the weak form,

we consider the first-order H(div,Ω)-conforming finite element spaces of Brezzi, Douglas, and
Marini (BDM1) [21]. In particular, we take

Vh := {v ∈ H0(div; Ω) : v|T ∈ BDM1(T ) ∀T ∈ Th}
Qh := {q ∈ L2(Ω)/R : q|T ∈ P0(T ) ∀T ∈ Th}.

The degrees of freedom for BDM1(T ) in two dimensions are∫
e

u · neq ds ∀e ∈ ∂T,∀q ∈ P1(e),

where ne is the unit normal vector to edge e. As a result, u ∈ Vh is a piecewise-linear
vector field on the triangulation, with continous normal components across edges, but possibly
discontinous tangential components. Note that in this case, we have two degrees of freedom
per edge, or six degrees of freedom per triangle.

With Vh and Qh defined, we write the discrete weak form of the problem:

Weak Form (Discrete). Find (uh, ph) in Vh ×Qh such that:

ah(uh,v) + b(v, ph) = (f ,v) ∀v ∈ Vh

b(uh, q) = 0 ∀q ∈ Qh,
(8)

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



5

where

ah(u,v) := 2ν
∑
T∈Th

∫
T

ε(u) : ε(v) dx+ 2να
∑
e∈E0h

h−1
e

∫
e

JutK : JvtK ds

−
∑
e∈E0h

∫
e

[
({ε(u)} : JvtK) + (JutK : {ε(v)})

]
ds ∀u,v ∈ Vh

b(v, q) := −
∫

Ω

q∇ · v) dx ∀v ∈ Vh, q ∈ Qh

Here, he is the length of edge e and α is a penalty parameter that is taken to be positive and
large enough to ensure well-posedness.

The well-posedness of (8) is established in Theorem 4.5 of [5], which we restate here for the
convenience of the reader. A proof of this theorem and a detailed discussion of the theory of
this discretization can be found therein.

Theorem (Theorem 4.5 of [5]). Let (Vh, Qh) be as described above. Then, problem (8) has a
unique solution (uh, ph) ∈ Vh ×Qh that verifies

∇ · uh = 0 in Ω.

Moreover, there exists a positive constant C, independent of h, such that for every vh ∈ Vh

with ∇ · vh = 0 and for every qh ∈ Qh, the following estimate holds:

‖u− uh‖DG ≤ C‖u− vh‖DG

‖p− ph‖0,Ω ≤ C(‖p− qh‖0,Ω + ‖u− vh‖DG,

with (u, p) the solution of (5).

2.2. Saddle-point system

After discretization, we have the following linear system:[
F BT

B 0

]
︸ ︷︷ ︸

A

[
u
p

]
=

[
f
g

]
. (9)

Here, F represents the discretization of the bilinear form a(u,v), or the discrete representation
of the divergence of the strain rate tensor ε(u). Note that, because this discretization uses
vector elements, the block F cannot be written as a block-diagonal matrix with scalar
Laplacians along the diagonal, as it is in the case of the Taylor-Hood discretization. The matrix
B is the discrete divergence operator, and BT is its adjoint, the discrete gradient operator.
A thorough review on properties of such linear systems and preconditioning strategies can be
found in [6]. To solve this saddle-point problem, we consider a preconditioned Krylov subspace
method approach. We consider two categories of preconditioners, block-factorization methods
and monolithic multigrid methods.

In the category of block-factorization methods, we look at a block-diagonal preconditioner
and a block-triangular preconditioner [1, 22]. Here, the diagonal block corresponding to the
divergence of the strain-rate tensor, F , is approximated using a multigrid cycle and the diagonal
block corresponding to the Schur complement is approximated by the pressure-space mass
matrix, which is a diagonal matrix for this discretization. Because F is not a block-diagonal
matrix with scalar Laplacians on the diagonal, we cannot rely on scalar multigrid approaches
for this problem. Within the multigrid method, we consider both point and block relaxation
techniques.

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



6

Pre-
conditioners

Monolithic
Multigrid

Coarse
Grid
Op

Galerkin

Rediscretize

Relax

Full
Vanka

Diagonal
Vanka

Full
Extended

Vanka

Diagonal
Extended

Vanka

Diagonal
Braess-
Sarazin

Block
Diagonal
Braess-
Sarazin

Block
Factorization

Block
Diagonal

Velocity
Multigrid

Relax

Full Block
GS

Diagonal
Block GS

Pt. Gauss-
Seidel

Jacobi

Block
Triangular

Figure 1. Preconditioning and multigrid options for saddle-point systems. In green, we highlight two
block preconditioning strategies that require a multigrid solver for the velocity subsystem. In blue,
we identify two approaches to applying multigrid, either for only the velocity subsystem within a
block-structured preconditioner or as a monolithic method applied to the full coupled system. In
orange, we highlight the options within the multigrid methods, for relaxation and coarse-grid operator

construction.

In the category of monolithic multigrid methods [15, 16, 23], we investigate two families
of relaxation schemes for this system. In monolithic multigrid approaches, the multigrid
method treats the coupled system at once, though the individual components may decouple
the system within the iteration. Here, we consider Braess-Sarazin relaxation [15], which is a
global relaxation scheme, updating all degrees of freedom at once, and Vanka relaxation [16],
which is a local relaxation scheme in which degrees of freedom are updated in patches.

We note that, as always, there is a vast parameter space of possible approaches to
preconditioning these linear systems. Figure 1 presents these options in a structured way.

3. BLOCK PRECONDITIONERS

We first give details of the block preconditioning strategies considered; see [1, 7] for thorough
discussions of these approaches. While many possiblities exist in this family, we consider two
preconditioners, block diagonal,

Md =

[
Λ

Q

]
, (10)

and block triangular,

Mt =

[
Λ BT

Q

]
. (11)

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



7

In both cases, we choose Λ−1 to be a multigrid cycle applied to the velocity block, F , and
Q to be a pressure mass matrix, which is spectrally equivalent to the Schur complement,
−BF−1BT , whenever the finite-element discretization is inf-sup stable [7]. In this case, the
pressure mass matrix, corresponding to the P0 discretization of pressure, is a diagonal matrix,
with the volume of the corresponding element on the diagonal. We choose the positive mass
matrix so that we can create an SPD preconditioner, Md.

To treat Λ−1, we use geometric interpolation operators based on the BDM1 finite element
interpolation operators, noting that the DG (edge) terms in the weak form have no influence
upon the interpolation operator, Pu. We also consider Galerkin coarse-grid operators, Fc =
PTu FPu. It is important to note here that this coarse-grid operator is not equivalent to
rediscretization on the coarse grid, as would be the case for standard Galerkin discretizations,
such as P2 − P1 (Taylor-Hood) elements. We will see in Section 5 that some of the methods
will demonstrate a lack of convergence or scalability that can be ameliorated, to some degree,
by using rediscretizion to form the coarse-grid operators.

The remaining component of the multigrid method is the choice of relaxation procedure.
We consider two options, point and block schemes. As a first option, we focus on pointwise
Gauss-Seidel/SOR methods, although many other options could also be considered. In order
to maintain symmetry of the preconditioner, we utilize symmetric sweeping strategies, using
either a symmetric sweep for both pre- and post-relaxation or a forward sweep for pre-
relaxation and a backward sweep for post-relaxation. In this case, we have the standard SOR
relaxation parameter, denoted ωSOR.

The other relaxation scheme considered is an overlapping block Gauss-Seidel method. For a
decomposition of the velocity degrees of freedom into overlapping blocks, {S`}, such that each
degree of freedom appears in at least one block, we update the components of the solution
vector u corresponding to block S` as

u` = u` + ωBGSF̂
−1
`` (f − Fu)`.

Here, the subscript ` on a vector indicates the restriction of the vector to those components
present in the block `. The matrix denoted F̂`` is the local submatrix used in the update of
block `; its precise form is discussed below. Here, for the simplicity of implementation, the order
in which the blocks are updated is dictated by the order of the elements in the finite-element
software, and we only utilize forward sweeps for both pre- and post-relaxation. However, other
orderings or coloring schemes are certainly possible and may be desirable from the perspective
of parallel computation.

In this case, we choose for each block, S`, all of the degrees of freedom on element `, as
illustrated in Figure 2. The matrix F̂`` is closely related to the submatrix denoted F`` that
is obtained by restricting F to only those rows and columns corresponding to the degrees of
freedom in S`. We consider two options: the full submatrix F̂ full

`` = F`` and the diagonal of the

submatrix F̂`` = diag(F``).
In addition, we have a parameter ωBGS that must be chosen in order to obtain an effective

relaxation. Numerical experiments to guide the choice of this parameter will be presented in
Section 5.1. It should be noted that this is similar to the monolithic Vanka relaxation scheme
later described in Section 4.1. In fact, these are the same blocks as in that case, except that
here the pressure degrees of freedom are not coupled in the relaxation step.

4. MONOLITHIC MULTIGRID

As a second approach, we also investigate monolithic multigrid methods as preconditioners for
(9). As opposed to Λ−1 above, which was applied only to the vector-Laplacian block, F , we
now consider multigrid applied to the whole system (9) at once [15–17,24].

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



8

Figure 2. The degrees of freedom in one block for the overlapping block-Gauss-Seidel relaxation scheme.
The block consists of the degrees of freedom on the edges corresponding to a given element. Thus,
each block has 6 degrees of freedom, and a 6 × 6 system must be solved at each step of the block

Gauss-Seidel iteration.

Again, geometric multigrid is chosen, defining an interpolation operator that acts without
coupling between the velocity and pressure degrees of freedom, which take the form

P =

[
Pu

Pp

]
.

The blocks Pu and Pp are the natural finite-element interpolation operators for the BDM1 and
P0 spaces, respectively. We first consider the Galerkin coarse-grid operators, Ac = PTAP . As
above, note that the DG terms present in the F block play no role in defining the interpolation
operator Pu. In particular, this means that the velocity block of the Galerkin coarse-grid
matrix, Fc = PTu FPu, is not equivalent to that given by rediscretization on the coarse grid.
In Section 5, we will see that for some choices of relaxation scheme, rediscretization leads
to better performance than the Galerkin coarse-grid operators. In these cases, we consider
rediscretization of the coarse-grid operators as a possible alternative. With the grid-transfer
and coarse-grid operators fixed, we turn our attention to the relaxation schemes.

4.1. Vanka Relaxation

The first relaxation scheme that we investigate is Vanka-type relaxation [16]. Vanka-type
relaxation schemes can be viewed as overlapping Schwarz methods, updating small, local
collections of degrees of freedom at once in either a Gauss-Seidel (multiplicative) or Jacobi
(additive) fashion. In this paper, we only consider the multiplicative method, and thus
effectively couple the pressure into the block Gauss-Seidel relaxation scheme described above.

Here, we decompose the set of all degrees of freedom into overlapping sets {S`} so that each
block S` contains some velocity and some pressure degrees of freedom. Then, the components
of the (full) solution vector x = (u, p)T corresponding to the block S` are updated as

x` = x` + ωM−1
`` (b−Ax)`, (12)

where M`` is the “Vanka submatrix” corresponding to block ` and ω is a diagonal scaling
matrix containing underrelaxation weights. Again, for simplicity, the order in which these
updates occur is determined by the finite-element software, though other orderings and coloring
schemes are possible.

Choices of the blocks, {S`}, can vary greatly, and is discretization-specific. Two common
choices are “element-wise” blocks and “pressure-based” blocks [25]. In the element-wise scheme,
each ` refers to an element in the mesh and S` contains all degrees of freedom associated to
that element. In the pressure-based scheme, each ` refers to a pressure degree of freedom and
S` contains the degrees of freedom that are connected to that pressure degree of freedom in the
divergence constraint stencil (i.e. those velocity degrees of freedom corresponding to nonzero
column entries in the row of B corresponding to the pressure degree of freedom).

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



9

(a) An “Element-Wise” Vanka block. (b) An extended Vanka block.

Figure 3. The two Vanka blocks considered in this paper. The element-wise Vanka block is shown on
the left. This block consists of a single pressure degree of freedom and the 6 velocity degrees of freedom
on the same element, resulting in a 7 × 7 system that needs to be solved at each step of the Gauss-
Seidel iteration. The extended Vanka block, adding all velocity degrees of freedom on all elements that
share an edge, consists of 18 velocity degrees of freedom and 1 pressure degree of freedom, is shown

on the right. This block choice results in a 19 × 19 system at each step of the iteration.

We consider two choices of blocks in this paper, depicted in Figure 3. The first choice, shown
in Figure 3a, is an element-wise block, as the associated degrees of freedom are precisely those
on an element. Throughout this paper, this will be called the “element-wise block”. However,
note that in the case of P0 pressure discretization, this corresponds to a pressure-based block,
as each element has only one pressure degree of freedom and the velocity degrees of freedom
associated to that pressure are precisely the velocity degrees of freedom on that element. In
the case of this discretization, this results in blocks containing 7 degrees of freedom.

As we will see in Section 5, the element-wise blocks do not always yield a scalable solver
for this problem. Thus, we introduce, as a second choice, what we call the “extended” Vanka
block (Figure 3b). This is a simple geometric extension of the pressure-based interpretation
of the element-wise block. That is, we begin with the element-wise block and add to it only
the velocity degrees of freedom associated with elements that share an edge with the original
element. For this discretization, the resulting blocks contain up to 19 degrees of freedom (less
for boundary elements).

Once the blocks, {S`}, have been chosen, we consider the formation of the Vanka
submatrices, M`` in (12). Again, we consider two options. The first choice is “full” blocks,
which are simply

M full
`` =

[
F`` BT``
B`` 0

]
,

where B`` and BT`` are defined similarly to F``. Since there is only a single pressure degree of
freedom in each block S`, this means thatB`` is a row vector (andBT``, consequently, is a column
vector). In this case, M full

`` = A``, the restriction of A to rows and columns corresponding to
degrees of freedom in block S`. The methods using this submatrix will be called “full Vanka”
if we are using the element-wise blocks and “full extended Vanka” if we are using the extended
blocks.

An alternative choice that yields less memory use and less time-per-iteration is the
“diagonal” Vanka submatrix [23,26–28]:

Mdiag
`` =

[
diag(F``) BT``
B`` 0

]
,

where F``, B``, and BT`` are defined as above. The methods using this submatrix will be called
“diagonal Vanka” if we are using the element-wise blocks and “diagonal extended Vanka” if
we are using the extended blocks. As we will show in Section 5.4, however, this method will

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



10

require too many more iterations than full Vanka for the reduced cost per iteration to be
beneficial.

For the purposes of this investigation, we consider a diagonal scaling matrix, ω, to ensure
effective relaxation. The matrix ω has the form

ω =

[
ωuI

ωp

]
, (13)

where I is the identity matrix of the appropriate size for the number of velocity degrees of
freedom in this block. Numerical experiments to guide the choice of ωu and ωp will be presented
in Section 5.2.

4.2. Braess-Sarazin Relaxation

Whereas Vanka-type relaxation solves a series of local problems, Braess-Sarazin-type relaxation
methods solve global saddle-point problems using simpler approximations to the true system
[15]. The “ideal” Braess-Sarazin update takes the form[

u
p

]new

=

[
u
p

]old

+ ωBS

[
αBSC BT

B 0

]−1
([

f
g

]
−A

[
u
p

]old
)
, (14)

where C is a simple preconditioner for F , the block corresponding to the fluid velocity, αBS

is an inner scaling parameter on C, and ωBS is an underrelaxation parameter for the global
update.

In (14), we must solve a system:[
αBSC BT

B 0

] [
δu
δp

]
=

[
ru
rp

]
. (15)

This system can be factorized as[
αBSC
B S

] [
I 1

αBS
C−1BT

I

] [
δu
δp

]
=

[
ru
rp

]
, (16)

where S = − 1
αBS

BC−1BT is the Schur complement. The solution can be computed by the
algorithm:

Sδp = rp −
1

αBS
BC−1ru (17)

δu =
1

αBS
C−1(ru −BT δp). (18)

In practice, it suffices to only approximately solve (17), leading to an “inexact” Braess-Sarzin
method. In the numerical experiments reported in Section 5, we use a single sweep of Symmetric
Gauss-Seidel.

Finally, we must make an appropriate choice for the matrix C. Generally, we choose
a preconditioner for F whose inverse is easily computable. One strategy is to consider
the diagonal of F , Cdiag = diag(F ) [26, 27]. However, in order to improve robustness and
convergence, we also consider a block-diagonal preconditioner [23], denoted CblkDiag =
blkDiag(F ), in which the blocks correspond to the two velocity DOFs on an edge in the
mesh. Note that this choice of blocks is dependent upon the discretization considered.

5. NUMERICAL RESULTS

To study the relative effectiveness of the preconditioners outlined above, we consider a two-
dimensional test problem posed on Ω = [0, 1]2. We will first consider a regular mesh of triangles

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



11

on Ω to conduct a parameter study; afterwards, we will show the performance of these methods
using the identified parameters, both on regular meshes as well as on meshes given by uniform
refinement of an unstructured “coarse” mesh.

We use the same example as [5], with analytical solution, (u∗, p∗):

u∗ =

(
x(1− x)(2x− 1)(6y2 − 6y + 1)
y(y − 1)(2y − 1)(6x2 − 6x+ 1)

)
, (19)

p∗ = x2 − 3y2 +
8

3
xy. (20)

The right-hand side vector, f , is computed by substituting (19) and (20) into (1). We fix
ν = 0.5 and α = 4.0 for all experiments.

To solve the linear systems (9), we use a Krylov subspace method preconditioned with one of
the above preconditioners. Note that the matrix A in (9) is symmetric. In the case of the block-
diagonal preconditioner with symmetric pointwise Gauss-Seidel relaxation, the preconditioner
is symmetric and positive-definite, and thus we use the MINimal RESidual (MINRES) method
as the Krylov method; for the other preconditioners, we use the Generalized Minimal RESidual
(GMRES) method [1, 29]. The solvers were all implemented in Trilinos [30] and the finite-
element discretization was implemented using FEniCS [31].

Remark. As this paper focuses on geometric multigrid methods, it could be possible to
implement the resulting algorithms in a matrix-free way using fixed operator stencils on
uniform meshes or patches; see, for example, [32]. For all examples, we explicitly form and store
all of the matrices involved, and report timings including computation of Galerkin coarse-grid
operators in the setup phase. As a result, the reported timings offer insight into potential
algebraic multigrid extensions of these methods, although we do not consider this here.

5.1. Block Preconditioning Parameter Study

First, we examine the parameter choices for the block factorization preconditioners, (10) and
(11). For these methods, we have only a single parameter for each relaxation scheme to consider,
ωSOR for the point method and ωBGS for the block Gauss-Seidel method. In each case, the
initial guess is zero, and the appropriate Krylov method is run until the `2-norm of the residual
has been reduced by a relative factor of 106. We vary the parameter in steps of 0.1, and report
the number of iterations required of the Krylov method.

We begin with the point relaxation method. We see in the left plot of Figure 4 that using
a V(1,1)-cycle for Λ−1 does not provide mesh-independent convergence, though the optimal
parameter choice is clearly ωSOR = 1.0 for all grid sizes. The use of a W(1,1)-cycle, shown in
the right plot of Figure 4, largely mitigates the dependence, but does not eliminate it — it takes
41 iterations to converge on the 32× 32 grid and 53 iterations on the 256× 256 grid using the
block-diagonal preconditioner (10). However, the optimal parameter choice has not changed
and remains at ωSOR = 1.0 for all grid sizes. Parameter choices ωSOR > 1.0 were considered
and found not to yield better convergence. Additionally, the block-diagonal and the block-
triangular preconditioners show qualitatively similar behavior, with the latter requiring only
slightly fewer iterations to achieve convergence.

Next we consider the methods using block Gauss-Seidel relaxation, shown in Figures 5 and
6. We first use the full submatrices, with results shown in Figure 5. On the left, we see that,
as with the point methods, using a single V(1,1)-cycle for Λ−1 does not give grid-independent
scaling for either the block-diagonal or the block-triangular preconditioner. Additionally, using
two or three V(1,1)-cycles for Λ−1 led to a reduction in iterations, but not an improvement in
scaling. This was found to be generally true for both the block-diagonal and block-triangular
preconditioners with all relaxation choices considered. To obtain a scalable algorithm, we can
use a W(1,1)-cycle, shown in the plot on the right. Unlike the case of point relaxation, the use
of W-cycles leads to perfect scaling across grid sizes for both the block-diagonal and the block-
triangular preconditioner, with the latter requiring approximately 5-6 fewer iterations than the

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



12

Figure 4. Iteration counts versus SOR relaxation parameter for a block-preconditioned Krylov method
using a symmetric sweep of point SOR as the multigrid relaxation scheme. On the left, V(1,1)-cycles
are used to precondition the velocity block; on the right, W(1,1)-cycles are used. The solid lines
are for MINRES with the block-diagonal preconditioner; the dashed lines are for GMRES with the

block-triangular preconditioner.

Figure 5. Iteration counts versus block Gauss-Seidel relaxation parameter, ωBGS, for block-
preconditioned GMRES using a forward sweep of block Gauss-Seidel with full submatrices as the
multigrid relaxation scheme. On the left, V(1,1)-cycles are used to precondition the velocity block; on
the right, W(1,1)-cycles are used. The solid lines are the block-diagonal preconditioner; the dashed

lines are the block-triangular preconditioner.

former. In this case, too, the optimal parameter choice is ωBGS = 1.0, giving convergence in
20 iterations with the block-diagonal preconditioner or 14 iterations with the block-triangular
preconditioner on the 256× 256 grid.

We expect that the full method may not be the most computationally efficient method, as it
requires the full submatrices to be stored and inverted [23]. To reduce the computational effort
required for the iteration, we consider using the diagonal submatrices, with results shown in
Figure 6. On the left, we see that the grid dependence is worse for this scheme than any of
the others when using a V(1,1)-cycle — in fact, no convergence was seen on the 256× 256
grid within the allotted number of iterations. It is clear, however, that ωBGS = 0.7 is the
best parameter choice. Using, instead, a W(1,1)-cycle, is able to somewhat mitigate the grid
dependence, though not eliminate it completely. The optimal parameter remains the same
as with V-cycles, namely ωBGS = 0.7. With this optimal parameter, the method required 47
iterations to achieve convergence on the 32× 32 grid and 56 iterations on the 256× 256 grid.

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



13

Figure 6. Iteration counts versus block Gauss-Seidel relaxation parameter, ωBGS, for block-
preconditioned GMRES using a forward sweep of block Gauss-Seidel with diagonal submatrices as the
multigrid relaxation scheme. On the left, V(1,1)-cycles are used to precondition the velocity block; on
the right, W(1,1)-cycles are used. The solid lines are the block-diagonal preconditioner; the dashed
lines are the block-triangular preconditioner. The absence of a data point means that the Krylov

method did not converge to the desired tolerance within 300 iterations.

In summary, the block-diagonal and block-triangular preconditioners (10) and (11) lead to
scalable methods when a W(1,1)-cycle with the properly chosen relaxation scheme is used
for Λ−1. Moreover, there is no qualitative difference between the performance of the block-
diagonal and the block-triangular preconditioners. In general, the block-triangular method
requires about 5-6 fewer iterations than the block-diagonal method for all relaxation choices
at all grid sizes. In particular, using symmetric pointwise Gauss-Seidel sweeps or block Gauss-
Seidel with diagonal submatrices does not provide a truly grid-independent precondtioner.
However, block Gauss-Seidel relaxation with full submatrices gives consistent performance
across all grid sizes in the context of both block preconditioners.

5.2. Monolithic multigrid with Vanka relaxation parameter study

We now turn our attention to the monolithic multigrid preconditioners, for which there are
two parameters in each relaxation scheme, ωu and ωp for the Vanka methods and ωBS and αBS

for the Braess-Sarazin methods. In this case, these parameters are each varied independently
in steps of 0.1.

We begin our investigation of the full Vanka scheme with a two-grid iteration. We find this
method to offer grid-independent convergence across all grid sizes. With the convergence of
the two-grid method established, we proceed to the full V-cycle. The results are shown in
the top row of Figure 7. We see that on the 32× 32 grid (4-level), the stopping criterion
was met in 14 iterations for (ωu, ωp) = (1.0, 0.6). However, on the 256× 256 grid (7-level),
we observe no convergence at all for this parameter choice, and the new optimal parameter
choice is (ωu, ωp) = (0.9, 0.1), giving convergence in 49 iterations. Thus, there is a strong grid
dependence both on the optimal parameter choice as well as the convergence of the algorithm.

Since the two-grid method is successful, a natural expectation is that the use of W-cycles
will also lead to good convergence. The middle row of Figure 7 shows that this is not the case.
Here we see that the convergence is excellent on the 32× 32 grid; however, we have only a very
small region of convergence on the 256× 256 grid. In this case, we believe that the difficulty
is caused by a mismatch between the Galerkin coarse-grid operators, Ac = PTAP , and the
chosen relaxation scheme. To test this, we, instead, rediscretize the system on the coarse
grids. The results are shown in the bottom row of Figure 7. After switching from Galerkin to
rediscretized coarse-grid operators, we see a clearly defined range of optimal parameter choices
that lead to scalable methods for the V(1,1)-cycle preconditioner. In this case, the optimal

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



14

Figure 7. GMRES iteration counts with monolithic multigrid preconditioning using Vanka relaxation
with the element-wise blocks and full submatrices as the relaxation scheme. The top row shows a
V(1,1)-cycle with Galerkin coarsening; the middle row shows a W(1,1)-cycle with Galerkin coarsening;
and the bottom row shows a V(1,1)-cycle with rediscretized coarse-grid operators. Results for the
32 × 32 grid appear on the left; results for the 256 × 256 grid appear on the right. The absence of
a data point means that the Krylov method did not converge to the desired tolerance within 300

iterations.

choice is (ωu, ωp) = (1.0, 0.7), leading to convergence in 10 iterations on the 32× 32 grid and
11 iterations on the 256× 256 grid. We also observe that the W(1,1)-cycle preconditioner was
scalable with rediscretized coarse-grid operators.

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



15

Figure 8. GMRES iteration counts with the W(1,1)-cycle monolithic multigrid preconditioner with
Vanka relaxation using the element-wise blocks and diagonal submatrices as the relaxation scheme.
On the left are results for the 32 × 32 grid; on the right are results for the 256 × 256 grid. The absence
of a data point means that the Krylov method did not converge to the desired tolerance within 100

iterations.

Next, we consider the monolithic multigrid preconditioner with diagonal element-wise Vanka
relaxation and observe that the two-grid preconditioner provides consistent iteration counts
across grid sizes. Extending to the full V(1,1)-cycle, we note that this preconditioner, too,
is unable to provide grid-independent convergence and behaves qualitatively similarly to the
V(1,1)-cycle with full element-wise Vanka. Based on the intuition gained from the success
of the two-grid preconditioner, we then employ W(1,1)-cycles, which, as shown in Figure 8,
provide a scalable algorithm for this problem with (ωu, ωp) ∈ [0.6, 0.7]× [0.8, 1.0] as the optimal
parameter range, giving convergence in 19-21 iterations. Since the W(1,1)-cycle preconditioner
gives grid-independent convergence of GMRES, we do not consider rediscretization of the
coarse-grid operator in this case.

Similar results can be shown for the Extended Vanka methods. In both the case of full
submatrices and diagonal submatrices, GMRES with the two-grid preconditioner shows good,
grid-independent convergence, while GMRES with the V(1,1)-cycle preconditioner does not,
with convergence diminishing as grid size grows. However, upon switching to W(1,1)-cycles,
both the preconditioner with extended full Vanka relaxation and extended diagonal Vanka
relaxation offer a stable parameter range for (ωu, ωp) that offers consistent performance
across grid sizes. In particular, choosing (ωu, ωp) ∈ [0.7, 1.0]× [0.5, 1.0] for the preconditioner
with extended full Vanka relaxation gives convergence in 6 iterations on all grids. Choosing
(ωu, ωp) ∈ [0.5, 0.6]× [0.4, 0.6] for the preconditioner with extended diagonal Vanka relaxation
gives convergence in 15-17 iterations on all grids. As with the case of the preconditioner
with element-wise diagonal Vanka relaxation, we do not consider the multigrid method with
rediscretization of the coarse-grid operators here because of the success of the W(1,1)-cycle
preconditioner.

In summary, we see that each of the Vanka-type relaxation methods gives rise to a two-
grid preconditioner with grid-independent convergence. However, upon extending to a full
V(1,1)-cycle, none scale with Galerkin coarsening. In the case of element-wise full Vanka, a
W(1,1)-cycle was ineffective as well, requiring the use of rediscretized coarse-grid operators to
obtain grid independence. In the other cases, the use of a W(1,1)-cycle is enough to provide
good scaling properties across grid sizes. In the end, extended full Vanka gives the optimal
performance in terms of iteration counts, requiring only 6 iterations of GMRES to converge,
with a large, stable region of parameter choices that give optimal convergence.

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



16

Figure 9. GMRES iteration counts with the W(1,1)-cycle monolithic multigrid preconditioner using
Vanka relaxation with extended blocks. The top row shows results using the full submatrices; the
bottom row for diagonal submatrices. On the left are results for the 32 × 32 grid; on the right are
results for the 256 × 256 grid. The absence of a data point means that the Krylov method did not

converge to the desired tolerance within 300 iterations.

5.3. Monolithic multigrid with Braess-Sarazin relaxation parameter study

For the monolithic multigrid preconditioner with Braess-Sarazin relaxation (14), we tell a
similar story. The case of diagonal Braess-Sarazin, in which C = diag(F ), is shown in Figure
10. In the top row are results using a V(1,1)-cycle. While the optimal parameter choice
(ωBS, αBS) = (0.9, 2.1) is independent of the grid size, the performance of the algorithm
certainly is not, costing 42 iterations on the 32× 32 grid and 124 iterations on the 256× 256
grid. As shown in the bottom row of Figure 10, the W(1,1)-cycle preconditioner leads to more
consistent performance across grid sizes, ranging only from 28 iterations on the 32× 32 grid
to 32 iterations on the 256× 256 grid. In this case, the best parameter choice for all grid sizes
is observed to be (ωBS, αBS) = (0.8, 2.0).

Results for the W(1,1)-cycle preconditioner using the block-diagonal variant of the Braess-
Sarazin method are shown in Figure 11. The results for the V(1,1)-cycle preconditioner were
qualitatively similar to the previous case, again proving unsuccessful in providing a scalable
algorithm, with 30 iterations required for the 32× 32 grid and 74 iterations required for the
256× 256 problem. Using a W(1,1)-cycle instead, we see in Figure 11 that we have consistent
performance across grid sizes, requiring 22 iterations on the 32× 32 grid, stabilizing to 24-
25 iterations for finer grids. However, it is interesting to note that the region in which the

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



17

Figure 10. GMRES iteration counts with monolithic multigrid preconditioning using Braess-Sarazin
with C = diag(F ) as the relaxation scheme. On the left are results for the 32 × 32 grid; on the right are
results for the 256 × 256 grid. The top row shows V(1,1)-cycles; the bottom row shows W(1,1)-cycles.
The absence of a data point means that the Krylov method did not converge to the desired tolerance

within 500 iterations.

method does not converge increases with each grid refinement. The optimal parameters for
a given grid lie adjacent to the boundary of this region, and therefore shift with each grid
refinement. A parameter choice that leads to optimal performance on the 32× 32 grid is
(ωBS, αBS) = (0.8, 1.2). However, on the 256× 256 grid, this value is no longer optimal, giving
convergence in 161 iterations; a better choice of (ωBS, αBS) = (0.8, 1.4) for this grid size yields
convergence in 25 iterations.

This illustrates another important characteristic of both Braess-Sarazin-based methods: it is
better to pick αBS to be higher than the optimal choice, lest the choice lead to an algorithm that
is too slow to converge. Picking (ωBS, αBS) = (0.8, 1.4) on the 32× 32 grid gives convergence in
24 iterations instead of the optimal 22, whereas picking (ωBS, αBS) = (0.8, 1.2) on the 256× 256
grid gives convergence in 161 iterations instead of the optimal 25. More generally, for each of
these methods, we have identified a large region of parameter choices that give near-optimal
convergence across a wide range of grid sizes.

Thus we have seen that both block factorization methods and monolithic multigrid methods
lead to effective preconditioners when W(1,1)-cycles are used and when a proper relaxation
scheme is chosen. In this case, the block preconditioners with full block Gauss-Seidel relaxation
and the monolithic multigrid preconditioner with extended full Vanka relaxation give the best
performance, with iteration counts decreasing with increasing grid size in the former case and

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



18

Figure 11. GMRES iteration counts using the W(1,1)-cycle monolithic multigrid preconditioner using
Braess-Sarazin relaxation with C = blkDiag(F ) as the relaxation scheme. On the left are results for
the 32 × 32 grid; on the right are results for the 256 × 256 grid. The absence of a data point means

that the Krylov method did not converge to the desired tolerance within 500 iterations.

Table I. Number of multigrid levels used for each grid size and the number of degrees of freedom in
the global problem.

Grid size 32× 32 64× 64 128× 128 256× 256 512× 512
Multigrid Levels 4 5 6 7 8

Degrees of Freedom 8,320 33,024 131,584 525,312 2,099,200

remaining constant in the latter. In addition, the other monolithic multigrid relaxation schemes
generally show better scaling than the other block-factorization preconditioners.

5.4. Performance Analysis

In this section, we consider the computational time required of each of these preconditioning
strategies. All tests are performed in serial and run on a machine with 2 Intel Xeon E5-2650
v2 CPUs at 2.60 GHz configured with 128GB DDR3 RAM clocked at 1866MHz. We begin by
discussing the setup requirements of each method, and then considering the solve phase. For
these tests, we ran the simulations on five grid sizes, from 32× 32 to 512× 512. In each case,
we coarsen by a factor of two in each direction down to a coarse grid of 4× 4 elements, where
a direct solve is used to solve the coarse-grid problem (112 degrees of freedom for velocity; 32
for pressure). Table I shows the number of levels in the multigrid hierarchy and the number
of fine-grid degrees of freedom.

For the 512× 512 problem, we use the optimal parameters for each solver as determined in
the previous section. This means that we use the same parameter choices on each grid, with the
one exception of the method using the block-diagonal Braess-Sarazin relaxation scheme, where
we need to step αBS by 0.1 about every two grids. Thus, we use (ωBS, αBS) = (0.8, 1.2) on the
32× 32 test problem, (ωBS, αBS) = (0.8, 1.3) on the 64× 64 and 128× 128 test problems, and
(ωBS, αBS) = (0.8, 1.4) for the 256× 256 and 512× 512 test problems. As discussed above, we
could also have used the last set of parameter values for all grids with only slight degradation
in the coarsest grid results.

In the case of block preconditioning, the setup time is the cost of computing the multigrid
hierarchy for the velocity block and computing the inverse of the pressure mass matrix; there
should be only negligible difference between the block-diagonal and block-triangular setup cost.
The multigrid setup time includes computing all of the grid-transfer operators, computing the
coarse-grid operator on each grid, and any setup involved in the relaxation method. In the
case of the point methods, the last category is nearly negligible, whereas the block methods

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



19

Table II. The setup time in seconds of block-factorization preconditioners for various grid sizes, from
32 × 32 to 512 × 512.

32 × 32 64 × 64 128 × 128 256 × 256 512 × 512
Block-Diagonal Point SGS 0.022 0.083 0.33 1.31 5.21

Block-Diagonal Full Blk-GS 0.033 0.13 0.50 1.99 8.04
Block-Diagonal Diagonal Blk-GS 0.032 0.12 0.49 1.92 7.76

Block-Triangular Point SGS 0.022 0.084 0.33 1.31 5.34
Block-Triangular Full Blk-GS 0.034 0.13 0.50 1.99 8.01

Block-Triangular Diagonal Blk-GS 0.032 0.12 0.48 1.95 7.64

Table III. The setup time in seconds of monolithic multigrid preconditioners for various grid sizes,
from 32 × 32 to 512 × 512.

32 × 32 64 × 64 128 × 128 256 × 256 512 × 512
Diagonal Vanka 0.048 0.19 0.75 2.97 11.96

Full Extended Vanka 0.083 0.29 1.18 4.76 19.23
Diagonal Extended Vanka 0.054 0.21 0.85 3.45 13.81
Diagonal Braess-Sarazin 0.026 0.10 0.41 1.65 6.77

Block-Diagonal Braess-Sarazin 0.025 0.10 0.41 1.66 6.83

require the computation of the blocks and the extraction and factorization of the appropriate
6× 6 submatrices. Table II shows the setup cost of the block-factorization preconditioners. As
expected, the point method has the smallest setup time as the result of the nearly trivial cost
of the relaxation setup. Furthermore, the block Gauss-Seidel approach with full submatrices is
more expensive than that with diagonal submatrices. Finally, we observe that the setup times
are scaling by the desired factor of four in every case.

For the monolithic multigrid methods, we must compute two grid transfer operators at each
level, Pu and Pp, and block 2× 2 coarse-grid operators for each coarse level in the hierarchy.
Also, the relaxation schemes each require nontrivial setup. For the Braess-Sarazin methods,
we must compute C (and C−1) and the triple product S = − 1

αBS
BC−1BT . Finally, for the

Vanka methods, we must compute the element-wise or the extended blocks, and then extract
and factor the 7× 7 or 19× 19 (resp.) submatrices. Table III shows the setup cost of the
monolithic multigrid methods that we consider here. Since neither V- nor W-cycles with full
Vanka relaxation with Galerkin coarsening lead to a perfectly scalable method, we do not
consider that option here. We see that the Braess-Sarazin methods require the least setup
time, by at least a factor of two over the Vanka methods. Furthermore, there is little difference
in the setup cost between the diagonal and the block-diagonal Braess-Sarazin methods. For
the Vanka methods, we see that the element-wise diagonal method has a slight time advantage
over the extended methods, and that the diagonal extended method requires less time than
the full extended method, as we would expect. Again, the setup times scale by a factor of
about four.

For the solve phase, we consider the time required for preconditioned MINRES or
preconditioned GMRES to reduce the residual norm by a relative factor of 106, starting
from a zero initial guess. The results for the methods with the various block-factorization
preconditioners are shown in Table IV. The first observation from this table is that the block
Gauss-Seidel method with full submatrices requires the fewest number of iterations to converge,
and that it has the best scaling across grid sizes. A second observation is that the point method
is the fastest method, both per-iteration and overall. In particular, on the 512× 512 grid with
the block-diagonal preconditioner, the point method requires about 0.61 seconds per iteration
and the block method requires about 5.45 seconds per iteration for the full submatrices and
4.65 seconds per iteration for the diagonal submatrices. That is, the block method with full
submatrices is 9 times more costly per iteration than the point method, which requires only
2.84 times as many iterations. We note here that the block Gauss-Seidel methods scale much
better in terms of iteration counts, and, as such, they may have some advantatge if considering
very large problem sizes.

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



20

Table IV. The solve time in seconds of the methods utilizing block-factorization preconditioners for
various grid sizes, from 32 × 32 to 512 × 512. The number of required MINRES or GMRES iterations

is shown in parentheses next to the time.

32 × 32 64 × 64 128 × 128 256 × 256 512 × 512
Block-Diagonal Point SGS 0.13 (41) 0.46 (44) 1.94 (49) 8.18 (53) 32.68 (54)

Block-Diagonal Full Blk-GS 0.37 (21) 1.57 (21) 6.36 (21) 25.26 (20) 103.50 (19)
Block-Diagonal Diagonal Blk-GS 0.68 (47) 3.12 (50) 14.27 (54) 63.61 (56) 264.80 (57)

Block-Triangular Point SGS 0.13 (35) 0.49 (39) 2.09 (43) 8.65 (45) 37.79 (48)
Block-Triangular Full Blk-GS 0.27 (16) 1.22 (16) 4.82 (15) 19.10 (14) 76.19 (14)

Block-Triangular Diagonal Blk-GS 0.59 (42) 2.96 (46) 13.10 (49) 56.01 (51) 246.63 (53)

Table V. The solve time in seconds of monolithic multigrid preconditioners for various grid sizes, from
32 × 32 to 512 × 512. The number of required GMRES iterations is shown in parentheses next to the

time.

32 × 32 64 × 64 128 × 128 256 × 256 512 × 512
Diagonal Vanka 1.01 (18) 4.68 (19) 20.86 (20) 91.39 (21) 383.13 (22)

Full Extended Vanka 0.29 (6) 1.30 (6) 5.47 (6) 22.70 (6) 93.68 (6)
Diagonal Extended Vanka 0.73 (15) 3.32 (15) 14.78 (16) 60.94 (16) 248.47 (16)
Diagonal Braess-Sarazin 0.14 (28) 0.49 (30) 1.85 (32) 7.14 (33) 30.86 (35)

Block-Diagonal Braess-Sarazin 0.11 (22) 0.38 (24) 1.34 (24) 5.21 (25) 22.04 (26)

The added cost of the preconditioners employing the block Gauss-Seidel relaxation scheme
primarily comes from the need for the relaxation method to update the system residual
after each block update. Of course, the submatrix solves are more expensive than the “point
solves” (a single scalar multiplication and sum); however, the sum of the work required for the
submatrix solves is much less than the sum of the residual updates [23].

The results for the monolithic multigrid preconditioners are shown in Table V. One
observation from this table is that the full extended Vanka method provides the best iteration
counts for this problem and scales perfectly across grid sizes. However, it is very expensive on
a per-iteration basis, requiring 15.61 seconds per iteration for the 512× 512 problem. On the
other hand, we see that the Braess-Sarazin-based preconditioning methods provide the best
solve times overall, despite requiring several more iterations of the Krylov method. The method
using the block-diagonal Braess-Sarazin relaxation requires only 0.85 seconds per iteration for
the 512× 512 problem. So, the block-diagonal Braess-Sarazin method requires 4.33 times as
many iterations as the full extended Vanka method, but requires only 0.055 as much time
per iteration. As the iteration counts for the block-diagonal Braess-Sarazin-based method are
stable, it will likely be superior to the Vanka-based approaches on all feasible problem sizes.

In Figure 12, we show the total time to solution on a log scale for each method considered
above for the 512× 512 grid. It is clear that the monolithic multigrid preconditioner with block-
diagonal Braess-Sarazin relaxation leads to the shortest time to solution. Also, the monolithic
multigrid preconditioner with diagonal Braess-Sarazin relaxation and the block preconditioners
with point relaxation require approximately the same amount of time. The next group were
the methods based on full block Gauss-Seidel methods: block preconditioning with full block
Gauss-Seidel relaxation and monolithic multigrid with full extended Vanka relaxation. The
methods that took the most time to solution were those based on diagonal block Gauss-Seidel,
again emphasizing that reduced setup cost and solve time per iteration is not enough to
compensate for the high iteration counts of these methods.

5.5. Solver performance on an unstructured mesh

As a final test, the preconditioners are tested on a mesh generated by uniform refinements of
the unstructured coarse-grid mesh shown in Figure 13. The number of grid refinements used
and the resulting fine-grid number of degrees of freedom are shown in Table VI. The number
of grid refinements is equal to the number of levels in the multigrid hierarchies, and a direct
solve is used on the coarsest grid (720 velocity degrees of freedom and 228 pressure degrees of

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



21

Figure 12. Total time to solution on a log scale of all of the methods considered on a uniform 512 × 512
mesh. The results for the block-preconditioning methods are shown in green, and the results for the

monolithic multigrid preconditioning methods are shown in blue.

Figure 13. The unstructured coarse mesh.

Table VI. Number of degrees of freedom in the global problem for each number of grid refinements of
the unstructured coarse mesh.

Grid Refinements 4 5 6 7 8
Degrees of Freedom 58,658 234,048 935,040 3,737,856 14,946,816

freedom). Note that using 6 refinements leads to a system nearly half as large as the uniform
512× 512 mesh above, and using 7 refinements leads to a system nearly twice as large.

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



22

Table VII. Solver performance in seconds for the tests on the refined unstructured coarse mesh with
various levels of refinements. In parentheses is the number of iterations required of the Krylov solver

to attain convergence to a relative tolerance of 10−6 from a zero initial guess.

4-level 5-level 6-level 7-level 8-level
Block-Diagonal Point SGS 0.79 (38) 3.51 (43) 15.21 (47) 64.97 (50) 269.45 (51)

Block-Diagonal Full Blk-GS 2.72 (19) 11.27 (19) 46.45 (18) 194.08 (18) 770.07 (18)
Block-Diagonal Diagonal Blk-GS 4.48 (41) 21.26 (44) 97.85 (47) 411.20 (50) 1743.03 (51)

Block-Triangular Point SGS 0.81 (33) 3.73 (37) 16.23 (41) 70.09 (43) 300.61 (45)
Block-Triangular Full Blk-GS 2.07 (14) 9.12 (14) 36.62 (14) 150.97 (14) 632.01 (14)

Block-Triangular Diagonal Blk-GS 4.23 (38) 20.66 (41) 91.28 (44) 382.33 (46) 1585.66 (47)

Diagonal Braess-Sarazin 0.77 (25) 3.33 (27) 13.65 (29) 59.80 (31) 250.01 (32)
Block-Diagonal Braess-Sarazin 0.65 (20) 2.85 (22) 11.57 (23) 49.18 (24) 196.90 (24)

Diagonal Vanka 7.06 (16) 32.54 (17) 142.29 (18) 610.59 (19) 2434.00 (19)
Full Extended Vanka 2.48 (5) 10.48 (5) 43.79 (5) 174.54 (5) 716.55 (5)

Diagonal Extended Vanka 5.35 (13) 24.22 (14) 100.96 (14) 412.71 (14) 1754.88 (15)

For these experiments, we use the same parameters for each preconditioner as we used for
the above experiments on the uniform mesh, demonstrating the relative insensitivity of these
parameter choices to the underlying mesh. The total time to solution and iteration counts for
each preconditioner are given in Table VII. Most generally, we see that all solvers behave as
predicted above. In particular, the block preconditioners using pointwise Gauss-Seidel have
the worst grid dependence of all preconditioners in terms of iteration counts, followed by the
block preconditioners using diagonal block Gauss-Seidel. The monolithic multigrid methods
all show good scaling properties, as do the block preconditioners with full block Gauss-Seidel
relaxation. The best iteration counts are obtained using monolithic multigrid with extended
full Vanka relaxation. However, the best time for all levels of refinement is given by monolithic
multigrid preconditioning with block-diagonal Braess-Sarazin-type relaxation.

6. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented numerical results for two families of multigrid-based preconditioners for
a DG discretization of the Stokes equations, showing that block-factorization approaches as
well as monolithic multigrid approaches can be designed that provide scalable algorithms
for this problem. In particular, we have shown that block-diagonal and block-triangular
preconditioners with both pointwise and block Gauss-Seidel methods, as well as monolithic
geometric multigrid preconditioners using Braess-Sarazin-type and Vanka-type relaxation lead
to effective preconditioners for this problem. The block preconditioners with full block Gauss-
Seidel relaxation and monolithic multigrid with extended full Vanka are shown to give the best
scaling properties, with the later giving the best iteration counts. However, the best method
for total time to solution is using a monolithic multigrid preconditioner with block-diagonal
Braess-Sarazin-type relaxation.

In our previous work [23], we have extended the families of monolithic relaxation
strategies shown here to an H1-conforming discretization of two-dimensional resistive
magnetohydrodynamics (MHD). In the future, we will extend these methods to MHD problems
that utilize H(div)-conforming discretizations similar to those shown here, such as described
in [2]. In addition, here, we relied upon geometric multigrid approaches. This could be relaxed
to considering algebraic multigrid approaches for this problem. However, in the case of block
preconditioning, this would require an AMG-style interpolation operator for the DG-BDM1

velocity block. In the case of monolithic multigrid, we would require grid transfer operators
that preserve the saddle-point block structure for the relaxation methods to be meaningful, in
addition to dealing with the DG influence effectively on coarse grids. Finally, we are developing
parallel implementations of the monolithic Vanka methods described above. This involves

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla



23

appropriate choices of blocks on the processor boundaries, as well as choosing the Schwarz-
style updating scheme properly. In particular, we will do multiplicative updates on-processor
and additive updates across processor.

REFERENCES

1. Elman H, Silvester D, Wathen A. Finite elements and fast iterative solvers: with applications in
incompressible fluid dynamics. Numerical Mathematics and Scientific Computation, Oxford University
Press: New York, 2005.

2. Greif C, Li D, Schötzau D, Wei X. A mixed finite element method with exactly divergence-free velocities for
incompressible magnetohydrodynamics. Computer Methods in Applied Mechanics and Engineering 2010;
199(4548):2840 – 2855, doi:10.1016/j.cma.2010.05.007. URL http://www.sciencedirect.com/science/
article/pii/S0045782510001507.

3. Wang J, Ye X. New finite element methods in computational fluid dynamics by H(div) elements. SIAM
Journal on Numerical Analysis 2007; 45(3):1269–1286, doi:10.1137/060649227. URL http://dx.doi.org/
10.1137/060649227.

4. Cockburn B, Kanschat G, Schötzau D. An equal-order DG method for the incompressible Navier-
Stokes equations. Journal of Scientific Computing 2009; 40:188–210, doi:10.1007/s10915-008-9261-1. URL
http://dx.doi.org/10.1007/s10915-008-9261-1.

5. Ayuso de Dios B, Brezzi F, Marini L, Xu J, Zikatanov L. A simple preconditioner for a discontinuous
Galerkin method for the Stokes problem. Journal of Scientific Computing 2014; 58(3):517–547, doi:
10.1007/s10915-013-9758-0. URL http://dx.doi.org/10.1007/s10915-013-9758-0.

6. Benzi M, Golub GH, Liesen J. Numerical solution of saddle point problems. Acta Numer. 2005; 14:1–137,
doi:10.1017/S0962492904000212. URL http://dx.doi.org/10.1017/S0962492904000212.

7. Verfürth R. A combined conjugate gradient - multi-grid algorithm for the numerical solution of the Stokes
problem. IMA Journal of Numerical Analysis 1984; 4(4):441–455, doi:10.1093/imanum/4.4.441. URL
http://imajna.oxfordjournals.org/content/4/4/441.abstract.

8. Rusten T, Winther R. A preconditioned iterative method for saddlepoint problems. SIAM Journal on
Matrix Analysis and Applications 1992; 13(3):887–904, doi:10.1137/0613054. URL http://dx.doi.org/
10.1137/0613054.

9. Elman HC, Golub GH. Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM
Journal on Numerical Analysis 1994; 31(6):1645–1661, doi:10.1137/0731085. URL http://dx.doi.org/
10.1137/0731085.

10. Silvester D, Wathen A. Fast iterative solution of stabilised Stokes systems part II: Using general block
preconditioners. SIAM Journal on Numerical Analysis 1994; 31(5):pp. 1352–1367, doi:10.1137/0731070.
URL http://www.jstor.org/stable/2158225.

11. Zulehner W. A class of smoothers for saddle point problems. Computing 2000; 65(3):227–246.
12. Olshanskii MA, Vassilevski YV. Pressure Schur complement preconditioners for the discrete Oseen

problem. SIAM Journal on Scientific Computing 2007; 29(6):2686–2704, doi:10.1137/070679776. URL
http://dx.doi.org/10.1137/070679776.

13. Pestana J, Wathen AJ. Natural preconditioning and iterative methods for saddle point systems. SIAM
Review 2015; 57(1):71–91, doi:10.1137/130934921. URL http://dx.doi.org/10.1137/130934921.

14. ur Rehman M, Geenen T, Vuik C, Segal G, MacLachlan SP. On iterative methods for the incompressible
Stokes problem. International Journal for Numerical Methods in Fluids 2011; 65(10):1180–1200, doi:
10.1002/fld.2235. URL http://dx.doi.org/10.1002/fld.2235.

15. Braess D, Sarazin R. An efficient smoother for the Stokes problem. Applied Numerical Mathematics
1997; 23(1):3 – 19, doi:10.1016/S0168-9274(96)00059-1. URL http://www.sciencedirect.com/science/
article/pii/S0168927496000591.

16. Vanka SP. Block-implicit multigrid calculation of two-dimensional recirculating flows. Computer Methods
in Applied Mechanics and Engineering 1986; 59(1):29 – 48, doi:10.1016/0045-7825(86)90022-8. URL
http://www.sciencedirect.com/science/article/pii/0045782586900228.

17. Brandt A. Multigrid techniques: 1984 guide with applications to fluid dynamics. GMD–Studien Nr. 85,
Gesellschaft für Mathematik und Datenverarbeitung: St. Augustin, 1984.

18. Xu J. The auxiliary space method and optimal multigrid preconditioning techniques for unstructured
grids. Computing 1996; 56(3):215–235, doi:10.1007/BF02238513. URL http://dx.doi.org/10.1007/
BF02238513.

19. Hong Q, Kraus J, Xu J, Zikatanov L. A robust multigrid method for discontinuous Galerkin
discretizations of Stokes and linear elasticity equations. Numerische Mathematik 2015; :1–27doi:10.1007/
s00211-015-0712-y. URL http://dx.doi.org/10.1007/s00211-015-0712-y.

20. Arnold DN, Brezzi F, Cockburn B, Marini LD. Unified analysis of discontinuous Galerkin methods
for elliptic problems. SIAM Journal on Numerical Analysis 2002; 39(5):1749–1779, doi:10.1137/
S0036142901384162. URL http://dx.doi.org/10.1137/S0036142901384162.

21. Brezzi F, Douglas J, Marini LD. Two families of mixed finite elements for second order elliptic problems.
Numerische Mathematik 1985; 47:217–235, doi:10.1007/BF01389710. URL http://dx.doi.org/10.1007/
BF01389710.

22. Murphy MF, Golub GH, Wathen AJ. A note on preconditioning for indefinite linear systems. SIAM
J. Sci. Comput. 2000; 21(6):1969–1972, doi:10.1137/S1064827599355153. URL http://dx.doi.org/10.
1137/S1064827599355153.

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla

http://www.sciencedirect.com/science/article/pii/S0045782510001507
http://www.sciencedirect.com/science/article/pii/S0045782510001507
http://dx.doi.org/10.1137/060649227
http://dx.doi.org/10.1137/060649227
http://dx.doi.org/10.1007/s10915-008-9261-1
http://dx.doi.org/10.1007/s10915-013-9758-0
http://dx.doi.org/10.1017/S0962492904000212
http://imajna.oxfordjournals.org/content/4/4/441.abstract
http://dx.doi.org/10.1137/0613054
http://dx.doi.org/10.1137/0613054
http://dx.doi.org/10.1137/0731085
http://dx.doi.org/10.1137/0731085
http://www.jstor.org/stable/2158225
http://dx.doi.org/10.1137/070679776
http://dx.doi.org/10.1137/130934921
http://dx.doi.org/10.1002/fld.2235
http://www.sciencedirect.com/science/article/pii/S0168927496000591
http://www.sciencedirect.com/science/article/pii/S0168927496000591
http://www.sciencedirect.com/science/article/pii/0045782586900228
http://dx.doi.org/10.1007/BF02238513
http://dx.doi.org/10.1007/BF02238513
http://dx.doi.org/10.1007/s00211-015-0712-y
http://dx.doi.org/10.1137/S0036142901384162
http://dx.doi.org/10.1007/BF01389710
http://dx.doi.org/10.1007/BF01389710
http://dx.doi.org/10.1137/S1064827599355153
http://dx.doi.org/10.1137/S1064827599355153


24

23. Adler JH, Benson TR, Cyr EC, MacLachlan SP, Tuminaro RS. Monolithic multigrid methods for two-
dimensional resistive magnetohydrodynamics. In revision 2015; .

24. Trottenberg U, Oosterlee CW, Schüller A. Multigrid. Academic Press: London, 2001.
25. MacLachlan SP, Oosterlee CW. Local Fourier analysis for multigrid with overlapping smoothers applied to

systems of PDEs. Numerical Linear Algebra with Applications 2011; 18(4):751–774, doi:10.1002/nla.762.
URL http://dx.doi.org/10.1002/nla.762.

26. Larin M, Reusken A. A comparative study of efficient iterative solvers for generalized Stokes equations.
Numerical Linear Algebra with Applications 2008; 15(1):13 – 34, doi:10.1002/nla.561. URL http://dx.
doi.org/10.1002/nla.561.

27. John V, Tobiska L. Numerical performance of smoothers in coupled multigrid methods for the parallel
solution of the incompressible Navier-Stokes equations. International Journal for Numerical Methods
in Fluids 2000; 33(4):453–473, doi:10.1002/1097-0363(20000630)33:4〈453::AID-FLD15〉3.0.CO;2-0. URL
http://dx.doi.org/10.1002/1097-0363(20000630)33:4<453::AID-FLD15>3.0.CO;2-0.

28. John V, Matthies G. Higher-order finite element discretizations in a benchmark problem for incompressible
flows. International Journal for Numerical Methods in Fluids 2001; 37(8):885–903, doi:10.1002/fld.195.
URL http://dx.doi.org/10.1002/fld.195.

29. Saad Y. Iterative methods for sparse linear systems. Second edn., Society for Industrial and Applied
Mathematics: Philadelphia, PA, 2003.

30. Heroux MA, Bartlett RA, Howle VE, Hoekstra RJ, Hu JJ, Kolda TG, Lehoucq RB, Long KR, Pawlowski
RP, Phipps ET, et al.. An overview of the Trilinos project. ACM Trans. Math. Softw. 2005; 31(3):397–423,
doi:http://doi.acm.org/10.1145/1089014.1089021.

31. Logg A, Mardal KA, Wells GN, et al.. Automated Solution of Differential Equations by the Finite Element
Method. Springer, 2012, doi:10.1007/978-3-642-23099-8.

32. Gmeiner B, Rüde U, Stengel H, Waluga C, Wohlmuth B. Performance and scalability of hierarchical hybrid
multigrid solvers for stokes systems. SIAM Journal on Scientific Computing 2015; 37(2):C143–C168, doi:
10.1137/130941353. URL http://dx.doi.org/10.1137/130941353.

Copyright c© 0000 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. (0000)
Prepared using nlaauth.cls DOI: 10.1002/nla

http://dx.doi.org/10.1002/nla.762
http://dx.doi.org/10.1002/nla.561
http://dx.doi.org/10.1002/nla.561
http://dx.doi.org/10.1002/1097-0363(20000630)33:4<453::AID-FLD15>3.0.CO;2-0
http://dx.doi.org/10.1002/fld.195
http://dx.doi.org/10.1137/130941353

	Introduction
	The problem and discretization
	Formulation of the discontinuous Galerkin discretization
	Saddle-point system

	Block Preconditioners
	Monolithic Multigrid
	Vanka Relaxation
	Braess-Sarazin Relaxation

	Numerical Results
	Block Preconditioning Parameter Study
	Monolithic multigrid with Vanka relaxation parameter study
	Monolithic multigrid with Braess-Sarazin relaxation parameter study
	Performance Analysis
	Solver performance on an unstructured mesh

	Conclusions and Future Directions

