MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

WORKSHEET
MATH 3202
Spring 2019

For practice only. Not to be submitted.

Note: The following textbook problems are useful practice for the topics covered on this worksheet:

- Section 16.5, \#s 1-8, 13-18, 23-31
- Section 16.8, \#s 2-10, 13-15
- Section 16.9, \#s 1-14

1. For each of the following, calculate the curl and divergence of \mathbf{F}. Use the curl to identify whether or not \mathbf{F} is conservative.
(a) $\mathbf{F}(x, y, z)=\left\langle z^{2}-y^{2}, z^{2}-x^{2}, y^{2}-x^{2}\right\rangle$
(b) $\mathbf{F}(x, y, z)=\langle z \sin (y), x z \cos (y), x \sin (y)\rangle$
(c) $\mathbf{F}(x, y, z)=\left\langle\frac{y}{x z}, \frac{y \ln (x)}{z},-\frac{y^{2} \ln (x)}{2 z^{2}}\right\rangle$
2. Prove that if $\mathbf{F}(x, y, z)$ is a vector field and $g(x, y, z)$ is a scalar function then

$$
\operatorname{div}(g \mathbf{F})-g \operatorname{div}(\mathbf{F})=\mathbf{F} \cdot \nabla g
$$

3. Consider the vector field $\mathbf{F}=\langle x y, z-y,-2 x\rangle$ and let the surface S be the portion of the plane $2 x+8 y+z=8$ which lies in the first octant. Verify Stokes' Theorem by computing both $\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}$ and $\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}$.
4. Use Stokes' Theorem to evaluate $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\left\langle e^{x^{4}}, x^{2}-\sin \left(y^{3}\right), 3 x+\ln (z)\right\rangle$ and C is the rectangle with vertices $(0,0,4),(3,0,4),(3,2,4)$ and $(0,2,4)$.
5. Use Stokes' Theorem to evaluate $\iint_{S} \operatorname{curl}(\mathbf{F}) d \mathbf{S}$ where $\mathbf{F}=\langle z, y, x\rangle$ and S is the upper hemisphere $(x-2)^{2}+y^{2}+z^{2}=4$ (that is, the hemisphere for $z \geq 0$).
6. Consider the vector field $\mathbf{F}=\langle x, y, x y z\rangle$ and let E be the solid consisting of the portion of the paraboloid $z=x^{2}+y^{2}$ and its interior lying below the plane $z=1$. Verify the Divergence Theorem by computing both $\iint_{\partial E} \mathbf{F} \cdot d \mathbf{S}$ and $\iiint_{E} \operatorname{div}(\mathbf{F}) d V$.
7. Use the Divergence Theorem to evaluate $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ where

$$
\mathbf{F}=\left\langle y^{8} \ln (\cos (z)), x^{5}+y^{3} z, e^{\sin (x)+\cos (y)}\right\rangle
$$

and S is the union of the six faces of the rectangular prism defined by $[0,2] \times[0,3] \times[0,4]$.
8. Suppose S is a closed surface bounding a solid E and \mathbf{F} and \mathbf{G} are vector fields such that $\mathbf{F}=\operatorname{curl}(\mathbf{G})$. Determine $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$.
9. Find the minimum value of the function $f(x, y)=x+2 y$ on the elliptic cylinder $3 x^{2}+4 y^{2}=3$.
10. Find the point on the plane $x+2 y+3 z=-14$ which is closest to the origin.
11. If the edges of an open-topped rectangular box have a total length of 35 cm , find the largest possible surface area.

