Singular perturbation problems in microscopic elastic-electrostatic interfaces

> A.E. Lindsay Applied and Computational Math & Stats University of Notre Dame

Numerical analysis of Singularly Perturbed Problems Halifax, Canada, July 25th, 2016.

Collaborators:

- Joceline Lega (Arizona)
- Karl Glasner (Arizona)
- F.J. Sayas (Delaware)
- Kelsey DiPietro (NSF Fellow, Notre Dame)

Support:

NSF DMS - 1516753 NSF DGE - 1313583

Micro Electro Mechanical systems (MEMS)

MEMS = (Moving elastic components + Circuitry) x \mathcal{E}

Gear and resonators. Source: <u>mems.sandia.gov</u>

Modeling microscopic dynamical processes:

- Continuum modeling still valid.
- Inertial effects negligible viscous damping dominates.
- Combustion not practical for locomotion use electrostatic actuation

Goal: Understand the fundamental process of how elastic surfaces deform in electric fields.

G. I. Taylor (1968) - The Pull-in Instability

• Experimental and theoretical study of liquid drops at different potentials. Ref: Proc. Roy. Soc A (1968).

$$\frac{d^2y}{dr^2} + \frac{1}{r}\frac{dy}{dr} = \alpha + \frac{\lambda}{y^2} \qquad \lambda \propto V^2$$

$$y = 1 \quad \text{at} \quad r = 1$$

Experimental Apparatus

FIGURE 2. Apparatus for holding two circular soap films in position.

<u>Pull-In Instability</u>: elastic surfaces come into physical contact when electric field is large enough to overcome membrane tension.

The canonical MEMS problem

- Elastic surface occupying deflecting in the presence of an electric field
- Surfaces come into contact if voltage large enough:
- Small aspect ratio d/L. Roughly 0.01 in typical MEMS.

u = 0

Mathematical Model: Pelesko (2003)

- Boundary conditions imply zero deflection and clamped at end points.
- $\delta > 0$ surface is a beam rigid material.
- $\delta = 0$ surface is a membrane (soap film).
- $\lambda \propto V^2$ the main control parameter.
- $\bullet~$ Contact or touchdown when $~u \rightarrow -1$

<u>Refs</u>: Brubaker, Cowan, Davila, Escher, Esposito, Flores, Guo, Ghoussoub, Glasner, Hu, Kavallaris, Kohlmann, Lacey, Laurencot, Lega, Lienstromberg, Lindsay, Moradifam, Nikolopoulos, Pan, Pelesko, Ward, Walker, Wei.

Questions:<u>Why, How, When, <mark>Where</mark> do singularities form and <u>what then</u>?</u>

$$u_{t} = -\Delta^{2}u - \frac{\lambda}{(1+u)^{2}}, \qquad u = \partial_{n}u = 0, \qquad u(x,0) = 0$$

 $\lambda = 3$

 $\lambda = 10$

 $\lambda = 50$

Outline of Talk

- I. Adaptive numerical methods.
 - r-adaptive meshes for generating meshes.
 - Meshes inherit the symmetries/scaling properties of the PDE.
- 2. Predicting the set of contacts.
 - Concept set complexity described by a boundary layer analysis.
 - Prediction of contact sets in ID and general 2D regions.
- 3. Regularized problem describing post contact dynamics.
 - How do we make sense of solutions beyond initial singularities?
 - Layer dynamics and numerical simulations of sharp interfaces.

Adaptive Numerical Methods - Time Adaptation

<u>Motivation</u>: Need to reduce timestep as singularity approached and prevent overshooting the blow up time.

Scale Invariance

$$t
ightarrow a au, \qquad x
ightarrow a^{\gamma}x, \qquad (1+u)
ightarrow a^{eta}(1+u).$$

Plug the scaled variables into the MEMS equation:

$$a^{\beta-1}\frac{\partial u}{\partial \tau} = -a^{\beta-4\gamma}\Delta^2 u - a^{-2\beta}\frac{\lambda}{(1+u)^2}, \quad \Longrightarrow \quad \beta = \frac{1}{3}, \quad \gamma = \frac{1}{4}$$

• This gives the scaling law:

$$(1 + u(x, t)) = a^{\frac{1}{3}} \left(1 + u \left(\frac{x}{a^{1/4}}, \frac{t}{a} \right) \right)$$

• Choosing the adaptive time step: $|dt = d\tau \min(1+u)^3|$

Spatial Adaptivity - Three classes of adaptive methods.

- <u>h-adaptive</u> Add mesh points to regions where extra resolution required (singularities). Remove mesh points where less solution resolution is needed.
- <u>p-adaptive</u> Increase the order of the approximating functions
- <u>r-adaptive</u> Move fixed number of mesh points to spatial regions where more accuracy is required. [Budd2006,Hou2001, BuddJFW2009,HuangRussel2011].

R-Adaptive Methods

- Two components to moving mesh derivation:
 - 1. Describing the optimal mesh
 - 2. Develop a strategy for evolving the mesh to the optimal mesh
- Steps for an R-adaptive mesh:
 - Start with a fixed number of mesh points.
 - Find a continuous mapping, $X = F(\boldsymbol{\xi}, t)$, between the computational space and physical space; i.e. $\Omega_C \to \Omega_P$

Mesh Tangling

- Need $F(\boldsymbol{\xi}, t)$ to be a 1-1 mapping to avoid mesh tangling
- ► 1-1 mapping implies: $|J(\boldsymbol{\xi}, t)| = \det\left(\frac{\partial \mathbf{X}(\boldsymbol{\xi}, t)}{d\boldsymbol{\xi}}\right) = \begin{vmatrix} x_{\boldsymbol{\xi}} & x_{\eta} \\ y_{\boldsymbol{\xi}} & y_{\eta} \end{vmatrix} > 0$

An example of mesh tangling.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Finding an Optimal Mesh

 For any invertible F, we can find a Monitor Function M(x) that for any A ⊂ Ω_C

$$\int_A d\mathbf{x} = \int_{F(A)} M(\mathbf{x}) d\mathbf{x}$$

- The idea is to equidistribute $M(\mathbf{x})$ over the mesh.
- In 1D equidistribution defines a unique mesh, but <u>not in 2D</u>.

Finding the Mapping F in 2D

Want want to choose the mapping that is closest to a uniform mesh by minimizing the least squares norm

$$I = \int_{\Omega_C} |F(\boldsymbol{\xi}, t) - \boldsymbol{\xi}|^2 d\boldsymbol{\xi}$$

Theorem (Delzanno 2008)

There exists a unique optimal mapping $F(\xi, t)$, satisfying the equidistribution equation. The map has the same regularity as M. Furthermore, $F(\xi, t)$ is the unique mapping from this class which can be written as the gradient (with respect to ξ) of a convex (mesh) potential $P(\xi, t)$, so that:

$$\mathbf{F}(\boldsymbol{\xi},t) =
abla_{\xi} P(\boldsymbol{\xi},t), \quad \Delta_{\xi} P(\boldsymbol{\xi},t) > 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Finding the Mapping F in 2D

Want want to choose the mapping that is closest to a uniform mesh by minimizing the least squares norm

$$I = \int_{\Omega_C} |F(\boldsymbol{\xi}, t) - \boldsymbol{\xi}|^2 d\boldsymbol{\xi}$$

Theorem (Delzanno 2008)

There exists a unique optimal mapping $F(\xi, t)$, satisfying the equidistribution equation. The map has the same regularity as M. Furthermore, $F(\xi, t)$ is the unique mapping from this class which can be written as the gradient (with respect to ξ) of a convex (mesh) potential $P(\xi, t)$, so that:

$$\mathbf{F}(\boldsymbol{\xi},t) = \nabla_{\boldsymbol{\xi}} P(\boldsymbol{\xi},t), \quad \Delta_{\boldsymbol{\xi}} P(\boldsymbol{\xi},t) > 0$$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□ ♥ ④ ♥ ♥

The Nonlinear Monge-Ampere Equation

• Assuming
$$\mathbf{X} = \nabla_{\xi} P$$
, then $\frac{\partial \mathbf{X}}{\partial \xi} = |H(P)| = P_{\xi\xi} P_{\eta\eta} - P_{\xi\eta}^2$

The equidistribution principle gives the Nonlinear Monge-Ampere Eqn.

$$M(\nabla_{\xi}P,t)|H(P)| = \frac{\int_{\Omega_P} M(\mathbf{X}(\boldsymbol{\xi},t)d\mathbf{X})}{\int_{\Omega_C} d\boldsymbol{\xi}}$$

- Problem: Monge-Ampere equation is a fully nonlinear PDE.
- Solution: Can solve approximately using a parabolic equation for $Q(\xi, t)$ which evolves toward the gradient of $P(\xi, t)$.
- Relaxed equation (PMA equation):

$$\alpha(I - \gamma \Delta)Q_t = (|H(Q)|M(\nabla Q))^{1/d}$$

▶ $\alpha = 0.1$ - speed of relaxation. $\gamma = 0.1$ - smoothing parameter.

The Nonlinear Monge-Ampere Equation

• Assuming
$$\mathbf{X} = \nabla_{\xi} P$$
, then $\frac{\partial \mathbf{X}}{\partial \xi} = |H(P)| = P_{\xi\xi} P_{\eta\eta} - P_{\xi\eta}^2$

The equidistribution principle gives the Nonlinear Monge-Ampere Eqn.

$$M(\nabla_{\xi}P, t)|H(P)| = \frac{\int_{\Omega_P} M(\mathbf{X}(\boldsymbol{\xi}, t)d\mathbf{X})}{\int_{\Omega_C} d\boldsymbol{\xi}}$$

- Problem: Monge-Ampere equation is a fully nonlinear PDE.
- Solution: Can solve approximately using a parabolic equation for Q(ξ, t) which evolves toward the gradient of P(ξ, t).
- Relaxed equation (PMA equation):

$$\alpha(I - \gamma \Delta)Q_t = (|H(Q)|M(\nabla Q))^{1/d}$$

• $\alpha = 0.1$ - speed of relaxation. $\gamma = 0.1$ - smoothing parameter.

Choosing the Monitor Function

- ► A priori estimates based on physics or geometry.
- ex: Arclength $\sqrt{1 + c^2 |\nabla_{\xi} u(x(\xi))|^2}$
- ► A posteriori estimates based on error can also be used.
- For strong scaling structures, want a monitor function that scales with the problem

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

For MEMS Problem:
$$M(u) = \frac{1}{(1+u)^3}$$
 in 1D and
 $M(u) = \frac{1}{(1+u)^6}$ in 2D.

Efficient Discretization: Regularization and Smoothing.

- Problem: Rushing of a majority of Mesh Points to singularities.
- Use a McKenzie Regularization to distribute half the mesh points around singularities and remainder elsewhere.

$$\bar{M} = M + \int_{\Omega} M(\mathbf{X}, t) d\mathbf{X}$$

No regularization

Smoothing of Monitor Function

- Problem: Smoothness required for reliable differentiation.
- Solution: Apply a fourth order smoothing filter.

$$M_{i,j} \leftarrow \frac{4}{16} M_{i,j} + \frac{2}{16} (M_{i+1,j} + M_{i-1,j} + M_{i,j-1} + M_{i,j+1}) \\ + \frac{1}{16} (M_{i+1,j+1} + M_{i-1,j-1} + M_{i+1,j-1} + M_{i-1,j+1})$$

< □ ▶

<u>One-dimensional simulations: Using MOVCOL4 (Russel, Xu, Williams)</u>

ID:

Unit Disk

2D Results Using Monge Ampere Adaptation

$$\lambda = 15$$

$$\lambda = 45$$

$$u_t = -\Delta^2 u - \frac{\lambda}{(1+u)^2}$$

Outline of Talk

- I. Adaptive numerical methods.
 - r-adaptive meshes for generating meshes.
 - Meshes inherit the symmetries/scaling properties of the PDE.
- 2. Predicting the set of contacts.
 - Concept set complexity described by a boundary layer analysis.
 - Prediction of contact sets in ID and general 2D regions.
- 3. Regularized problem describing post contact dynamics.
 - How do we make sense of solutions beyond initial singularities?
 - Layer dynamics and numerical simulations of sharp interfaces.

Rescaling to obtain a singular perturbation problem.

• Rescale with $t \to \lambda^{-1} t$, $\varepsilon^2 = \lambda$, $f(u) = -\frac{1}{(1+u)^2}$

$$u_t = -\varepsilon^2 \Delta^2 u + f(u), \quad x \in \Omega; \qquad u = \partial_n u = 0, \quad x \in \partial \Omega$$

Basis of Analysis

Small *t* behaviour:

- Flat central region coupled to a propagating boundary effect.
- In the flat central region, $u(x, t) \sim f(t)$;

$$f_t = -rac{1}{(1+f)^2}, \qquad f = -1 + (1-3t)^{1/3}$$

Propagating boundary effect (at x = 1) in stretching coordinates:

$$u(x,t) \sim -f(t) v_0(\eta) \qquad \eta = \frac{1-x}{\varepsilon^{1/2} f^{1/4}}$$

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ▲□▶

t → 0 corresponds to f → 0 so the (1 + u)⁻² term is linearized.

Touchdown Behaviour: Small $(t_c - t)$

• $t_c(\varepsilon)$ is the finite touchdown time.

Stretching Boundary Layer:

After analysis:

$$rac{d^4v_0}{d\eta^4}-rac{\eta}{4}rac{dv_0}{d\eta}+v_0=-1,\quad \eta>0; \qquad v_0\sim-1 \quad {
m as} \quad \eta
ightarrow\infty$$

Solution:

Comparison to full numerics

Two time regimes: I. Short time (Linear), 2. Close to singularity (Nonlinear)

Locating the critical points

- Follow the first critical point of the asymptotic solution.
- Find $v_{\eta}(\eta_c) = 0$, then $x_c = \pm (1 \varepsilon^{\frac{1}{2}} f(t)^{\frac{1}{4}} \eta_c(t_c))$

Solid Line (Numerics), Dashed Line (Asymptotics).

Predicting the touchdown set for general geometries in \mathbb{R}^2 .

- Stability of ring-like touchdown sets.
- What is the touchdown set for more general geometries?
- Is asymmetric touchdown possible?

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < □ > < ○ < ○ < ○ < ○ < ○ < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Asymptotic Breakdown.

Boundary Layer

$$\eta = \frac{\rho}{\phi}, \qquad u(x,t) = f(t)v(\eta), \qquad \phi(t) = \varepsilon^{1/2}f(t)^{1/4}$$

▲□▶▲□▶▲□▶▲□▶▲□▼ りへで

Leading order theory:

Same leading order profile:

$$\frac{d^4v_0}{d\eta^4} - \frac{\eta}{4}\frac{dv_0}{d\eta} + v_0 = -1, \quad \eta > 0; \qquad v_0 \sim -1 \quad \text{as} \quad \eta \to \infty$$

Boundary profile propagates inwards normally to $\partial \Omega$:

 $u(x,t) \sim ?$, How do we construct a uniform asymptotic solution?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Leading order theory:

Same leading order profile:

$$\frac{d^4v_0}{d\eta^4} - \frac{\eta}{4}\frac{dv_0}{d\eta} + v_0 = -1, \quad \eta > 0; \qquad v_0 \sim -1 \quad \text{as} \quad \eta \to \infty$$

Boundary profile propagates inwards normally to $\partial \Omega$:

 $u(x, t) \sim ?$, How do we construct a uniform asymptotic solution?

◆□▶ ◆□▶ ◆ 三▶ ◆ 三 ・ クへ (?)

Leading Order Uniform Expansion.

To construct solution at $X \in \Omega$, find all $Y \in \partial \Omega$ satisfying

 $XY \perp \partial_{ au}(Y)$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Asymptotic reconstruction of profile just before touchdown.

Figure: Ellipse and $\varepsilon = 0.03$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

A geometric 'Skeleton Theory' for contact set prediction

- $x \in S_{\Omega}$ if $x \in \Omega$ receives perpendicular contributions from any $y_1, y_2 \in \partial \Omega$ and $|x - y_1| = |x - y_2|$.
- On \mathcal{S}_{Ω} , troughs superimpose to lower the value of u(x,t).

Main Idea: At the contact time, minima of asymptotic solution predicts the contact set.

Simple Skeleton Examples

Semicircular Skeleton Examples

$$\sin \theta = \frac{s}{1-s}$$

$$S_{\Omega} = \left\{ \left(\frac{\cos \theta}{1+\sin \theta}, \frac{\sin \theta}{1+\sin \theta} \right), \ \theta \in (0,\pi) \right\}$$

Numerical Comparison

But not for particular parameters

Potato: Example with no symmetries I

$$\partial \Omega = \{ (x_1, y_1) = (r(\theta) \cos \theta, r(\theta) \sin \theta) \mid 0 < \theta \le 2\pi \},$$

 $r(\theta) = 1 + 0.3 (\cos \theta + \sin 2\theta)$

(i) Touchdown points with partial skeleton.

The arrows point in the direction of increasing ε values.

Potato: Example with no symmetries II

Single point touchdown in left side (ε < ε_p) and right side (ε > ε_p).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For $\varepsilon = \varepsilon_p \approx 0.04855$, touchdown at two points simultaneously.

Multiple singularities generic in blow-up of high order PDEs

$$u_t = -\varepsilon^2 \Delta^2 u + f(u), \quad x \in \Omega; \qquad u = \partial_n u = 0, \quad x \in \partial \Omega.$$

Figure: $f(u) = e^{u}$, $\Omega = [-1, 1]^{n}$ for n = 1, 2, 3.

Second Order Problem

$$u_t = \varepsilon^2 \Delta u + f(u), \quad x \in \Omega; \qquad u = 0, \quad x \in \partial \Omega;$$
$$x_c \sim \max_{x \in \Omega} d(x, \partial \Omega). \quad x \in \mathbb{R} \text{ for } x$$

Multiple singularities generic in blow-up of high order PDEs

$$u_t = -\varepsilon^2 \Delta^2 u + f(u), \quad x \in \Omega; \qquad u = \partial_n u = 0, \quad x \in \partial \Omega.$$

Figure: $f(u) = e^{u}$, $\Omega = [-1, 1]^{n}$ for n = 1, 2, 3.

Second Order Problem

$$u_t = \varepsilon^2 \Delta u + f(u), \quad x \in \Omega; \qquad u = 0, \quad x \in \partial \Omega;$$

 $x_c \sim \max_{x \in \Omega} d(x, \partial \Omega).$

Outline of Talk

- I. Adaptive numerical methods.
 - r-adaptive meshes for generating meshes.
 - Meshes inherit the symmetries/scaling properties of the PDE.
- 2. Predicting the set of contacts.
 - Concept set complexity described by a boundary layer analysis.
 - Prediction of contact sets in ID and general 2D regions.
- 3. Regularized problem describing post contact dynamics.
 - How do we make sense of solutions beyond initial singularities?
 - Layer dynamics and numerical simulations of sharp interfaces.

Stiction and Adhesion in MEMS

Contact between surfaces in MEMS allows for extended operating regimes.

Additional physics once surfaces have come into physical contact

- Frictional forces
- Van der Waal forces
- Casimir effect
- Plasticity of elastic components

Ref: <u>sandia.gov</u>

J.Adhesion Sci. Tech 17(4) pp 519-546.

Physical effects at very small gap spacing

Ref: Acta Mechanica Sinica 19(1).

Ref: Krylov, Dick, Continuum Mech Thermodyn, 22 pp.445-468.

- Ex: $(1+u) \ge \varepsilon \phi(x) > \varepsilon$
- "Obstacle Problem".

Repulsive for $(1+u) < \varepsilon$ Attracting for $(1+u) > \varepsilon$

Lennard-Jones type potential $\phi(u;\varepsilon) = -\frac{\lambda}{(1+u)} - \frac{\lambda\varepsilon^{m-2}}{(m-1)(1+u)^{m-1}}, \qquad m \ge 3$

m=3:Van der Waal forces. m=4: Casimir forces.

Regularization of touchdown.

<u>Perturbed parabolic PDEs</u> $\varepsilon \ll 1$ - Small Regularizing Parameter

Second Order Regularized Model

$$\frac{\partial u}{\partial t} = \Delta u - \frac{\lambda}{(1+u)^2} + \frac{\lambda \varepsilon^{m-2}}{(1+u)^m}, \qquad x \in \Omega; \qquad u = 0 \quad x \in \partial \Omega$$

Fourth order Regularized Model

$$\frac{\partial u}{\partial t} = -\Delta^2 u - \frac{\lambda}{(1+u)^2} + \frac{\lambda \varepsilon^{m-2}}{(1+u)^m}, \quad x \in \Omega; \qquad u = \partial_n u = 0, \quad x \in \partial \Omega.$$

Global Existence

<u>Theorem 1</u>: (Global existence - Laplacian) Suppose $u_0 \in C^0(\Omega)$ and $u_0 > -1$. Then $u(x,t) > \min(\inf u_0, -1 + \varepsilon)$

<u>Theorem 2</u>: (Global existence - Bi-Laplacian) Suppose $u_0 \in H^2(\Omega) \cap C^0(\Omega)$ and $u_0 > -1$. Then u(x,t) exists for all t > 0, provided $m \ge 3$ when dim $(\Omega) = 1$ and m > 3 when dim $(\Omega) = 2$.

Fourth order and two dimensional simulations

Bi-Laplacian 2D: $\lambda = 200, \quad \varepsilon = 0.005$

- Sharp interface is oscillatory in both cases.
- In 2D, the amplitude oscillations are modulated by the curvature of the interface.

Bi-Laplacian 2D: $\lambda = 200, \quad \varepsilon = 0.005$

Bifurcation Diagrams

- New branch of stable large norm equilibria emerges after second fold point.
- <u>Bistability</u> possible from switching between large and small norm solutions.

$$y = \sqrt{\lambda}x \implies u_{yy} = \frac{1}{(1+u)^2} - \frac{\varepsilon^{m-2}}{(1+u)^m}, \quad y \in [-\sqrt{\lambda}, \sqrt{\lambda}], \quad u(\pm\sqrt{\lambda}) = 0$$
Autonomous System
$$\begin{cases} u_y = w \\ w_y = \frac{1}{(1+u)^2} - \frac{\varepsilon^{m-2}}{(1+u)^m} \end{cases}$$
Saddle at $u = -1 + \varepsilon$

$$\int_{-1}^{1} \frac{1}{(1+u)^2} - \frac{\varepsilon^m}{(1+u)^m} = \frac{\varepsilon^$$

$$\ell_{\varepsilon}(\alpha) = \int_{0}^{\ell_{\varepsilon}} dy = \int_{-1+\alpha}^{0} \frac{du}{w} = \int_{-1+\alpha}^{0} \left[\frac{1}{\alpha} - \frac{1}{1+u} + \frac{\varepsilon^{m-2}}{m-1} \left(\frac{1}{(1+u)^{m-1}} - \frac{1}{\alpha^{m-1}} \right) \right]^{-\frac{1}{2}}$$

Equilibrium solutions correspond to roots of

$$\ell_{\varepsilon}(\alpha) = \sqrt{\lambda}$$

Perturbation of Principal Fold $\lambda^*(\varepsilon) = \lambda^*(0) + \varepsilon^{m-2}\lambda_1^* + \mathcal{O}(\varepsilon^{2(m-2)})$ (Pull-in - Voltage) $= 0.3500 + 0.7945\varepsilon^2 + \mathcal{O}(\varepsilon^4)$ (m = 4)

Existence of new $-\frac{\varepsilon^{3/2}}{\sqrt{m-2}}\ln\left(\frac{\alpha}{\varepsilon}-1\right) \lesssim l_{\varepsilon}(\alpha) \lesssim -\frac{\varepsilon^{1/2}}{\sqrt{2}}\sqrt{\frac{m-1}{m-2}}\ln\left(\frac{\alpha}{\varepsilon}-1\right).$ solution branch:

Equilibrium analysis in 4th order case.

Observations:

- Oscillatory Boundary layer implies single point contact.
- Large portion of beam in contact with substrate.
- Sharp boundary layer joining contact point with x = 1,-1.

 $-u_{xxxx} = \frac{\lambda}{(1+u)^2} - \frac{\lambda \varepsilon^{m-2}}{(1+u)^m}, \quad x \in (-1,1); \qquad u = u_x = 0, \quad x = \pm 1$

<u>Goal</u>: Calculate these post-contact states in the limit $\varepsilon \to 0$

Outline of Matched Asymptotic Analysis:

Step I: Rescale:
$$x_c = 1 - \varepsilon^{\frac{1}{4}} \bar{x}_c, \qquad u(x) = w(\eta), \qquad \eta = \frac{x - (1 - \varepsilon^{\frac{1}{4}} \bar{x}_c)}{\varepsilon^{\frac{1}{4}} \bar{x}_c}$$

Step 2: Analyze contact layer: $w(\eta) = -1 + \varepsilon v(\xi), \quad \xi = \varepsilon^q \eta.$

$$-v_{\xi\xi\xi\xi} = \lambda \left(\frac{1}{v^2} - \frac{1}{v^m}\right), \quad -\infty < \xi < \infty; \qquad v(0) = \underset{\xi \in \mathbb{R}}{\arg\min v(\xi)}$$
$$\lim_{\xi \to -\infty} v(\xi) = 1, \quad -1 + \varepsilon v \left(\frac{\eta \, \bar{x}_c}{\varepsilon^{1/2}}\right) \sim w(\eta) \quad \text{as} \quad \xi = \frac{\eta \, \bar{x}_c}{\varepsilon^{1/2}} \to \infty.$$

Step 3: Expand solution

$$w = w_0 + \varepsilon^{1/2} w_{1/4} + \varepsilon \log \varepsilon w_{1/2} + \mathcal{O}(\varepsilon); \quad v(\varepsilon)$$

$$\lambda_c = \lambda_{0c} + \varepsilon^{1/2} \lambda_{1c} + \varepsilon \log \varepsilon \lambda_{2c} + \mathcal{O}(\varepsilon)$$

Results (after matching):

• In this regime, there is no approximation of the secondary fold point.

• This requires a separate singular analysis where $\lambda \to 0$

Fold Point Asymptotics

Local Parameterization of Bifurcation curve:

 $u(0) = -1 + \varepsilon \alpha$ $\lambda \sim \nu(\varepsilon) \lambda_0(\alpha), \qquad \nu \ll 1$

Steps in the Analysis:

Step I: Expand Outer Region (away from 0)

$$\begin{array}{ll} u &= u_0 + u_1 \nu + \cdots \\ \lambda &= \lambda_0 \nu + \cdots \end{array} \longrightarrow \begin{array}{ll} u_0^{\prime \prime \prime \prime} = 0 \\ u_0 = -1 + 3x^2 - 2x^3 \end{array}, \begin{array}{ll} u_0(1) = 0, & u_0^{\prime}(1) = 0 \\ u_0(0) = -1, & u_0^{\prime}(0) = 0 \end{array}$$

Step 2: Blowup Inner Region (near to 0)

$$u(x) = -1 + \varepsilon w(y) \qquad \Longrightarrow \qquad \begin{bmatrix} \nu(\varepsilon) = \varepsilon^{\frac{3}{2}} \\ w \sim 3y^2 - 2\varepsilon^{\frac{1}{2}}y^3 + \cdots & y \to \infty \end{bmatrix}$$
$$-w'''' = \lambda_0 \varepsilon^{\frac{1}{2}} \left[\frac{1}{w^2} - \frac{1}{w^m} \right], \quad y > 0; \qquad w(0) = \alpha,$$
$$w'(0) = w'''(0) = 0$$

Step 3: Match The value of $\lambda_0(\alpha)$ which gives the correct growth as $y \to \infty$:

$$\lambda_0(\alpha) = 12\sqrt{3} \left[\frac{\pi}{4\alpha^{\frac{3}{2}}} - \frac{\sqrt{\pi}}{2\alpha^{m-\frac{1}{2}}} \frac{\Gamma(m-\frac{1}{2})}{\Gamma(m)} \right]^{-1}, \qquad m > 2.$$

After a lot of algebra the second term is forthcoming

$$\lambda_* \sim \frac{7}{\pi} \left(\frac{105^3}{2}\right)^{\frac{1}{4}} \varepsilon^{\frac{3}{2}} - \frac{26411}{64\pi^2} \varepsilon^2 + \cdots$$
$$\sim 61.4586 \varepsilon^{\frac{3}{2}} - 41.8124 \varepsilon^2 + \cdots.$$

Prediction of Cubic Fold Point

Primary Fold Asymptotics: $\lambda^*(\varepsilon) = \lambda_0 + \varepsilon^{2(m-2)}\lambda_1 + \mathcal{O}(\varepsilon^{4(m-2)}),$ $= 4.3809 + 9.9713 \varepsilon^2 + \mathcal{O}(\varepsilon^4) \quad [m = 4]$ $\lambda_*(\varepsilon) < \lambda < \lambda^*(\varepsilon)$ Bistable Range: $61.4586 \varepsilon^{\frac{3}{2}} - 41.8124 \varepsilon^2 < \lambda < 4.3809 + 9.9713 \varepsilon^2.$

Critical value (m=4): $\lambda_*(\varepsilon_c) = \lambda^*(\varepsilon_c) \implies \varepsilon_c = 0.2468$

> 0^L 0

 $1 \frac{1}{\lambda_*(\varepsilon)} 2$

3

 $\lambda \quad \begin{array}{c} 4 \\ \lambda^*(\varepsilon) \end{array} 5$

7

8

6

Sharp Interface limit dynamics

- Triple Deck Problem: Boundary Layer inside boundary layer.
- Notorious in high-Reynolds number flows.

Outline of steps

Innermost Layer:

$$y = \frac{x - x_c(\frac{t}{\varepsilon^{1/2}})}{\varepsilon^{3/2}}, \quad u = -1 + \varepsilon v(y, t)$$

$$v_{0yy} = \frac{\lambda}{v_0^2} - \frac{\lambda}{v_0^m}, \quad y \in \mathbb{R}; \quad v_0(0) = \left(\frac{m}{2}\right) \frac{1}{m-2},$$

$$v_0 = 1 + \cdots \quad y \to -\infty; \quad v_0 = \sqrt{\frac{2\lambda(m-2)}{m-1}} y + \cdots,$$
Intermediate Layer:

$$z = \frac{x - x_c(\frac{t}{\varepsilon^{1/2}})}{\varepsilon^{1/2}}, \quad u(x, t) = \varepsilon v(z, t)$$

$$w_{zz} + \dot{x}_c w_z = 0, \quad z > 0; \quad w(0) = -1, \quad w_z(0) = \alpha;$$

$$w(z) = -1 + \frac{\alpha}{\dot{x}_c} \left[1 - e^{-\dot{x}_c \cdot z}\right] \sim -1 + \frac{\alpha}{\dot{x}_c}.$$

Outermost layer:

$$u(x_c,t) \sim -1 + \frac{\alpha}{\dot{x}_c}, \quad \Longrightarrow \quad \left| \frac{dx_c}{dt} \sim \frac{\alpha}{\varepsilon^{1/2}(1+u(x_c,t))}, \quad \alpha = \sqrt{\frac{2\lambda(m-2)}{m-1}} \right|$$

ID Interface Dynamics

The full three term expansion!

$$\frac{dx_c}{dt} \sim \frac{\alpha}{\varepsilon^{\frac{1}{2}} [1+u_0(x_c)]} - \frac{\lambda}{\alpha} \frac{\varepsilon^{\frac{1}{2}} \log \varepsilon}{[1+u_0(x_c)]^2} + \frac{\varepsilon^{\frac{1}{2}}}{[1+u_0(x_c)]^2} \Big[\alpha a_1 - \frac{3\lambda}{\alpha} - \frac{\lambda}{\alpha} \log \frac{\alpha}{[1+u_0(x_c)]}\Big].$$

Separate analysis when the layer meets the boundary and decelerates.

Interface normal velocity: Laplacian case

$$\rho_t = \frac{\alpha}{\varepsilon^{1/2}(1+u_0(x_c))} - \kappa + \cdots, \qquad \alpha = \sqrt{\frac{2\lambda(m-2)}{m-1}}$$

Interface normal velocity: Bi-Laplacian case

$$\left[\rho_t \sim \left[\frac{2\alpha}{\varepsilon^{\frac{1}{2}}(1+u_0)}\right]^{3/2} - \frac{2\alpha}{\varepsilon^{\frac{1}{2}}(1+u_0)}\kappa + \cdots, \qquad \alpha = \sqrt{\frac{\lambda(m-2)}{2(m-1)}}\right]$$

<u>Results - interface law evolved by level set method.</u>

$$\phi(x(t), y(t), t) = 0 \implies \phi_t + \rho_t |\nabla \phi| = 0$$
$$\rho_t = \gamma_1(t) + \gamma_2(t)\kappa \qquad \kappa = \frac{\phi_{xx}\phi_y^2 - 2\phi_{xy}\phi_x\phi_y + \phi_{yy}\phi_x^2}{\phi_x^2 + \phi_y^2}$$

Summary

- Blow up in fourth order PDEs are extremely sensitive to <u>parameters/geometry</u>.
- Regularization gives rise to new <u>singular</u> stable solutions.
- Characterization of new stable equilibrium in ID and dynamics.
- Stiff numerical problems require careful numerics to adapt to solution features.

Thank you for your attention!

<u>References (available at: nd.edu/~alindsal)</u>

- A.E.L, J. Lega, F.J. Sayas (2013), J. of Nonlinear Science, Vol. 23, No. 5, pp.~807--834.
- A.E.L, J.Lega, (2012), SIAM J.Appl. Math., 72(3), pp.~935--958.
- A.E.L, J. Lega, K.B. Glasner (2014), Physica D, Vol. 280-281, pp.~95--108.
- A.E.L, J. Lega, K.B. Glasner, (2015), IMA J. Applied Math, 80(6), pp.~1635–1663.
- A.E.L, (2016), J. Engineering Math, (2016), J. Engineering Math, 99(1).

NSF DMS - 1516753 NSF DGE - 1313583