Math 87: Mathematical Modeling and Computing

Math 87: Mathematical Modeling and Computing What's that?

Mathematical Modeling

A **Mathematical Model** is a description of *something* using mathematical concepts and language.

Mathematical Modeling

A **Mathematical Model** is a description of *something* using mathematical concepts and language.

That something could be

- The maximum profit to be made from selling an asset
- The minimum labor cost for performing a given task
- The minimum time needed to complete a multi-step task
- The maximum amount of traffic flow through a network
- The ranking of webpages and sports teams
- The waiting times of customers in a queue
- The fluctuation of populations over time

Mathematical Modeling

A **Mathematical Model** is a description of *something* using mathematical concepts and language.

That something could be

- The maximum profit to be made from selling an asset
- The minimum labor cost for performing a given task
- The minimum time needed to complete a multi-step task
- The maximum amount of traffic flow through a network
- The ranking of webpages and sports teams
- The waiting times of customers in a queue
- The fluctuation of populations over time

We'll study all of these in this class

More Complicated Models

Mathematical Modeling is at the center of many areas of science and engineering

- Weather Forecasting
- Racecar design
- Industrial processes
- Plate Tectonics
- Oil exploration
- Sub-atomic physics
- Structural deformation
- Virtual surgery

Weather Forecasting

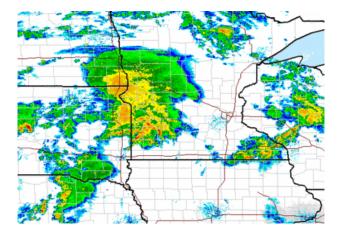


Figure from NWS

Faster Racecars

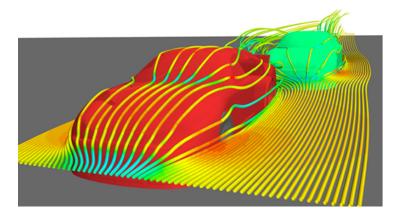


Figure from www.cd-adapco.com

New Planes

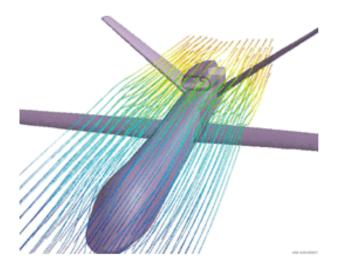
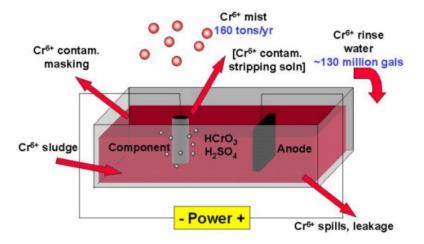
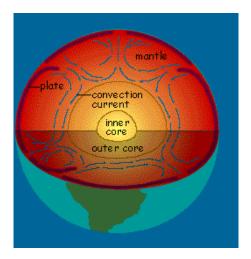



Figure from www.fluent.com

Industrial Processes


Figures from www.rowantechnology.com and www.hummerproducts.com

Industrial Processes

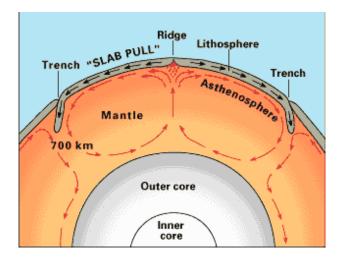

Figures from www.rowantechnology.com and www.hummerproducts.com

Plate Tectonics

Figures from PBS and USGS

Plate Tectonics

Figures from PBS and USGS

Plate Tectonics

Figures from PBS and USGS

Global Simulation

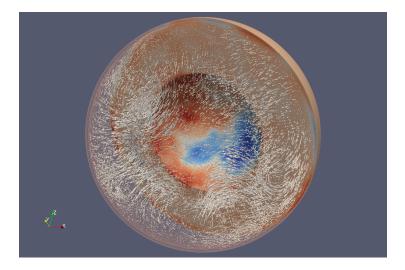


Figure courtesy T. Geenen

Global Simulation

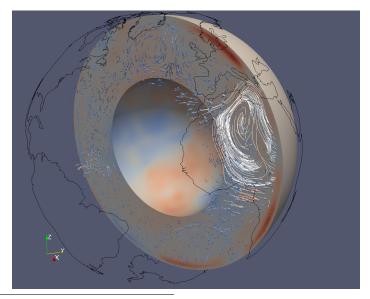


Figure courtesy T. Geenen

In this class...

We have two goals:

 ${\bf 1.}\,$ Learn how to formulate useful mathematical models

- Formulation is very problem-dependent
- We will focus on broad concepts and tools
- We will look at examples in class, on homework, and in projects

In this class...

We have two goals:

1. Learn how to formulate useful mathematical models

- Formulation is very problem-dependent
- We will focus on broad concepts and tools
- We will look at examples in class, on homework, and in projects
- 2. Learn how to solve the models to make useful conclusions
 - Writing down the model isn't enough
 - Use model to design strategies and make conclusions
 - Recognize when pencil-and-paper can't help

Formulating Models

"essentially, all models are wrong, but some are useful" – George Box

Looking for predictive models

- include all *relevant* effects
 - need to find out which are relevant
- look for simplicity/elegance where possible
 - convoluted terms are difficult to debug
- need to understand predictions and limitations
 - how sensitive are predictions to parameters?
 - are your assumptions valid in regime of interest?

Where does Computing come in?

In most of your previous Math classes, you've solved problems by explicit pencil-and-paper calculation.

Where does Computing come in?

In most of your previous Math classes, you've solved problems by explicit pencil-and-paper calculation.

Basic Truth of Modeling: Most interesting/useful models can't be efficiently solved by pencil-and-paper calculation

Where does Computing come in?

In most of your previous Math classes, you've solved problems by explicit pencil-and-paper calculation.

Basic Truth of Modeling: Most interesting/useful models can't be efficiently solved by pencil-and-paper calculation

You could have guessed that!

- In Calculus, can only integrate functions that come in certain forms
- In Differential Equations, can only solve certain types of equations
- In Linear Algebra, solving systems larger than 4 \times 4 or 5 \times 5 is difficult (and easy to screw up)

Our Approach to Computing

Focus first on Mathematical Modeling

- Get it "right"
- Identify computational problem to be solved

Then consider Computing

- Computer is a tool to avoid rote pencil-and-paper calculation
- Develop computing skills as we need them

Our Approach to Computing

Focus first on Mathematical Modeling

- Get it "right"
- Identify computational problem to be solved

Then consider Computing

- Computer is a tool to avoid rote pencil-and-paper calculation
- Develop computing skills as we need them

Then reconsider Mathematical Modeling

- Does computed solution make sense? Is it reasonable?
- Do we need to update our model and recompute?

Things we'll study

- Optimization, Sensitivity Analysis
- Linear Programming, Integer Programming
- Graph Algorithms, Critical Paths, Maximum Flow
- Probabilistic Modeling, Markov Chains
- Monte Carlo Methods, Queuing Theory
- Difference Equations, Population Dynamics

Optimization

Continuous optimization problems

• Take derivatives, set to zero

Optimization

Continuous optimization problems

• Take derivatives, set to zero

What's new?

- Optimizing over multiple variables (Math 13/42)
- Sensitivity to parameters
- Approximate differentiation

Linear Programming

Another technique of optimization

- Maximize/Minimize known linear function
- Constraints given by inequalities

Many applications

- Inequality constraints are natural in real world
 - Represent limited resources, or required bounds on solution
- Special case of Integer Programming
 - Non-integer answers don't always make sense!
 - Optimal class size can't have fractional students

Graph Algorithms

Many scheduling and flow problems are naturally described by graphs

- Nodes describe tasks to be done
- Edges describe dependencies between tasks

Critical Path Analysis identifies both time needed and bottlenecks

- Which tasks in a complex schedule constrain the timeline?
- Which tasks are flexible in scheduling?

Maximum Flow problems identify bottlenecks in networks

- Which highways or bridges slow traffic the most?
- How should computer/telephone networks be expanded to improve bandwidth?

Markov Chains

Markov Chains model probabilistic transitions

- What percentage of one group move into another group in a given timeframe?
 - How many voters switch affiliation every two/four years?
 - How many consumers change brands each year?
- Also many other applications
 - In sports leagues with limited interleague play, how do you rank teams that don't directly play one-another?
 - In complicated graphs, like those of webpages on a given topic, which nodes are more important than others?

We'll study

- The steady-state behavior of Markov processes
- Convergence to steady state.

Monte Carlo and Queuing

How do you flip a coin on a computer?

Monte Carlo and Queuing

How do you flip a coin on a computer?

• Generate a random number

Monte Carlo and Queuing

How do you flip a coin on a computer?

• Generate a random number

For processes controlled by random events with known probabilities

- Generate random samples
- Average over many independent samples

This naturally models queue-like operations

- new entries are added with given probability in time
- old entries are removed with given probability in time

Difference Equations

Natural models of populations from generation to generation

- If interactions are linear and homogeneous, reduce to Markov Chains
- Nonlinear and non-homogeneous interactions model more complex behavior
- Examples include
 - Fibonacci numbers, early model of rabbit population
 - Logistic map, model of population with limited resources
 - Predator-prey or host-parasite interactions
 - Spread of disease in a population
- Closely related to solution of differential equations

Mathematical Modeling and Computing

Goal: Develop mathematical and computational tools for modeling real-world problems

Mathematical Modeling and Computing

Goal: Develop mathematical and computational tools for modeling real-world problems

Mathematics:

- Optimization (continuous and discrete)
- Linear algebra
- Graph theory
- Probability
- Differential and difference equations

Mathematical Modeling and Computing

Goal: Develop mathematical and computational tools for modeling real-world problems

Mathematics:

- Optimization (continuous and discrete)
- Linear algebra
- Graph theory
- Probability
- Differential and difference equations

Computing:

- Basic matlab syntax
- Graphing and visualization
- Loops, control statements
- Linear algebra