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e For singularly perturbed semilinear reaction-diffusion equations

—e*Au+ f(x,u) =0

where z € Q < R?, subjectto w =0 on o2

f(x,u) — f(x,v) = Ct[u — v] whenever u>uv,| e+ C; 21

e and also convection-diffusion equations —c/A\u + a - Vu + bu = f(:l?)

we look for residual-type a posteriori error estimates

HerrorH* < function (mesh, comp.sol—n)

where | - || is the maximum norm or the energy norm or similar

on anisotropic meshes
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anisotropic meshes are superior for layer solutions

(1) fine in layer regions ; coarse outside

(i) maximum mesh aspect ratio ~ (layer width)=! » 1

———\

BUT theoretical difficulties within the FEM
framework...




Chapter A

Perceptions & expectations t.b. adjusted for anisotropic meshes

Part 1
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Reaction-Diffusion eq. — a posteriori estimates on anisotropic meshes
— Problem addressed (more detail)
— Mesh assumptions + preview of results

— Error represenation = From the L, to the energy norm??

From Reaction-Diffusion to Convection-Diffusion equations

A bit of analysis: 3 technical issues addressed

Some Numerics




Chapter A | PERCEPTIONS & EXPECTATIONS...

One Perception: the computed-solution error in the maximum norm is closely

related to the corresponding interpolation error...

e Quasi-uniform meshes, linear elements

|lu —unl|z, @) < In(C +€/h) inf |u— x|z, @
XESh

— Schatz, Wahlbin, On the quasi-optimality in L., of the H Lprojection into
finite element spaces, Math. Comp. 1982: —Au = f,

— Schatz, Wahlbin, On the finite element method for singularly perturbed
reaction-diffusion problems ..., Math. Comp., 1983: —&?/Au + au = f,




Chapter A | PERCEPTIONS & EXPECTATIONS...

One Perception: the computed-solution error in the maximum norm is closely

related to the corresponding interpolation error...

e Quasi-uniform meshes, linear elements

|lu —unl|z, @) < In(C +€/h) inf |u— x|z, @
XESh

— Schatz, Wahlbin, On the quasi-optimality in L., of the H Lprojection into
finite element spaces, Math. Comp. 1982: —Au = f,

— Schatz, Wahlbin, On the finite element method for singularly perturbed
reaction-diffusion problems ..., Math. Comp., 1983: —&?/Au + au = f,

e Strongly-anisotropic triangulations: no such result
— BUT this 1s frequently considered a reasonable heuristic conjecture t.b. used
in the anisotropic mesh adaptation (Hessian-related metrics...)

— IN FACT, this is NOT true (see next)




Example: —2/Au 4+ u = 0 with u = e~%/¢ exhibiting a sharp boundary layer

Observation #1: Mass Lumping may be superior on anisotropic meshes

Standard linear FEM Mass Lumping
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Here we use a Shishkin mesh: piecewise-uniform, DOF ~ N2 mesh diameter ~ N !

lu— 'z, @ =~ N?In* N ~ DOF~'In(DOF)




Same Example: —?Au + u = 0 with u = e~/ exhibiting a sharp boundary layer

Observation #2: Convergence Rates may depend on the mesh structure (even for

mass lumping), NOT ONLY on the interpolation error

Standard linear FEM Mass Lumping

—6—¢=28 —6—c=28
~-e=2| ] ~-c2|.
AN —H— =22

I N-2
IR

10t T 101 T
2K 1 102 &
~ ~
N N
~ ~
~ ~
~ ~
~ ~
~ 5 ~
~ 3 107 F ~
N N
~ ~
~ ~
~ ~
~ ~
~ ~

—©—=28
0| o eapte
+€=2-24
5 S N-2
N—l

Here we use a graded Bakhvalov mesh:

|lu—u'|, @ ~N?~DOF!




WHAT GOES WRONG??

e A theoretical explanation of the above phenomena is given in:

N.Kopteva, Linear finite elements may be only first-order pointwise accurate on
anisotropic triangulations, Math. Comp., 2014.




WHAT GOES WRONG??

What happens in Q := (0, 2¢) x (—H, H)
with the tensor-product mesh wy, := {x; = 5Nio}fi\%) x {—H,0, H}??

H

Toin g < Q: o

T in €:

Mass lumping, U; := uy(x;,0) and U := wy,(z;, + H):

2 2
ﬁ[_Ui—l + 2U; — U] + %[—U[ +2U; —U | +nU; =0
with 7; = 1 for7 # Ny, and| YN, = %

52

ce<H = 3

|-Ui—1 +2U; — U;44]

—|—’Y1UZ':0




IMPLICATIONS

Implications of the above example:

e Theoretical:

if one tries to prove “standard” (almost) second-order a priori/a posteriori er-
ror estimate in the maximum norm on a general anisotropic mesh, this may be
impossible...

e Anisotropic mesh adaptation (Hessian-related metrics...):

One needs to be careful with the heuristic conjecture that the computed-solution
error in the maximum norm is closely related to the corresponding interpolation
eITor. ..




Non-singularly-perturbed EXAMPLE [Nochetto et al, Numer. Math., 2006]:
—Au+ f(u) = 0with f(u) ~ —u=> and u = \/z

1 1 1

0 0 0
0 1 0 1 o € 1
—©—linearFE k. —©—linearFE k. —O©—linearFE
—&—|umped-mass LT —&—|umped-mass Ll T —&—|umped-mass
777N_2 E 10° | '\.\ N_z E 10 \\ '\.\ 777N_2 E|

Graded mesh: {(i/N)®} Y : H’LL — uIHLOO(Q) ~ N2~ DOF!

Mesh transition parameter: € = 0.1




Chapter B

Laplace equation —/Au = f(x), linear elements, shape-regular mesh
[Ainsworth & Oden, 2000, Chap. 2]

e ' norm [Babugka & Miller, 1987]

) ) ; 1/2
fun —ulmmiey < {2 (W flEry + B3IV, on) )}
TeT e g h N 2

~|hrdul3, 5 ~|hr D2ul? oy

~ ||hr DQHHLQ(Q) ~ ||linear interpolation eI'I'OI'H]-Il(Q)




Chapter B

Laplace equation —/Au = f(x), linear elements, shape-regular mesh

[Ainsworth & Oden, 2000, Chap. 2]

e ' norm [Babugka & Miller, 1987]

) ) ; 1/2
fun —ulmmiey < {2 (W flEry + B3IV, on) )}
TeT S g h N 2

~|hrdul3, 5 ~|hr D2ul? oy

~ ||hr DQUHLg(Q) ~ ||linear interpolation eI'I'OI'H]-Il(Q)

e [, norm [Eriksson, 1994], [Nochetto, 1995]

lun — ullz, @) < In(hg,,) ngg{ \hzT |l + hr(lVunllz, @r

)

vy

~"

~B2, | Aull L, o ~hi | D?ul|p 7

~ HhQTDZuH L, (0) ~ |linear interpolation error| 1 (q)
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Chapter B

Laplace equation —Awu = f(z), linear elements, shape-regular mesh :

In the H! and L., norms:

HerrorH* < function (mesh, comp.solution)

~ || linear interpolation error |,
g _J

Y
discrete analogue

Higher-order elements + other norms + other equations have been considered
as well.

PURPOSE of such bounds: to be used in the adaptive mesh refinement




—e?Au + f (x, u) = (), shape-regular mesh, any-order FEM,
also analogous lower bounds...

e Energy norm ||error||..q := €| Verror| ) + |etror| r,q)

[Verfiirth, Numer. Math., 1998, —c?/Au + u = f(x)], for linear FEs :

. h . 1/2
{20 (inf1, 2 £Cun)luy +minfL =) #h e IVl om) )|

TeT ~ ~ V
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NthT DzuHLQ(T)
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—e?Au + f (x, u) = (), shape-regular mesh, any-order FEM,
also analogous lower bounds...

e Energy norm ||error||..q := €| Verror| ) + |etror| r,q)

[Verfiirth, Numer. Math., 1998, —c?/Au + u = f(x)], for linear FEs :

{Z( ‘mm{l _}f , Uy HLz +min{1 } h E HthML@ - )}1/2

TeT J

~"

~ehr Al oy ~llehr D2ulz, (1)

e L. norm [Demlow & Kopteva, Numer. Math., 2015], for linear FEs :

r%lgzc{ mln{l fh - } Hf Uh)HLOO(T) —|—m1n{€ ghhT} H[[vuh]]HLJo(aT) }

~€2|Ahuh|—|—0(h ) NhT|D2u|

where ¢, = In(2 + ch

mln)




—&?Au + f(xz,u) =0, ANISOTROPIC mesh :

e L, norm [Kopteva, SIAM J. Numer. Anal., 2015]




—&?Au + f(z,u) = 0, ANISOTROPIC mesh :

e L, norm [Kopteva, SIAM J. Numer. Anal., 2015]

e Energy norm ||error||..q = ¢||Verror| 1, + |lerror| .,

— [Kunert, Kunert & Verfiirth, Numer. Math., 2000, —e2Au +u = f(z)]

ISSUE: the error constant involves the so-called matching function

m(u — uy, T) |, which may be as large as the mesh aspect ratio f—f,

which is UNDESIRABLE...

— [Kopteva, 2016], see www.staff.ul.ie/natalia/pubs.html

extends the framework of [Kopteva, SIAM J. Numer. Anal., 2015]

from the L to the energy norm... (NO matching functions! )




—&?Au + f(xz,u) =0, ANISOTROPIC mesh :

e L., norm [Kopteva, SIAM J. Numer. Anal., 2015] this talk v~

e Energy norm ||error||..q = ¢||Verror| 1, + |lerror| .,

— [Kunert, Kunert & Verfiirth, Numer. Math., 2000, —e2Au +u = f(z)]

ISSUE: the error constant involves the so-called matching function

m(u — up, T) |, which may be as large as aspect ratio f—f,

which is UNDESIRABLE...

— [Kopteva, 2016], see www.staff.ul.ie/natalia/pubs.html

extends the framework of [Kopteva, SIAM J. Numer. Anal., 2015] this talk v~

from the L, to the energy norm... (NO matching functions! )




Chapter B

Part 1 | Reaction-Diffusion eq. — a posteriori estimates on anisotropic meshes

— Problem addressed (more detail)
— Mesh assumptions + preview of results

— Error represenation = From the L., to the energy norm??

Part 1*| From Reaction-Diffusion to Convection-Diffusion equations

Part 2 | A bit of analysis: 3 technical issues addressed

1. Application of a Scaled Trace theorem when estimating the Jump Residual (“long”
edges cause problems...)

Interior Residual

Quasi-interpolants general
anisotropic meshes —(may be of independent interest)

Part 3




PART 1 | RD PROBLEM ADDRESSED (DETAILS)

For —?/Au + f(x,u) = 0, we consider a standard finite element approximation

e2(Vup, Vop) + (fL,on) =0, v €8n,  foi= f(-,up),

where S, © H; () is a linear finite element space

e ()is a polygonal, possibly non-Lipschitz, domain in R", n = 2:
= wue H}(Q) nC(Q);

to be more precise, u € W7(2) = W, < C(Q) for some I > in and ¢ > n.

e one-sided-Lipschitz-condition version of fu(:C, u) > C =0,

but f, < Cy NOT assumed




Roughly speaking, want to include meshes of the type:




e Permitted mesh node types:

e Example of a mesh for

which the analysis works:




Notation: Hyp := diam(T), hy :=2H.'|T|, H, := diam(w,), h. := maxhy

TCw,

Main Triangulation Assumptions:

e Maximum Angle condition.

e Local Element Orientation condition. For any z € N, with the patch w, of
elements surrounding z, there is a rectangle R, D w, such that |R,| ~ |w,|.

e Also let the number of triangles containing any node be uniformly bounded.

e Quasi-non-obtuse anisotropic elements. Let the maximum angle in any triangle
be bounded by 5 + a4 Z—:’; for some positive constant ;. (Occasional !)

Mesh Node Types:




RD eq, Anisotropic mesh:

L, norm | Assuming that anisotropic mesh elements are almost non-obtuse,
our FIRST ESTIMATOR reduces to

IVl +min{L, 2} f oo
F O = o

lup —u|w < Cl rile%c(min{g, H.}

C'is independent of the diameters and the aspect ratios of elements in 7, and of <.

Here f;, = f(:,un), N is the set of nodes in T, [Vu,] is the standard jump in
the normal derivative of u; across an element edge, w, is the patch of elements
surrounding any z € N/, +, is the set of edges in the interior of w,, H, = diam(w,),
(, = In(2 + eh™"), and h is the minimum height of triangles in 7.

e For ¢ = 1, this gives a standard a posteriori error bound, similar to [Eriksson,
Nochetto, Nochetto et al], only now we prove it for anisotropic meshes.

e For ¢ € (0, 1], this is almost identical with our estimator for shape-regular case
(on the previous page), but now we assume no shape regularity of the mesh.




RD eq, Anisotropic mesh:

L norm | In order to give a sharper (and more anisotropic in nature) bound for

the interior-residual component of the error, we identify sequences of short edges

that connect anisotropic nodes: —
[—

Under some additional assumptions on each such sequence (which we call a Path),
our SECOND ESTIMATOR

lup — ull <C 6, [max(min{s, H.)
2eN

: -2 7172 1
T ) + i (min{L, e B2} oo

+ max (min{e,Hz}min{g,hz}He_Q Flloo . + min{1, e 2H2} osc( fg;wz))]

ZENpaths
+C[fo = falooas

C'is independent of the diameters and the aspect ratios of elements in 7, and of <.

Here NV.i1s is the set of mesh nodes that appear in any path, h, ~ H, |w,|, J, = [Vu]|




RD eq, Anisotropic mesh:

Energy norm | Assuming that anisotropic mesh elements are almost non-obtuse,

our FIRST ESTIMATOR reduces to

<O 1 S I 2 (1 H 712 1/2
Jln = ull 0 < {ZN(mmL B B[V, + in{ 23 1) |
zZE

+Clfn = fil2sa,

C'is independent of the diameters and the aspect ratios of elements in 7, and of <.

Here f;, = f(:,un), N is the set of nodes in T, [Vu,] is the standard jump in
the normal derivative of u; across an element edge, w, is the patch of elements

surrounding any z € N/, +, is the set of edges in the interior of w,, H, = diam(w,),
and h, ~ H*|w.|.

e For ¢ = 1, this gives a standard a posteriori error bound, similar to [Babuska et
al], only now we prove it for anisotropic meshes.

e For ¢ € (0, 1], this is almost identical with our estimator for shape-regular case
[ Vertiirth], but now we assume no shape regularity of the mesh.




RD eq, Anisotropic mesh:

Energy norm | For a sharper ( bound for the interior-residual component of the

error, we again identify sequences of short edges that connect anisotropic nodes:

—
(———

Under some additional assumptions on each such sequence (which we call a Path),
our SECOND ESTIMATOR

Jun = ulleio < C{ 3 min{1, % A min{L B} AL
2eN ZEN\Npaths
) (Hmmﬂ,%}fzuimHmm{l,%}oscwé;w»uzwz)]
ZENpaths
+C i = fill2a.

C'is independent of the diameters and the aspect ratios of elements in 7, and of ¢.

Here N, .45 is the set of mesh nodes that appear in any path, h, ~ H *|w,|




L., norm |— RD EQ, ERROR VIA GREEN’S FUNCTION

e For a solution v and any uj, € Hg(Q2) n W{(Q) with ¢ > n = 2,

[un — ul(z) = & (Vun, VG(2, ) + (f (- un), G2, )

HINT: using the standard linearization f(z, us) — f(x,u) = p(x)|u, — u]
with p = Sé ful,u+ [up —uls)ds = Cy =0

e For each fixed x € (2, the Green’s function G = G(z, -) solves the problem

L*G = —2AG +p(6)G = d(x—£), £,
G(x;¢) = 0, £ € 09).

(NOTE: similar to the dual problem...)




L., norm |— RD EQ, ERROR VIA GREEN’S FUNCTION

e For a solution v and any uj, € Hg(Q2) n W{(Q) with ¢ > n = 2,

Up — U = 82(Vuh, VG) + (f(, Uh), G)

e THEOREM [Demlow, Kopteva, 2015] For any x € (2,

|G(, )

1.0+ €|VG(z, )10 S 1.

For the ball B(x, o) of radius o centered at x € ), and £, := In(2 + o™ '),

8_2Q2 EQ’

2\

HG(ZC, ')Hl,B(x,g)mQ
HVG(:Ea °)H1,B(x,g)mQ
HD2G($> ')Hl,Q\B(x,Q)

A A
™M m|
I

~

[}




Energy norm | — SIMILAR ERROR REPRESENTATION

e For a solution v and any uj, € Hy(2) n W{(Q2) with ¢ > n = 2,

using the monotonicity of f and C; 4+ ¢* > 1, one gets
lun —ullZ.q < eV (un —u), V(un — u)) + {f(5un) — f(5u), un —w)
= e2(Vuy, V(up, — 1)y + {f (5 up), up — uy,
where we also used —?Au + f(x,u) = 0.

Next, assuming |||up — ulf|-.o > 0, let

Up — U
G = = |IGllea=1

\Huh - U\He;a

= | llun = ullle:o $ €Vun, VG) + {f (-, un), &)

— similar to the case of L., norm, only G is no longer the Green’s function...




PART 1*| FROM RD TO CONV.-DIFFUSION EQS I

—eAu+a-Vu+bu = f(x)

e ()isapolygonal Lipschitz domain in R", n = 2, —%V -a+b= B2z b,

e [Vertfiirth, SINUM, 2005]

1/2
energy norm [|v[| := {e[V[Z,q) + Blvll, )}

dual norm |||, := sup <@, v,
flofi=1

bilinear form B(u, v) := e(Vu, Vv) + {(a - Vu + bu, v)

B(u,v)
inf sup — > 1
v oy ([lull + @ Vulll.) [

= | [Cun =)l + @ - V(un =)l Sup B(up, = u, &)
=1




FROM RD TO CONV.-DIFFUSION EQS II

—eAu+a-Vu+bu = f(x)

e So | [|(un —w)ll +fla- V(un —u)fl. < Sup B(up, — u, &)
G||=1

= < sup {€<Vuh7 VG> T <F(7 uh)? G>}
IGll=1

where F' := a - Vuy, + buy, — f

—similar error representation to the Reaction-Diffusion case, so one can use
almost the same analysis on anisotropic meshes!

e NOTE a change in the analysis:

< sup {5<Vuh, V(G — Gh)> + <F(, uh), G — Gh> + stblz.-terms}
l&i=1

where stblz.-terms = stabilization-terms(-, uy, Gy,)




Part 2

JUMP & INTERIOR RESIDUAL

NEXT:

Up — U = 82(VU}L, V(G — Gh)) + (fh, G — Gh)

VGh € Sh




JUMP & INTERIOR RESIDUAL

NEXT: |up —u = e*(Vuy, V(G —Gp)) + (fn,G — G)) |VGhe Sy

NOTE: by the Divergence Theorem for each T’ c T,

L Vuy - V(G = Gy)) = f

oT

(G —G)) Vg - v — L A (G — Gy))
SO
Up — U = Z g’ L (G — Gp)[[Vur] - v + Z (fr — 2 Aug) (G — Gp)

SeS TeT YT




JUMP & INTERIOR RESIDUAL

NEXT: up — U = 52(Vuh, V(G — Gh)) + (fh, G — Gh) VG, € Sy

NOTE: by the Divergence Theorem for each T’ — T,

L Vs V(G — Gy)) f

oT

(G —G)) Vg - v — L Ay (G — Gy)
SO
up—u= Y € J (G = Gp)[Vur] - y+2ffh—gmh)(c: G)

SeS TeT
As YGy, € Sy, soreplace (G — (),) by
G—Gh— Zgngz — Z[G_Gh_gzkbz

zeN zeN

where ¢, = the standard hat function associated with a node z

up — U = ng |G — G — g:]o:[[Vun] - V+Z fh G —Gp = g:]¢.
zeN Tz

2eN




ISSUE #1: JUMP RESIDUAL ESTIMATION

JUMP RESIDUAL: | [ := »’ EQJ (G — G, — g.]0-[Vun] - v
2eN =z

NOTE: An inspection of standard proofs for shape-regular meshes reveals that one

obstacle in extending them to anisotropic meshes lies in the application of a Scaled
Trace Theorem when estimating the jump residual terms (this causes the mesh
aspect ratios to appear in the estimator; ’long” edges cause this problem).

Scaled Trace Theorem (for anisotropic elements; sharp):

h, »
: s S H
Se{s{ll(}g}e{dgeS} ||U| 158 H, SG{II()II}gaf,({iges} HUHLS o HU‘

1w, + [ VU1,




ISSUE #1: JUMP RESIDUAL ESTIMATION

JUMP RESIDUAL: | [ := )’ gzj (G — Gy — g ]o.[Vurn] - v
2eN =z

NOTE: An inspection of standard proofs for shape-regular meshes reveals that one
obstacle in extending them to anisotropic meshes lies in the application of a Scaled
Trace Theorem when estimating the jump residual terms (this causes the mesh
aspect ratios to appear in the estimator; ’long”’ edges cause this problem).

NOTE standard choices: | g, = 0 |, or SWZ(G — G — g.) ¢. = 0 | [Nochetto].

Our CHOICE is crucial in addressing this difficulty:

N

F ) IS

[(G - Gh)(ga ﬁz(f)) — gz] sz(g) d€ =0 B

3 ’7/\90( :




FIRST ESTIMATOR

Assuming that anisotropic mesh elements are almost non-obtuse ...,
our FIRST ESTIMATOR reduces to

Huh — UHoo < Cgh gleé}\%((min{& Hz} H[[vuh]] HOO;’Yz + min{€27 HZQ} Hg_sz{HOO;wz)

+Cfn = filos,

C'is independent of the diameters and the aspect ratios of elements in 7, and of <.

Here f, = f(-,up), NV is the set of nodes in 7, [Vuy,] is the standard jump in
the normal derivative of u; across an element edge, w, 1s the patch of elements
surrounding any z € N/, v, is the set of edges in the interior of w,, H, = diam(w,),
l, = In(2 + eh™ "), and h is the minimum height of triangles in 7.

e For ¢ = 1, this gives a standard a posteriori error bound, similar to [Eriksson,
Nochetto, Nochetto et al], only now we prove it for anisotropic meshes.

e For ¢ € (0, 1], this is almost identical with our estimator for shape-regular case
[Demlow, Kopteva], but now we assume no shape regularity of the mesh.




ISSUE #2 INTERIOR RESIDUAL

In order to give a sharper (and more anisotropic in nature) bound for the interior-
residual component of the error, we 1dentify sequences of short edges that connect
anisotropic nodes (and call each of them a Path):

\

Main Additional Assumption: (Curvilinear version also ok...)

e Path Coordinate-System condition. For each (semi-)anisotropic path N, 1 =
L,...,Nani + Ngani, let there exist a cartesian coordinate system (£, ) = (&, ;)
such that |sin(Z(S,1¢))| < | = for any S — S, of any node z € N; (while, if \V;

is semi-anisotropic a stronger condition |Z(S,i¢)| < ‘ & s satisfied).




SECOND ESTIMATOR

Let NV, atms be the set of mesh nodes that appear in any path, h, ~ H_ Yw,|, J. = [Vuy].

[\/

SECOND ESTIMATOR

lun — ulls <C 4 [m%;(mm{g, |7,
ZE

o) (win{Le 2 Lo,

+ max (min{e, H.} min{e, h,}|e 2 fi |oo:w, + min{l, e 2 H>} osc(f,{;wz)ﬂ

ZENpaths
+C | fn = fallosa,

C'is independent of the diameters and the aspect ratios of elements in 7, and of <.




ISSUE #3 GREEN’S FUNCTION INTERPOLANT

TASK: estimate

=223 (A V(G = Glur + A72G = Gullir ), Ar 1= minfe, Hr},

TeT

Aim: © < /4,

e [t would be convenient to employ a quasi-interpolant (of Clément/Scott-Zhang
type) with the property

G = Ghlkpir S HY *|Glipuwr forany 0 < | k< j|<2, p=1.

: : : : H7
T.b. more precise, the estimator involves mln{ | —2T
3

N~ Y~

from k=5 from k<

e However, such interpolants are not readily available for general anisotropic
meshes (see [Apel, Chapt. III] for a discussion of Scott-Zhang-type interpola-
tion on anisotropic tensor-product meshes).




ISSUE #3 GREEN’S FUNCTION INTERPOLANT

TASK: estimate

. Z( V(G = Co) v + A2 G — GhHlT) g := min{e, Hy),

TeT

e It would be convenient to employ a quasi-interpolant (of Clément/Scott-Zhang
type) with the property

G — Gpli T<H]kG- orforany0 < | B <7 (<2, p=1.
D J,pwr

e However, such interpolants are not readily available for anisotropic meshes

e [Kopteva, 2015] Because of this difficulty, we employ a less standard interpolant
(+1,, which gives a version of the LLagrange interpolant whenever [, < ¢, and
vanishes whenever /1 = ¢; however, this construction requires additional mild

assumptions on the triangulation... Lemma: © < Y,

® [Kopteva, 2016] Quasi-interpolant of Clément/Scott-Zhang type are introduced on
anisotropic meshes...




Part 3

Simple 2d TEST problem: —c2Au +u = F(x)in Q = (0,1)? with 2 = 1075,
u=4y(l—y)[1—2®— (e —e )/ —e7%*)]

We consider one a-priori-chosen layer-adapted mesh of Bakhvalov type:
1

0
0o &€ 1

e The mesh is chosen so that the linear interpolation error |u — u/|4.0 < N2

e However, as ¢ — 0, the convergence rates deteriorate from 2 to 1.
This phenomenon 1s noted and explained in

[N. Kopteva, Linear finite elements may be only first-order pointwise accurate
on anisotropic triangulations, Math. Comp. 2014.].




Table: Bakhvalov mesh, M = %N : maximum nodal errors and estimators.

N e=1 e=2"° =271 =271 £=92720 =927 =927
Errors (odd rows) & Computational Rates (even rows)

64 | 3.373e-4  3.723e-3 8.952¢-3 8.973e-3 8.973e-3 8.973e-3 8.973e-3

2.00 1.91 1.01 1.00 1.00 1.00 1.00

128 | 8.445e-5 9.935e-4 4.446e-3 4.484e-3 4.484e-3 4.484e-3 4.484e-3

2.00 1.98 1.04 1.00 1.00 1.00 1.00

256 | 2.112e-5  2.523e-4 2.165e-3 2.236e-3 2.236e-3 2.236e-3 2.236e-3
FIRST Estimator (odd rows) & Effectivity Indices (even rows)

64 | 6.810e-3  2.516e-1 9.403e-1 9.981e-1 9.999¢-1 1.000e+0  1.000e+0

20.19 67.59 105.04 111.23 111.44 111.45 111.45

128 | 1.761e-3  1.120e-1 8.858e-1 9.961e-1 9.999¢-1 1.000e+0  1.000e+0

20.86 112.72 199.26 222.15 222.98 223.01 223.01

256 | 4.480e-4  4.036e-2 7.901e-1 9.922e-1 9.998e-1 1.000e+0  1.000e+0

21.21 159.97 365.01 443.82 447.17 447.27 447.28




Table: Bakhvalov mesh, M = %N : maximum nodal errors and estimators.

N e=1 e=2"° =271 =271 £=92720 =927 =927
Errors (odd rows) & Computational Rates (even rows)

64 | 3.373e-4  3.723e-3 8.952¢-3 8.973e-3 8.973e-3 8.973e-3 8.973e-3

2.00 1.91 1.01 1.00 1.00 1.00 1.00

128 | 8.445e-5 9.935e-4 4.446e-3 4.484e-3 4.484e-3 4.484e-3 4.484e-3

2.00 1.98 1.04 1.00 1.00 1.00 1.00

256 | 2.112e-5  2.523e-4 2.165e-3 2.236e-3 2.236e-3 2.236e-3 2.236e-3
SECOND Estimator (odd rows) & Effectivity Indices (even rows)

64 | 7.353e-3  1.204e-1 1.224e-1 1.230e-1 1.302e-1 1.302e-1 1.302e-1

21.80 32.33 13.68 14.48 14.51 14.51 14.51

128 | 1.885e-3  3.212e-2 6.005e-2 6.621e-2 6.646e-2 6.647¢e-2 6.647e-2

22.32 32.33 13.51 14.77 14.82 14.82 14.82

256 | 4.771e-4  8.268e-3 3.073e-2 3.328e-2 3.354e-2 3.354e-2 3.354e-2

22.59 32.77 14.20 14.89 15.00 15.00 15.00




We considered one a-priori-chosen layer-adapted mesh of Bakhvalov type:

1

0

b € 1 maximum nodal errors

e The mesh is chosen so that the linear interpolation error |[u — u/ ||y .00 < N2
e However, as ¢ — 0, the convergence rates deteriorate from 2 to 1.

e E.g. for the final choice of € and V, the aspect ratios of the mesh elements take
values between 1 and 3.6e+8.

e Considering these variations, the SECOND estimator performs reasonably well
and its effictivity indices stabilize as ¢ — 0.

e By contrast, the FIRST estimator is adequate for € ~ 1, but its effectivity dete-
riorates in the singularly perturbed regime.




Table: Bakhvalov mesh, M = 1 N: €NE€rgy-norm errors and estimators.

N e=1 e=2° =270 =971 =970 _—9728 9730
Errors (odd rows) & Computational Rates (even rows)

64 | 3.202e-2  5.081e-3 7.993e-4 1.408e-4 2.489¢-5 4.399¢-6 7.777e-7

1.00 0.99 1.00 1.00 1.00 1.00 1.00

128 | 1.602e-2  2.564e-3 3.991e-4 7.028e-5 1.242e-5 2.196e-6 3.882e-7

1.00 0.99 1.00 1.00 1.00 1.00 1.00

256 | 8.011e-3  1.289e-3 1.997e-4 3.511e-5 6.207e-6 1.097e-6 1.940e-7
SECOND Estimator (odd rows) & Effectivity Indices (even rows)

64 | 1.04le-1  2.102e-2 4.129e-3 7.393e-4 1.308e-4 2.311e-5 4.086e-6

3.25 4.14 5.17 5.25 5.25 5.25 5.25

128 | 5.147e-2  1.051e-2 2.050e-3 3.711e-4 6.566e-5 1.161e-5 2.052e-6

3.21 4.10 5.14 5.28 5.29 5.29 5.29

256 | 2.559e-2  5.269e-3 1.006e-3 1.858e-4 3.290e-5 5.817e-6 1.028e-6

3.19 4.09 5.04 5.29 5.30 5.30 5.30

NOTE fore « 1: |up —ul|z.0 = €|Vu, — (Vu)!||p.q ~ e¥/2N~!

=

|lun — ul2,0 = Jup — ulle.0 = e?N~1 + N~2




L., NORM

Simple 2d TEST problem: —&2A\u 4+ u = F(z)in Q = (0, 1)2 with e2 = 1076,
u=4y(1—y)[1—2®— (e —e V) /(1 — e /)]

Maximum errors for € = 10~* and initial DOF varied (left), and ¢ varied (right):

0L ‘ ‘ ‘ ‘ 1 0L ‘ R :“: RN 553 ‘ :
10 10 = & % ——¢=102
—8— =10
—*—¢=10"°
107 ¢ . —— =10
§ § 10 -
o o
10-2 L
1072
103 | | | | | | |
500 2,000 8,000 32,000 500 1,000 2,000 4,000
DOF DOF

In each experiment, we started with a uniform mesh of right-angled triangles of diameter Hr =
278, 2716 92732 and aspect ratio IZ—TT = 2. At each iteration, we marked for refinement the mesh
elements responsible for at least 5% of the overall estimator £, but no more than 15% of the elements.
The marked elements were refined only in the x direction using a single or triple green refinement
(depending on the orientation of the mesh element). Edge swapping was also employed to improve

geometric properties of the mesh and/or possibly reduce maxrer{osc(fi;T)}.




e N. Kopteva, Energy-norm a posteriori error estimates for singularly
perturbed reaction-diffusion problems on anisotropic meshes, (2016),
http://www.staff.ul.ie/natalia/pubs.html

e N. Kopteva, Maximum-norm a posteriori error estimates for singularly per-
turbed reaction-diffusion problems on anisotropic meshes, SINUM (2015).

e A. Demlow & N. Kopteva, Maximum-norm a posteriori error estimates for sin-
gularly perturbed elliptic reaction-diffusion problems, Numer. Math. (2015).

e N.Kopteva, Linear finite elements may be only first-order pointwise accurate on
anisotropic triangulations, Math. Comp. (2014).




Chapter B

Part 1 | Reaction-Diffusion eq. — a posteriori estimates on anisotropic meshes

— Problem addressed (more detail)
— Mesh assumptions + preview of results

— Error represenation = From the L., to the energy norm??

Part 1*| From Reaction-Diffusion to Convection-Diffusion equations

Part 2 | A bit of analysis: 3 technical issues addressed

1. Application of a Scaled Trace theorem when estimating the Jump Residual (“long”
edges cause problems...)

Interior Residual

Quasi-interpolants general
anisotropic meshes —(may be of independent interest)

Part 3




FINAL

Thank you!




