Name

[6] 1. For each of the following, identify the shape of the corresponding surface. (No justification is required.)
(a) $2 x^{2}+3 y^{2}+z^{2}=1$
(b) $2 x^{2}+3 y^{2}-z^{2}=1$
(c) $2 x^{2}+3 y^{2}-z^{2}=0$
(d) $2 x^{2}+3 y^{2}-z=0$
(e) $2 x^{2}-3 y^{2}-z=0$
(f) $2 x-3 y-z=0$
[4] 2. Find an equation of the plane tangent to the surface $x^{2}-x y^{2}+z^{2}=13$ at the point $P(3,-2)$ which is located above the $x y$-plane.
[5] 3. Find the directional derivative of $f(x, y)=\cos (2 y-x)$ in the direction of $\mathbf{v}=\langle 1,1\rangle$ at the point $P\left(0, \frac{\pi}{12}\right)$.
[8] 4. Find the surface area of S, where S consists of the portion of the surface $2 x+6 y+3 z=9$ which lies in the first octant.
[5] 5. Set up, but do not evaluate, an iterated integral to represent the surface integral $\iint_{S} \frac{z}{y} d S$ where S is the surface parametrised by $\mathbf{R}(u, v)=\left\langle 2 u, v^{2}, 3 u v\right\rangle$ for $0 \leq u \leq 2$ and $1 \leq v \leq 4$.
[8] 6. Evaluate $\iiint_{E} d V$ where E is the solid bounded by the $x y$-plane and the surfaces $z=x-y$ and $y=x^{2}$.
[4] 7. Prove that if $z=f(x, y)$ is differentiable and n is a real number then

$$
\nabla\left(z^{n}\right)=n z^{n-1} \nabla z
$$

