MATH 2050

Multiple choice: No partial credit will be given. 4 points each.

1. The projection of
$$\vec{u} = \begin{bmatrix} 1\\2\\0\\3 \end{bmatrix}$$
 onto $\vec{v} = \begin{bmatrix} 2\\1\\1\\1 \end{bmatrix}$ is given by
(a) $\begin{bmatrix} 3\\3\\1\\0 \end{bmatrix}$ (b) $\begin{bmatrix} 2\\1\\1\\1 \end{bmatrix}$ (c) $\begin{bmatrix} 1/2\\1\\0\\3/2 \end{bmatrix}$ (d) $\frac{6}{7} \begin{bmatrix} 3\\3\\1\\0 \end{bmatrix}$

2. Which elementary row operation transforms the linear system

$$2x + y = 2$$

 $x + 2y = 1$ into $x - y = 1$
 $x + 2y = 1$?

(a) $R2 \leftrightarrow R1$ (b) $R2 \leftarrow R2 - R1$ (c) $R1 \leftarrow R1 - R2$ (d) $R1 \leftarrow (1/2)R1$

3. Which variable is a free variable of the system $\begin{bmatrix} 1 & 0 & 2 & -3 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & -4 \end{bmatrix}?$

(a)
$$x_1$$
 (b) x_2 (c) x_3 (d) x_4

4. Which of the following is the soution of $\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$? (a) x = 2, y = -1 (b) x = -2, y = 1 (c) x = 0, y = 0 (d) x = 0, y = 3

5. Given $\vec{u} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$, for which \vec{w} is the set $\{\vec{u}, \vec{v}, \vec{w}\}$ linearly independent?

(a)
$$\begin{bmatrix} 0\\0\\0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1\\0\\-1 \end{bmatrix}$ (c) $\begin{bmatrix} 0\\-1\\3 \end{bmatrix}$ (d) $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$

- 6. (15 points) Consider the plane $\pi : 2x y + z = 0$.
 - (a) Find two orthogonal vectors in the plane, π .

(b) Find the projection of
$$\vec{u} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$$
 onto the plane, π .

7. (15 points) Consider
$$\vec{u}_1 = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
, $\vec{u}_2 = \begin{bmatrix} -1\\1\\0 \end{bmatrix}$, $\vec{u}_3 = \begin{bmatrix} 0\\1\\-1 \end{bmatrix}$, and $\vec{u}_4 = \begin{bmatrix} 3\\2\\1 \end{bmatrix}$.

- (a) Show that \vec{u}_1 , \vec{u}_2 , and \vec{u}_3 are linearly independent.
- (b) Are $\vec{u}_1, \vec{u}_2, \vec{u}_3$, and \vec{u}_4 linearly independent?

8. (10 points) Given
$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$, compute AB and BA .

9. (40 points) Find all solutions, if any, to each of the given systems of equations. Express your answers in vector form.

(a)
$$2x - y = 3$$

$$4x - 2y = 4$$

(b)
$$2y - z = -4$$

$$x + y + 3z = -10$$

(c)
$$x + y + 3z = 2$$

$$-2x - 2y - 6z = -4$$

$$x + y - 3z = 2$$

$$-2x - 2y - 6z = -4$$