MATH 2260 (Ordinary Differential Equations I) — Fall 2014 Homework #4

Due Date: Thursday, October 16, in class or in marking box #59 by 5:00 PM. You must show all work to receive credit.

- 1. (5 points each) From Section 4.1
 - (a) #1
 - (b) #3
 - (c) #13
- 2. (5 points each) From Section 4.2
 - (a) #5
 - (b) #7
 - (c) #11
- 3. (20 points) A further modification of the logistic growth equation includes a minimum threshold, T, required for the population to be viable. Consider the case where 0 < T < K, where K is the carrying capacity defined in class. The resulting model is given as

$$\frac{dy}{dt} = -r\left(1 - \frac{y}{T}\right)\left(1 - \frac{y}{K}\right)y.$$

- (a) Is this equation autonomous?
- (b) For what values of y is $\frac{dy}{dt} > 0$? For what values of y is $\frac{dy}{dt} < 0$? Consider only values y > 0.
- (c) Using a partial fractions decomposition, find an impicit solution to this equation. For full credit, your answer should not include any logarithms (natural or otherwise!).
- 4. (10 points each) From Section 5.1
 - (a) #1
 - (b) #3
- 5. (10 points) Show that x^3 and $|x|^3$ are linearly independent for $-\infty < x < \infty$, but that they are not for $-\infty < x < 0$.
- 6. (10 points) Check that $y_1(x) = \sin(2x)$ and $y_2(x) = \sin(x)\cos(x)$ are solutions of y'' + 4y = 0 for $-\infty < x < \infty$. Is $\{y_1, y_2\}$ a fundamental set of solutions?
- 7. (10 points) Check that $y_1(x) = x^{-1}$ and $y_2(x) = x^{-2}$ are solutions of $x^2y'' + 4xy' + 2y = 0$ for $0 < x < \infty$. Is $\{y_1, y_2\}$ a fundamental set of solutions?