MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

TEST 1 MATHEMATICS 3202 June 17th, 2019

Name MUN Number

- 1. Consider the vector function $\mathbf{r}(t) = \langle 2\cos(t), 5\sec^2(t) \rangle$.
- [2] (a) Find $\lim_{t \to \frac{\pi}{4}} \mathbf{r}(t)$ or explain why the limit does not exist.

[2] (b) Determine $\mathbf{r}'(t)$.

[2] (c) Evaluate $\int \mathbf{r}(t) dt$.

[3] (d) Express the curve corresponding to $\mathbf{r}(t)$ as an equation in (x, y)-coordinates. Does $\mathbf{r}(t)$ trace out the entire curve with this equation, or only a portion of it?

- 2. Consider the vector function $\mathbf{r}(t) = \left\langle \frac{2}{3}t^{\frac{3}{2}}, t, \frac{2\sqrt{2}}{3}t^{\frac{3}{2}} \right\rangle$ for $t \ge 0$.
- [6] (a) Derive the arclength function s(t).

[3] (b) Reparametrise $\mathbf{r}(t)$ in terms of its arclength.

[5] (c) Evaluate the line integral $\int_C \frac{3y+1}{3} ds$ where C is the curve traced out by $\mathbf{r}(t)$ for $0 \le t \le 1$.

- [12] 3. Consider the curve traced out by $\mathbf{r}(t) = \langle 3t, 4\sin(t), 4\cos(t) \rangle$.
 - (a) Find the unit tangent vector $\mathbf{T}(t)$.

(b) Compute the curvature $\kappa(t)$.

(c) Find the unit normal vector $\mathbf{N}(t)$.

(d) Verify that $\mathbf{T}(t)$ and $\mathbf{N}(t)$ are orthogonal.

(e) Find the binormal vector $\mathbf{B}(t)$.

[5] 4. Use the Chain Rule to prove the first Frenet-Serret formula

$$\frac{d\mathbf{T}}{ds} = \kappa \mathbf{N}$$

for any curve traced out by a vector function $\mathbf{r}(t)$, where \mathbf{T} is the unit tangent vector, κ is the curvature, and \mathbf{N} is the unit normal vector.