Tufts University Department of Mathematics Math 250-03 Homework 5

Due: Thursday, November 1, at 3:00 p.m. (in class).

- 1. (10 points) Let $A \subset B \subset C$ be normed spaces with common norm $\|\cdot\|$. Prove that if A is dense in B and B is dense in C, then A is dense in C.
- 2. (20 points) Prove that

$$2\sum_{n=1}^{N}\sin(nx)\sin(nu) = \frac{\sin(N+1/2)(u-x)}{2\sin(u-x)/2} - \frac{\sin(N+1/2)(u+x)}{2\sin(u+x)/2}$$

Hint: One way to do this is to write $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$.

- 3. (30 points)
 - (a) Apply Gram-Schmidt to $\{x^n\}_{n\geq 0}$ in $L_2[0,1]$, computing the first 3 orthonormal polynomials.
 - (b) Find the quadratic polynomial, Q(x), that minimizes $\int_0^1 (\sin(\pi x) Q(x))^2 dx$. What is $\|\sin(\pi x) Q(x)\|^2$?
 - (c) Find the quadratic Taylor polynomial, P(x), for $\sin(\pi x)$ around 0. What is $\|\sin(\pi x) P(x)\|^2$?
- 4. (10 points) Show that the orthogonal complement of the set of even functions in $L_2[-1,1]$ is the set of odd functions in $L_2[-1,1]$.
- 5. (10 points) Let \mathcal{H} be a Hilbert space, and $M \subset N \subset \mathcal{H}$. Show that $N^{\perp} \subset M^{\perp}$.
- 6. (20 points) Consider the space C[-1,1] with inner product $\langle u,v\rangle = \int_{-1}^{1} u(x)v(x)dx$. Show that the functional $f(u) = \int_{0}^{1} u(x)dx$ is linear and continuous. For what function, z(x), is $f(u) = \langle u, z \rangle$? Why does this not contradict the Riesz Representation Theorem?