
Math 250 Numerical Methods for PDEs Spring 2010

Homework 4
(Due Thursday, April 1, 2010)

The finite-difference and finite-element methods that we’ve studied both rely upon the
smoothness of the solution to prove convergence theorems. While we can apply these tech-
niques to problems with discontinuous solutions, it isn’t a good idea to do this without
thinking carefully. In this assignment, you will explore the Finite-Volume Method (FVM)
for the Burgers’ Equation, a PDE with known shock-wave-like solutions.

The Inviscid Burgers’ Equation is given by

∂u

∂t
+

∂
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)
= ut + uux = 0.

We can solve Burgers’ Equation analytically using the method of characteristics. Consider
the solution u(x(t), t) along a curve x(t) such that dx

dt
= u(x(t), t). Then,

du
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=
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+

∂u

∂t
= uux + ut = 0. (1)

So, given an initial condition, u(x, 0) = u0(x), Equation (1) has solution u(x(t), t) = u0(x0),
for points x(t) along the characteristic originating at x0. This then gives dx

dt
= u0(x0),

yielding x(t) = x0 + (u0(x0))t.
So, the characteristics, x(t), are straight lines in the xt−plane, with slope given by the

initial value at the originating point of the characteristic, u0(x0).

1. Draw the characteristics in the xt−plane for u0(x) =


0 x < 0
x 0 ≤ x ≤ 1
1 x > 1

.

2. Draw the characteristics in the xt−plane for u0(x) =


1 x < 0
1− x 0 ≤ x ≤ 1
0 x > 1

.

For the second initial condition, you should find that the characteristics intersect.

3. At what points in the xt−plane do the characteristics intersect?

This illustrates an important fact about nonlinear hyperbolic PDEs - continuous initial
conditions do not guarantee that continuous solutions exist for all time. When characteristics
intersect, we find discontinuous solutions of the PDE that represent shock waves. The focus
of this assignment is on the development of a numerical method that can track such a “weak”
solution of the PDE.



To properly represent such a solution, we go back to the integral form of the conservation
law, over an arbitrary interval, [a, b],
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Writing Q(t) =
∫ b

a
udx, we can rewrite this as

d
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if we integrate over the time interval [0, T ]. This second formulation makes sense physically:
if u(x, t) represents a mass density, then Q(t) is the total mass in the interval [a, b]; Equation
(2) says that the change in mass between t = 0 and t = T is given by the flux in at x = a,∫ T

0

(
(u(a,t))2
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)
dt, less the flux out at x = b,

∫ T
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)
dt.

In fact, the integral form of the conservation law can be used to predict the speed with
which the shock moves.

4. Consider the initial condition u0(x) =

{
u` x < 0
ur x > 0

for u` > ur. Why and where does a

shock form at t = 0? Consider the region in the xt−plane given by [−1, X]× [0, T ] where
X is big enough that the x−position of the shock is less than X when t = T . (You don’t
need to worry about what X is, just imagine that it’s really really big.) Argue, from the
principle of conservation of mass, that if the shock moves at a constant speed, s, then
Q(t) satisfies

Q(T )−Q(0) = sT (u` − ur).

Use (2) to compute a second expression for Q(T ) − Q(0). From these two expressions,
compute s.

We could apply a Finite-Difference Method directly to the solution of Burgers’ Equation,
but two problems arise. First, conservation of mass is critically important to computing
physically realistic solutions, so, we cannot use a dissipative Finite-Difference scheme. How-
ever, since we are interested in accurately capturing sharp changes in u(x, t), we can’t use a
dispersive scheme, since this will cause unphysical oscillations near the shock. Finally, many
standard Finite-Difference schemes give solutions with the wrong shock speed, s.

Instead, we will explore a method known as the local Lax-Friedrichs method. To im-
plement this scheme, we divide the domain [a, b] × [0, T ] into small volumes, [xi− 1

2
, xi+ 1

2
] ×

[tj, tj+1], and impose conservation of mass on each volume. Rewriting (2) over the time
interval [tj, tj+1] as
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with Qi(t) =
∫ x

i+1
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x
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u(x, t)dx, we can define the average value of u(x, t) over cell i at time t

and the average value of f(u) = u2

2
over the interface at xi+ 1

2
between tj and tj+1 as
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where hx = xi+ 1
2
− xi− 1

2
and ht = tj+1 − tj. Using this notation, Equation (3) becomes
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Defining vi,j to be our numerical approximation to ui,j, we can approximate this equation
by approximating f i+ 1

2
,j+ 1

2
≈ f ∗(vi,j, vi+1,j), giving

vi,j+1 − vi,j

ht

+
f ∗(vi,j, vi+1,j)− f ∗(vi−1,j, vi,j)

hx

= 0.

The choice of f ∗(vi,j, vi+1,j) then determines which finite volume scheme we’re considering.
For the Inviscid Burgers’ Equation, the local Lax-Friedrichs flux function is given by
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This scheme is consistent with order 1 in space and 1 in time, and is stable if ht ≤ mini
hx

vi
. If

the maximum value of u0(x) is known, this can provide an absolute bound on ht for stability.
The Lax-Wendroff theorem says that the numerical solution to this scheme converges to the
weak solution of the PDE, with shocks that travel at the correct speed.

5. Implement the finite-volume method using the local Lax-Friedrichs flux function for the
Inviscid Burgers’ Equation. Choose the spatial domain [a, b] to be large enough that your
shock never touches the spatial boundaries (and so that the analytical solution has fixed
values, u` and ur, along these edges) for the time range [0, T ] that you simulate.

6. Test your code for the three choices of u0 given in the exercises above.


