MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

WORKSHEET
MATH 3202
Spring 2019

SOLUTIONS

1. (a) We have

$$
P(x, y, z)=z^{2}-y^{2}, \quad Q(x, y, z)=z^{2}-x^{2}, \quad R(x, y, z)=y^{2}-x^{2}
$$

Hence

$$
\begin{aligned}
& \frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}=2 y-2 z \\
& \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}=2 z-(-2 x)=2 x+2 z \\
& \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=(-2 x)-(-2 y)=2 y-2 x
\end{aligned}
$$

Thus

$$
\operatorname{curl}(\mathbf{F})=\langle 2 y-2 z, 2 x+2 z, 2 y-2 x\rangle .
$$

Since $\operatorname{curl}(\mathbf{F}) \neq \mathbf{0}, \mathbf{F}$ is not conservative. Furthermore,

$$
\frac{\partial P}{\partial x}=\frac{\partial Q}{\partial y}=\frac{\partial R}{\partial z}=0
$$

so

$$
\operatorname{div}(\mathbf{F})=0+0+0=0
$$

(b) We have

$$
P(x, y, z)=z \sin (y), \quad Q(x, y, z)=x z \cos (y), \quad R(x, y, z)=x \sin (y)
$$

Hence

$$
\begin{aligned}
& \frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}=x \cos (y)-x \cos (y)=0 \\
& \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}=\sin (y)-\sin (y)=0 \\
& \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=z \cos (y)-z \cos (y)=0
\end{aligned}
$$

Thus

$$
\operatorname{curl}(\mathbf{F})=\langle 0,0,0\rangle=\mathbf{0}
$$

and so \mathbf{F} is conservative. Furthermore,

$$
\frac{\partial P}{\partial x}=\frac{\partial R}{\partial z}=0 \quad \text { and } \quad \frac{\partial Q}{\partial y}=-x z \sin (y)
$$

so

$$
\operatorname{div}(\mathbf{F})=0-x z \sin (y)+0=-x z \sin (y)
$$

(c) We have

$$
P(x, y, z)=\frac{y}{x z}, \quad Q(x, y, z)=\frac{y \ln (x)}{z}, \quad R(x, y, z)=-\frac{y^{2} \ln (x)}{2 z^{2}} .
$$

Hence

$$
\begin{aligned}
& \frac{\partial R}{\partial y}-\frac{\partial Q}{\partial z}=-\frac{y \ln (x)}{z^{2}}-\left(-\frac{y \ln (x)}{z^{2}}\right)=0 \\
& \frac{\partial P}{\partial z}-\frac{\partial R}{\partial x}=-\frac{y}{x z^{2}}-\left(-\frac{y^{2}}{2 x z^{2}}\right)=\frac{y^{2}-2 y}{2 x z^{2}} \\
& \frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}=\frac{y}{x z}-\frac{1}{x z}=\frac{y-1}{x z}
\end{aligned}
$$

Thus

$$
\operatorname{curl}(\mathbf{F})=\left\langle 0, \frac{y^{2}-2 y}{2 x z^{2}}, \frac{y-1}{x z}\right\rangle .
$$

Since $\operatorname{curl}(\mathbf{F}) \neq \mathbf{0}, \mathbf{F}$ is not conservative. Furthermore,

$$
\frac{\partial P}{\partial x}=-\frac{y}{x^{2} z}, \quad \frac{\partial Q}{\partial y}=\frac{\ln (x)}{z}, \quad \frac{\partial R}{\partial z}=\frac{y^{2} \ln (x)}{z^{3}}
$$

so

$$
\operatorname{div}(\mathbf{F})=-\frac{y}{x^{2} z}+\frac{\ln (x)}{z}+\frac{y^{2} \ln (x)}{z^{3}}=\frac{x^{2} z^{2} \ln (x)+x^{2} y^{2} \ln (x)-y z^{2}}{x^{2} z^{3}}
$$

2. Omitting the dependences on x, y and z for clarity, we assume that $\mathbf{F}=\langle P, Q, R\rangle$ and so

$$
g \mathbf{F}=\langle g P, g Q, g R\rangle .
$$

Thus

$$
\begin{aligned}
\operatorname{div}(g \mathbf{F})-g \operatorname{div}(\mathbf{F}) & =\frac{\partial}{\partial x}(g P)+\frac{\partial}{\partial y}(g Q)+\frac{\partial}{\partial z}(g R)-g\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}\right) \\
& =g \frac{\partial P}{\partial x}+P \frac{\partial g}{\partial x}+g \frac{\partial Q}{\partial y}+Q \frac{\partial g}{\partial y}+g \frac{\partial R}{\partial z}+R \frac{\partial g}{\partial z}-g \frac{\partial P}{\partial x}-g \frac{\partial Q}{\partial y}-g \frac{\partial R}{\partial z} \\
& =P \frac{\partial g}{\partial x}+Q \frac{\partial g}{\partial y}+R \frac{\partial g}{\partial z}
\end{aligned}
$$

Futhermore, we observe that

$$
\begin{aligned}
\mathbf{F} \cdot \operatorname{div}(g) & =\langle P, Q, R\rangle \cdot\left\langle\frac{\partial g}{\partial x}, \frac{\partial g}{\partial y}, \frac{\partial g}{\partial z}\right\rangle \\
& =P \frac{\partial g}{\partial x}+Q \frac{\partial g}{\partial y}+R \frac{\partial g}{\partial z}
\end{aligned}
$$

as well. Hence

$$
\operatorname{div}(g \mathbf{F})-g \operatorname{div}(\mathbf{F})=\mathbf{F} \cdot \nabla g
$$

as required.
3. To evaluate the line integral directly, we first observe that S is shaped like a triangle with vertices $(4,0,0),(0,1,0)$ amd $(0,0,8)$. Thus its boundary consists of the three lines joining each pair of vertices.
First consider C_{1} from $(4,0,0)$ to $(0,1,0)$. The line is described by the function

$$
\mathbf{r}(t)=\langle 4-4 t, t, 0\rangle
$$

for $0 \leq t \leq 1$. Thus

$$
\mathbf{F}(\mathbf{r}(t))=\left\langle 4 t-4 t^{2},-t, 8 t-8\right\rangle
$$

and

$$
\mathbf{r}^{\prime}(t)=\langle-4,1,0\rangle
$$

so

$$
\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=-16 t+16 t^{2}-t=16 t^{2}-17 t
$$

Thus

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}\left(16 t^{2}-17 t\right) d t=-\frac{19}{6}
$$

Next consider C_{2} from $(0,1,0)$ to $(0,0,8)$. The line is described by the function

$$
\mathbf{r}(t)=\langle 0,1-t, 8 t\rangle
$$

for $0 \leq t \leq 1$. Thus

$$
\mathbf{F}(\mathbf{r}(t))=\langle 0,9 t-1,0\rangle
$$

and

$$
\mathbf{r}^{\prime}(t)=\langle 0,-1,8\rangle
$$

so

$$
\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=1-9 t
$$

Thus

$$
\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}(1-9 t) d t=-\frac{7}{2}
$$

Lastly consider C_{3} from $(0,0,8)$ to $(4,0,0)$. The line is described by the function

$$
\mathbf{r}(t)=\langle 4 t, 0,8-8 t\rangle
$$

for $0 \leq t \leq 1$. Thus

$$
\mathbf{F}(\mathbf{r}(t))=\langle 0,8-8 t,-8 t\rangle
$$

and

$$
\mathbf{r}^{\prime}(t)=\langle 4,0,-8\rangle
$$

so

$$
\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=64 t
$$

Thus

$$
\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{1}(64 t) d t=32
$$

Hence

$$
\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}+\int_{C_{3}} \mathbf{F} \cdot d \mathbf{r}=\frac{76}{3} .
$$

Alternatively, we have

$$
\operatorname{curl}(\mathbf{F})=\langle-1,2,-x\rangle
$$

and we observe that the plane can be written as the function

$$
z=8-2 x-8 y
$$

Thus

$$
\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}=\iint_{D}[2(-1)+8(2)+(-x)] d A=\iint_{D}(14-x) d A
$$

where D is the region of integration. The projection of $2 x+8 y+z=8$ onto the $x y$-plane is the line $2 x+8 y=8$ or $y=1-\frac{1}{4} x$. Since we are only interested in the first octant, then, D is bounded by $0 \leq y \leq 1-\frac{1}{4} x$ and $0 \leq x \leq 4$. We can therefore write

$$
\begin{aligned}
\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S} & =\int_{0}^{4} \int_{0}^{1-\frac{1}{4} x}(14-x) d y d x \\
& =\int_{0}^{4}[y(14-x)]_{y=0}^{y=1-\frac{1}{4} x} d x \\
& =\int_{0}^{4}\left(\frac{1}{4} x^{2}-\frac{9}{2} x+14\right) d x \\
& =\frac{76}{3}
\end{aligned}
$$

4. In order to evaluate the circulation directly, we would have to compute four individual line integrals to represent each side of the rectangle. Instead, we can observe that the surface S bounded by C is part of the plane $z=4$ for $0 \leq x \leq 3$ and $0 \leq y \leq 2$. Furthermore,

$$
\operatorname{curl}(\mathbf{F})=\langle 0,-3,2 x\rangle
$$

so, since an upward-pointing normal to S is given by the vector $\langle 0,0,1\rangle$ we have

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S} & =\int_{0}^{3} \int_{0}^{2} 2 x d y d x \\
& =\int_{0}^{3}\left[x^{2}\right]_{y=0}^{y=2} d x \\
& =4 \int_{0}^{3} d x \\
& =4[x]_{0}^{3} \\
& =12
\end{aligned}
$$

5. The hemisphere is bounded by the curve ∂S comprising the circle $(x-2)^{2}+y^{2}=4$. Thus it can be parametrised by the function

$$
\mathbf{r}(t)=\langle 2 \cos (t)+2,2 \sin (t), 0\rangle
$$

for $0 \leq t \leq 2 \pi$. Then

$$
\mathbf{F}(\mathbf{r}(t))=\langle 0,2 \sin (t), 2 \cos (t)+2\rangle
$$

and

$$
\mathbf{r}^{\prime}(t)=\langle-2 \sin (t), 2 \cos (t), 0\rangle
$$

so

$$
\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=4 \sin (t) \cos (t)
$$

Hence

$$
\begin{aligned}
\iint_{S} \operatorname{curl}(\mathbf{F}) \cdot d \mathbf{S}=\oint_{\partial S} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{2 \pi} 4 \sin (t) \cos (t) d t \\
& =\left[2 \sin ^{2}(t)\right]_{0}^{2 \pi} \\
& =0 .
\end{aligned}
$$

6. The boundary of E consists of the paraboloid, which we will call S_{1}, together with the disc $x^{2}+y^{2}=1$, which we will call S_{2}. Given the circular nature of S_{2}, we will work in polar coordinates.
Thus S_{1} can be parametrised by the function

$$
\mathbf{R}(r, \theta)=\left\langle r \cos (\theta), r \sin (\theta), r^{2} \cos ^{2}(\theta)+r^{2} \sin ^{2}(\theta)\right\rangle=\left\langle r \cos (\theta), r \sin (\theta), r^{2}\right\rangle
$$

where $0 \leq r \leq 1$ and $0 \leq \theta \leq 2 \pi$. Then

$$
\mathbf{R}_{r}=\langle\cos (\theta), \sin (\theta), 2 r\rangle
$$

and

$$
\mathbf{R}_{\theta}=\langle-r \sin (\theta), r \cos (\theta), 0\rangle
$$

so

$$
\mathbf{R}_{\theta} \times \mathbf{R}_{r}=\left\langle 2 r^{2} \cos (\theta), 2 r^{2} \sin (\theta),-r\right\rangle
$$

(Note that we need this normal rather than $\mathbf{R}_{r} \times \mathbf{R}_{\theta}$ to ensure that it points outward which, given the bowl-like shape of the paraboloid, would require a negative z-component.) Next,

$$
\mathbf{F}=\left\langle r \cos (\theta), r \sin (\theta), r^{4} \cos (\theta) \sin (\theta)\right\rangle
$$

so

$$
\mathbf{F} \cdot\left(\mathbf{R}_{r} \times \mathbf{R}_{\theta}\right)=2 r^{3} \cos ^{2}(\theta)+2 r^{3} \sin ^{2}(\theta)-r^{5} \cos (\theta) \sin (\theta)=2 r^{3}-r^{5} \cos (\theta) \sin (\theta)
$$

Now we have

$$
\begin{aligned}
\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S} & =\int_{0}^{2 \pi} \int_{0}^{1}\left[2 r^{3}-r^{5} \cos (\theta) \sin (\theta)\right] d r d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{1}{2} r^{4}-\frac{1}{6} r^{6} \cos (\theta) \sin (\theta)\right]_{r=0}^{r=1} d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{1}{2}-\frac{1}{6} \cos (\theta) \sin (\theta)\right] d \theta \\
& =\left[\frac{1}{2} \theta-\frac{1}{12} \sin ^{2}(\theta)\right]_{0}^{2 \pi} \\
& =\pi
\end{aligned}
$$

Next, S_{2} can be parametrised by the function

$$
\mathbf{R}(r, \theta)=\langle r \cos (\theta), r \sin (\theta), 1\rangle
$$

where $0 \leq r \leq 1$ and $0 \leq \theta \leq 2 \pi$. Then

$$
\mathbf{R}_{r}=\langle\cos (\theta), \sin (\theta), 0\rangle
$$

and

$$
\mathbf{R}_{\theta}=\langle-r \sin (\theta), r \cos (\theta), 0\rangle
$$

so

$$
\mathbf{R}_{r} \times \mathbf{R}_{\theta}=\langle 0,0, r\rangle
$$

Furthermore,

$$
\mathbf{F}=\left\langle r \cos (\theta), r \sin (\theta), r^{2} \cos (\theta) \sin (\theta)\right\rangle
$$

so

$$
\mathbf{F} \cdot\left(\mathbf{R}_{r} \times \mathbf{R}_{\theta}\right)=r^{2} \cos (\theta) \sin (\theta)
$$

Now we have

$$
\begin{aligned}
\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S} & =\int_{0}^{2 \pi} \int_{0}^{1}\left[r^{2} \cos (\theta) \sin (\theta)\right] d r d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{1}{3} r^{3} \cos (\theta) \sin (\theta)\right]_{r=0}^{r=1} d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{1}{3} \cos (\theta) \sin (\theta)\right] d \theta \\
& =\left[\frac{1}{6} \sin ^{2}(\theta)\right]_{0}^{2 \pi} \\
& =0
\end{aligned}
$$

Hence

$$
\iint \partial E \mathbf{F} \cdot d \mathbf{S}=\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S}+\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S}=\pi+0=\pi
$$

Alternatively, we have

$$
\operatorname{div}(\mathbf{F})=1+1+x y=x y+2
$$

In cylindrical coordinates, this becomes

$$
\operatorname{div}(\mathbf{F})=r^{2} \cos (\theta) \sin (\theta)+2
$$

The region of integration is defined by $0 \leq r \leq 1$ and $0 \leq \theta \leq 2 \pi$, and because the paraboloid becomes the curve $z=r^{2}$, we also have $r^{2} \leq z \leq 1$. Hence

$$
\begin{aligned}
\iiint_{E} \operatorname{div}(\mathbf{F}) d V & =\int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}}^{1}\left[r^{2} \cos (\theta) \sin (\theta)+2\right] \cdot r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}}^{1}\left[r^{3} \cos (\theta) \sin (\theta)+2 r\right] d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left[r^{3} z \cos (\theta) \sin (\theta)+2 r z\right]_{z=r^{2}}^{z=1} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left[r^{3} \cos (\theta) \sin (\theta)+2 r-r^{5} \cos (t) \sin (t)-2 r^{3}\right] d r d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{1}{4} r^{4} \cos (\theta) \sin (\theta)+r^{2}-\frac{1}{6} r^{6} \cos (\theta) \sin (\theta)-\frac{1}{2} r^{4}\right]_{r=0}^{r=1} d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{1}{12} \cos (\theta) \sin (\theta)+\frac{1}{2}\right] d \theta \\
& =\left[\frac{1}{24} \sin ^{2}(\theta)+\frac{1}{2} \theta\right]_{0}^{2 \pi} \\
& =\pi
\end{aligned}
$$

7. In order to evaluate the surface integral directly, we would have to recognise that S is the union of six surfaces, each of which would have to be separately parametrised and the corresponding surface integral evaluated. Instead, we simply compute

$$
\operatorname{div}(\mathbf{F})=3 y^{2} z
$$

and observe that S bounds the cube for which $0 \leq x \leq 2,0 \leq y \leq 3$ and $0 \leq z \leq 4$. Hence,
by the Divergence Theorem,

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\iiint_{E} 3 y^{2} z d V \\
& =\int_{0}^{2} \int_{0}^{3} \int_{0}^{4} 3 y^{2} z d z d y d x \\
& =\int_{0}^{2} \int_{0}^{3}\left[\frac{3}{2} y^{2} z^{2}\right]_{z=0}^{z=4} d y d x \\
& =\int_{0}^{2} \int_{0}^{3} 24 y^{2} d y d x \\
& =\int_{0}^{2}\left[8 y^{3}\right]_{y=0}^{y=3} d x \\
& =\int_{0}^{2} 216 d x \\
& =[216 x]_{0}^{2} \\
& =432 .
\end{aligned}
$$

8. By the Divergence Theorem, we can write

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} \operatorname{div}(\mathbf{F}) d V
$$

But

$$
\operatorname{div}(\mathbf{F})=\operatorname{div}(\operatorname{curl}(\mathbf{G}))=0
$$

Hence

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}=\iiint_{E} 0 d V=0 .
$$

9. The constraint is described by the function $g(x, y)=3 x^{2}+4 y^{2}$ so

$$
\nabla f=\langle 1,2\rangle \quad \text { and } \quad \nabla g=\langle 6 x, 8 y\rangle
$$

Hence we require

$$
\langle 1,2\rangle=\lambda\langle 6 x, 8 y\rangle
$$

and so $1=6 \lambda x$ and $2=8 \lambda y$. From the first equation,

$$
\lambda=\frac{1}{6 x}
$$

and therefore, substituting into the second equation, we have

$$
2=8\left(\frac{1}{6 x}\right) y \quad \Longrightarrow \quad y=\frac{3}{2} x
$$

Thus the constraint can be written

$$
\begin{aligned}
3 x^{2}+4\left(\frac{3}{2} x\right)^{2} & =3 \\
12 x^{2} & =3 \\
x^{2} & =\frac{1}{4} \\
x & = \pm \frac{1}{2} .
\end{aligned}
$$

When $x=\frac{1}{2}, y=\frac{3}{4}$ and so $f\left(\frac{1}{2}, \frac{3}{4}\right)=2$. When $x=-\frac{1}{2}, y=-\frac{3}{4}$ and thus $f\left(-\frac{1}{2},-\frac{3}{4}\right)=-2$. Hence we conclude that the minimum value of the function is -2 .
10. Since we want to minimise the distance from the desired point $P(x, y, z)$ to the origin, we wish to minimise the function

$$
f(x, y, z)=\sqrt{(x-0)^{2}+(y-0)^{2}+(z-0)^{2}}=\sqrt{x^{2}+y^{2}+z^{2}} .
$$

However, we can make our work simpler by recognising that this is tantamount to minimising the function

$$
F(x, y, z)=[f(x, y, z)]^{2}=x^{2}+y^{2}+z^{2}
$$

Either way, the constraint is described by the function

$$
g(x, y, z)=x+2 y+3 z
$$

Thus

$$
\nabla F=\langle 2 x, 2 y, 2 z\rangle \quad \text { and } \quad \nabla g=\langle 1,2,3\rangle
$$

Now we have

$$
\langle 2 x, 2 y, 2 z\rangle=\lambda\langle 1,2,3\rangle
$$

Thus $2 x=\lambda, 2 y=2 \lambda$ so $y=\lambda$, and $2 z=3 \lambda$. This means that $x=\frac{1}{2} y$ and $z=\frac{3}{2} y$. Substituting back into the constraint, we find

$$
\begin{aligned}
\frac{1}{2} y+2 y+\frac{9}{2} y & =7 \\
7 y & =-14 \\
y & =-2
\end{aligned}
$$

Thus $x=-1$ and $z=-3$ and so the point P has coordinates $(-1,-2,-3)$.
11. Let ℓ, w and h be the length, width and height of the box. We wish to maximise the function $f(\ell, w, h)=2 \ell h+2 w h+\ell w$ where the constraint is described by $g(\ell, w, h)=2 \ell+2 w+2 h$. Thus

$$
\nabla f=\langle 2 h+w, 2 h+\ell, 2 \ell+2 w\rangle \quad \text { and } \quad \nabla g=\langle 2,2,2\rangle
$$

We therefore require

$$
\langle 2 h+w, 2 h+\ell, 2 \ell+2 w\rangle=\lambda\langle 2,2,2\rangle
$$

and so $2 h+w=2 \lambda, 2 h+\ell=2 \lambda$ and $2 \ell+2 w=2 \lambda$ so $\ell+w=\lambda$. The first equation tells us that $w=2 \lambda-2 h$ and the second equation likewise yields $\ell=2 \lambda-2 h$. Substituting these into the third equation, we obtain

$$
\begin{aligned}
(2 \lambda-2 h)+(2 \lambda-2 h) & =\lambda \\
3 \lambda & =4 h \\
h & =\frac{3}{4} \lambda
\end{aligned}
$$

and therefore $w=\ell=\frac{1}{2} \lambda$. The constraint can now be written

$$
\begin{aligned}
2\left(\frac{1}{2} \lambda\right)+2\left(\frac{1}{2} \lambda\right)+2\left(\frac{3}{4} \lambda\right) & =35 \\
\frac{7}{2} \lambda & =35 \\
\lambda & =10 .
\end{aligned}
$$

Thus $w=\ell=5 \mathrm{~cm}$ and $h=\frac{15}{2} \mathrm{~cm}$, which means that the maximum surface area is $\frac{575}{2}=287.5 \mathrm{~cm}^{2}$.

