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Goal: Understand the fundamental process of how elastic surfaces 
deform in electric fields.

Micro Electro Mechanical systems (MEMS)

Gear and resonators. Source: mems.sandia.gov

MEMS = (Moving elastic components + Circuitry) x  ε

• Continuum modeling still valid.  

• Inertial effects negligible - viscous damping dominates.  

• Combustion not practical for locomotion - use electrostatic actuation 

Modeling microscopic dynamical processes:

http://mems.sandia.gov


G. I.  Taylor (1968) - The Pull-in Instability

• Experimental and theoretical study of liquid drops at different potentials.  
Ref: Proc. Roy. Soc A (1968).

Theoretical Framework

Experimental Apparatus

Pull-In Instability: elastic surfaces come into physical contact when electric field
 is large enough to overcome membrane tension.
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The canonical MEMS problem

• Elastic surface occupying deflecting in the presence of 
an electric field 

• Surfaces come into contact if voltage large enough:  

• Small aspect ratio - d/L. Roughly 0.01 in typical MEMS.

Mathematical Model: Pelesko (2003)
u = 0

u = −1

x = 0 x = 1

u(x)

• Boundary conditions imply zero deflection and clamped at end points.

•          - surface is a beam - rigid material.

•          - surface is a membrane (soap film).

•               - the main control parameter.

• Contact or touchdown when 

δ > 0
δ = 0



Refs:  Brubaker, Cowan, Davila, Escher, Esposito, Flores, Guo, Ghoussoub, Glasner, Hu, Kavallaris, Kohlmann,
Lacey, Laurencot, Lega, Lienstromberg, Lindsay, Moradifam, Nikolopoulos, Pan, Pelesko, Ward, Walker, Wei. 
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Questions: Why, How, When, Where do singularities form and what then?





Outline of Talk

1. Adaptive numerical methods.  
 
 
 
 

2. Predicting the set of contacts.  
 
 
 
 

3. Regularized problem describing post contact 
dynamics.  

 

 

• r-adaptive meshes for generating meshes.  

• Meshes inherit the symmetries/scaling properties of the PDE.

• Concept set complexity described by a boundary layer analysis.  

• Prediction of contact sets in 1D and general 2D regions.  

• How do we make sense of solutions beyond initial singularities?  

• Layer dynamics and numerical simulations of sharp interfaces.



Adaptive Numerical Methods - Time Adaptation

Motivation: Need to reduce timestep as singularity approached and
prevent overshooting the blow up time.

I Scale Invariance

t ! a⌧, x ! a�x , (1 + u) ! a�(1 + u).

I Plug the scaled variables into the MEMS equation:
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I This gives the scaling law:

(1 + u(x , t)) = a
1
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⇣
1 + u

⇣
x

a1/4
,

t
a

⌘⌘

I Choosing the adaptive time step: dt = d⌧ min(1 + u)3



Spatial Adaptivity - Three classes of adaptive methods.

• h-adaptive - Add mesh points to regions where extra resolution  
required (singularities). Remove mesh points where less  
solution resolution is needed.  

• p-adaptive - Increase the order of the approximating functions  
 

• r-adaptive - Move fixed number of mesh points to spatial regions 
where more accuracy is required. [Budd2006,Hou2001,  
BuddJFW2009,HuangRussel2011].  
 



R-Adaptive Methods

I Two components to moving mesh derivation:
1. Describing the optimal mesh
2. Develop a strategy for evolving the mesh to the optimal mesh

I Steps for an R-adaptive mesh:
I Start with a fixed number of mesh points.

I Find a continuous mapping, X = F (⇠, t), between the
computational space and physical space; i.e. ⌦C ! ⌦P



Mesh Tangling

I Need F (⇠, t) to be a 1-1 mapping to avoid mesh tangling

I 1-1 mapping implies: |J(⇠, t)| = det
⇣
@X(⇠,t)

d⇠

⌘
=

����
x⇠ x⌘
y⇠ y⌘

���� > 0

An example of mesh tangling.



Finding an Optimal Mesh
I For any invertible F, we can find a Monitor Function M(x)

that for any A ⇢ ⌦CZ

A
dx =

Z

F (A)
M(x)dx

I The idea is to equidistribute M(x) over the mesh.
I In 1D equidistribution defines a unique mesh, but not in 2D.



Finding the Mapping F in 2D

I Want want to choose the mapping that is closest to a uniform
mesh by minimizing the least squares norm

I =

Z

⌦C

|F (⇠, t)� ⇠|2d⇠

Theorem (Delzanno 2008)

There exists a unique optimal mapping F(⇠, t), satisfying the
equidistribution equation. The map has the same regularity as M.
Furthermore, F(⇠, t) is the unique mapping from this class which
can be written as the gradient (with respect to ⇠) of a convex
(mesh) potential P(⇠, t), so that:

F(⇠, t) = r⇠P(⇠, t), �⇠P(⇠, t) > 0
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The Nonlinear Monge-Ampere Equation

I Assuming X = r⇠P , then
@X
@⇠ = |H(P)| = P⇠⇠P⌘⌘ � P2

⇠⌘

I The equidistribution principle gives the Nonlinear
Monge-Ampere Eqn.

M(r⇠P , t)|H(P)| =
R
⌦P

M(X(⇠, t)dX
R
⌦C

d⇠

I Problem: Monge-Ampere equation is a fully nonlinear PDE.

I Solution: Can solve approximately using a parabolic equation
for Q(⇠, t) which evolves toward the gradient of P(⇠, t).

I Relaxed equation (PMA equation):

↵(I � ��)Qt = (|H(Q)|M(rQ))1/d

I
↵ = 0.1 - speed of relaxation. � = 0.1 - smoothing parameter.
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Choosing the Monitor Function

I A priori estimates based on physics or geometry.

I ex: Arclength
p

1 + c2|r⇠u(x(⇠))|2
I A posteriori estimates based on error can also be used.

I For strong scaling structures, want a monitor function that
scales with the problem

I For MEMS Problem: M(u) =
1

(1 + u)3
in 1D and

M(u) =
1

(1 + u)6
in 2D.



Efficient Discretization: Regularization and Smoothing.

• Problem: Rushing of a majority of Mesh Points to singularities.  

• Use a McKenzie Regularization to distribute half the mesh points 
around singularities and remainder elsewhere.

No regularization Regularized



Smoothing of Monitor Function

I Problem: Smoothness required for reliable di↵erentiation.

I Solution: Apply a fourth order smoothing filter.

Mi ,j  4
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(i) No Smoothing (j) Smoothing
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One-dimensional simulations: Using MOVCOL4 (Russel,Xu,Williams)



2D Results Using Monge Ampere Adaptation
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dynamics.  

 

 

• r-adaptive meshes for generating meshes.  

• Meshes inherit the symmetries/scaling properties of the PDE.

• Concept set complexity described by a boundary layer analysis.  

• Prediction of contact sets in 1D and general 2D regions.  

• How do we make sense of solutions beyond initial singularities?  

• Layer dynamics and numerical simulations of sharp interfaces.



Rescaling to obtain a singular perturbation problem.



Basis of Analysis

Small t behaviour:

I Flat central region coupled to a propagating boundary e↵ect.

I In the flat central region, u(x , t) ⇠ f (t);

ft = � 1

(1 + f )2
, f = �1 + (1� 3t)1/3

I Propagating boundary e↵ect ( at x = 1 ) in stretching
coordinates:

u(x , t) ⇠ �f (t) v
0

(⌘) ⌘ =
1� x

"

1/2f 1/4

I t ! 0 corresponds to f ! 0 so the (1 + u)�2 term is
linearized.

Touchdown Behaviour: Small (tc � t)

I tc(") is the finite touchdown time.

I u = �1 is a global attractor



Stretching Boundary Layer:
After analysis:
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Comparison to full numerics

Two time regimes: 1. Short time (Linear), 2. Close to singularity (Nonlinear)
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Locating the critical points

• Follow the first critical point of the asymptotic solution.  

• Find

1D Unit Disk

Solid Line (Numerics), Dashed Line (Asymptotics).



Predicting the touchdown set for general geometries in R2.

I Stability of ring-like touchdown sets.

I What is the touchdown set for more general geometries?

I Is asymmetric touchdown possible?

⌦



Asymptotic Breakdown.
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Leading order theory:

Same leading order profile:

d4v
0

d⌘4
� ⌘

4

dv
0

d⌘
+ v

0

= �1, ⌘ > 0; v
0

⇠ �1 as ⌘ ! 1

Boundary profile propagates inwards normally to @⌦:

0 2 4 6 8 10 12
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

⌘

v

0
(
⌘
)

η = η
0

u(x , t) ⇠ ?, How do we construct a uniform asymptotic solution?
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Leading Order Uniform Expansion.

To construct solution at X 2 ⌦, find all Y 2 @⌦ satisfying
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Asymptotic reconstruction of profile just before touchdown.
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Figure: Ellipse and " = 0.03.
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A geometric ‘Skeleton Theory’ for contact set prediction



Simple Skeleton Examples
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Skeleton captures contact set. But not for particular parameters



Potato: Example with no symmetries I

@⌦ = {(x
1

, y
1

) = (r(✓) cos ✓, r(✓) sin ✓) | 0 < ✓  2⇡},
r(✓) = 1 + 0.3 (cos ✓ + sin 2✓)
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(i) Touchdown points with
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The arrows point in the direction of increasing " values.



Potato: Example with no symmetries II

(j) " = 0.047 (k) " = "p ⇡ 0.04855 (l) " = 0.055

I Single point touchdown in left side (" < "p) and right side
(" > "p).

I For " = "p ⇡ 0.04855, touchdown at two points
simultaneously.



Multiple singularities generic in blow-up of high order PDEs

ut = �"

2�2u + f (u), x 2 ⌦; u = @nu = 0, x 2 @⌦.
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Figure: f (u) = eu, ⌦ = [�1, 1]n for n = 1, 2, 3.

Second Order Problem

ut = "

2�u + f (u), x 2 ⌦; u = 0, x 2 @⌦;

xc ⇠ max
x2⌦

d(x , @⌦).



Multiple singularities generic in blow-up of high order PDEs
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Outline of Talk

1. Adaptive numerical methods.  
 
 
 
 

2. Predicting the set of contacts.  
 
 
 
 

3. Regularized problem describing post contact 
dynamics.  

 

 

• r-adaptive meshes for generating meshes.  

• Meshes inherit the symmetries/scaling properties of the PDE.

• Concept set complexity described by a boundary layer analysis.  

• Prediction of contact sets in 1D and general 2D regions.  

• How do we make sense of solutions beyond initial singularities?  

• Layer dynamics and numerical simulations of sharp interfaces.



Stiction and Adhesion in MEMS

• Frictional forces
• Van der Waal forces
• Casimir effect
• Plasticity of elastic components

Additional physics once surfaces
 have come into physical contact

J. Adhesion Sci. Tech 17(4) pp 519-546.

Contact between surfaces in MEMS
allows for extended operating regimes.

Ref: sandia.gov

http://sandia.gov


Physical effects at very small gap spacing

Ref:  Acta Mechanica Sinica 19(1).

Physical Barrier

Ref: Krylov, Dick, 
Continuum Mech Thermodyn, 22 pp.445-468. 

• Ex:

• “Obstacle Problem”.



Lennard-Jones
type potential

m=3: Van der Waal forces.       m=4: Casimir forces.  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Second Order Regularized Model

Fourth order Regularized Model

Perturbed parabolic PDEs - Small Regularizing Parameter



Global Existence



Fourth order and two dimensional simulations

• Sharp interface is oscillatory in both cases.

• In 2D, the amplitude oscillations are 
modulated by the curvature of the 
interface. 



Bifurcation Diagrams
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• New branch of stable large norm equilibria emerges after second fold point.
• Bistability possible from switching between large and small norm solutions.



Equilibrium Analysis in Laplacian Case.
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Existence of new
solution branch:

Perturbation of Principal Fold
(Pull-in - Voltage)



Equilibrium analysis in 4th order case.
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Goal:  Calculate these post-contact states in the limit  

• Oscillatory Boundary layer  
implies single point contact.  

•  Large portion of beam in  
 contact with substrate.  

• Sharp boundary layer joining 
contact point with x = 1,-1.  

Observations:



Outline of Matched Asymptotic Analysis:

Step 1:

Step 2:
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Step 3: Expand solution 



Results (after matching):
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• In this regime, there is no approximation of the secondary fold point.  

• This requires a separate singular analysis where  
 



Fold Point Asymptotics
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Steps in the Analysis:

Step 1: Expand Outer Region (away from 0)

Step 2: Blowup Inner Region (near to 0)

Step 3: Match



After a lot of algebra the second term is forthcoming
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Prediction of Cubic Fold Point

Primary Fold Asymptotics:

Bistable Range:
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Critical value (m=4):
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u + 1 = O(ε)
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εp) = O(1)

u = −1 + ε

II

Sharp Interface limit dynamics

• Triple Deck Problem: Boundary 
Layer inside boundary layer.  

• Notorious in high-Reynolds 
number flows.



Outline of steps

Innermost Layer:

Intermediate Layer:

Outermost layer:



1D Interface Dynamics
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The full three term expansion!

Separate analysis when the  
layer meets the boundary 

and decelerates.



Interface dynamics in 2D O(εq)

s

ρ

{
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O(εr)

Γ+
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Interface normal velocity: Laplacian case

Interface normal velocity: Bi-Laplacian case



Results - interface law evolved by level set method.



Summary

• Blow up in fourth order PDEs are extremely sensitive to parameters/geometry.

• Regularization gives rise to new singular stable solutions.

• Characterization of new stable equilibrium in 1D and dynamics.

• Stiff numerical problems require careful numerics to adapt to solution features.

Thank you for your attention!
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