1. Consider the vector function $\mathbf{r}(t)=\left\langle 2 \cos (t), 5 \sec ^{2}(t)\right\rangle$.
[2] (a) Find $\lim _{t \rightarrow \frac{\pi}{4}} \mathbf{r}(t)$ or explain why the limit does not exist.
[2] (b) Determine $\mathbf{r}^{\prime}(t)$.
[2] (c) Evaluate $\int \mathbf{r}(t) d t$.
[3] (d) Express the curve corresponding to $\mathbf{r}(t)$ as an equation in (x, y)-coordinates. Does $\mathbf{r}(t)$ trace out the entire curve with this equation, or only a portion of it?
2. Consider the vector function $\mathbf{r}(t)=\left\langle\frac{2}{3} t^{\frac{3}{2}}, t, \frac{2 \sqrt{2}}{3} t^{\frac{3}{2}}\right\rangle$ for $t \geq 0$.
[6] (a) Derive the arclength function $s(t)$.
[3] (b) Reparametrise $\mathbf{r}(t)$ in terms of its arclength.
[5] (c) Evaluate the line integral $\int_{C} \frac{3 y+1}{3} d s$ where C is the curve traced out by $\mathbf{r}(t)$ for $0 \leq t \leq 1$.
[12] 3. Consider the curve traced out by $\mathbf{r}(t)=\langle 3 t, 4 \sin (t), 4 \cos (t)\rangle$.
(a) Find the unit tangent vector $\mathbf{T}(t)$.
(b) Compute the curvature $\kappa(t)$.
(c) Find the unit normal vector $\mathbf{N}(t)$.
(d) Verify that $\mathbf{T}(t)$ and $\mathbf{N}(t)$ are orthogonal.
(e) Find the binormal vector $\mathbf{B}(t)$.
[5] 4. Use the Chain Rule to prove the first Frenet-Serret formula

$$
\frac{d \mathbf{T}}{d s}=\kappa \mathbf{N}
$$

for any curve traced out by a vector function $\mathbf{r}(t)$, where \mathbf{T} is the unit tangent vector, κ is the curvature, and \mathbf{N} is the unit normal vector.

