

MATH 2260 (Ordinary Differential Equations I) — Fall 2014 Midterm Exam #1

- 1. (2 points each, no partial credit) For each of the differential equations given, determine the order of the equation and if it is linear.
 - (a) $x^4 \frac{\partial y}{\partial x} + y x^6 = 0$
 - (b) $\frac{\partial^6 y}{\partial x^6} + \left(\frac{\partial y}{\partial x}\right)^2 = x$
 - (c) $x^6 \frac{\partial^3 y}{\partial x^3} + \sin(xy) = y^4$
 - (d) $2x^2y' + \ln(x)y = 0$
 - (e) $y''' + xy'' + x^2y' + xy^4 = 0$
- 2. (10 points) For each of the direction fields given below, sketch some integral curves of the equation.
 - (a) $y' = \frac{x^2 y^2}{1 + x^2 + y^2}$

(b)
$$y' = \frac{x-y}{1+x^2}$$

- 3. (20 points) Solve the initial-value problem, $\frac{dy}{dx} + xy = x$, $y(0) = \frac{1}{2}$.
- 4. (20 points) Solve the initial-value problem, $y\frac{dy}{dx} = -x^2$, y(0) = -1.5. For what values of x is this solution well-defined?
- 5. (20 points) Solve $\frac{dy}{dx} \frac{1+x}{3x}y = y^4$.
- 6. (20 points) Show that one of the following two equations is exact, and that the other is not. Find an implicit solution of the exact equation

(a)
$$3x^2 \sin(x)y + (e^x - x^3 \cos(x)) \frac{dy}{dx} = 0.$$

(b)
$$(ye^{xy}\tan(x) + e^{xy}\sec^2(x) + 2x) dx + (xe^{xy}\tan(x) + e^y) dy = 0.$$

MATH 2260 (Ordinary Differential Equations I) — Winter 2015 Practice Midterm Exam #1

- 1. (20 points) Solve $2x \frac{dy}{dx} + \cos^2(y) \ln(x) = 0.$
- 2. (20 points) Solve $x^2 \frac{dy}{dx} 3x^2y = x^3$.
- 3. (10 points) Show that $(y-x)\frac{dy}{dx} 7y = xe^{y/x}$ is a homogeneous nonlinear equation.
- 4. (20 points) Solve $\frac{dy}{dx} \frac{1}{7}y = x/y^6$.
- 5. (10 points) Is $y(x) = xe^{2/x}$ a solution of $x^3y'' + 2xy' 2y = 0$?
- 6. (20 points) Consider $(2x^2 + y)dx + (x^2y x)dy = 0$
 - (a) Show that the equation is not exact.
 - (b) Find an integrating factor to make it exact.
 - (c) Find an implicit definition of the solution y(x).