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SOLUTIONS

1. (a) We have

P (x, y, z) = z2 − y2, Q(x, y, z) = z2 − x2, R(x, y, z) = y2 − x2.

Hence

∂R

∂y
− ∂Q

∂z
= 2y − 2z

∂P

∂z
− ∂R

∂x
= 2z − (−2x) = 2x+ 2z

∂Q

∂x
− ∂P

∂y
= (−2x)− (−2y) = 2y − 2x.

Thus
curl(F) = 〈2y − 2z, 2x+ 2z, 2y − 2x〉.

Since curl(F) 6= 0, F is not conservative. Furthermore,

∂P

∂x
=
∂Q

∂y
=
∂R

∂z
= 0

so
div(F) = 0 + 0 + 0 = 0.

(b) We have

P (x, y, z) = z sin(y), Q(x, y, z) = xz cos(y), R(x, y, z) = x sin(y).

Hence

∂R

∂y
− ∂Q

∂z
= x cos(y)− x cos(y) = 0

∂P

∂z
− ∂R

∂x
= sin(y)− sin(y) = 0

∂Q

∂x
− ∂P

∂y
= z cos(y)− z cos(y) = 0.

Thus
curl(F) = 〈0, 0, 0〉 = 0

and so F is conservative. Furthermore,

∂P

∂x
=
∂R

∂z
= 0 and

∂Q

∂y
= −xz sin(y)

so
div(F) = 0− xz sin(y) + 0 = −xz sin(y).
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(c) We have

P (x, y, z) =
y

xz
, Q(x, y, z) =

y ln(x)

z
, R(x, y, z) = −y

2 ln(x)

2z2
.

Hence

∂R

∂y
− ∂Q

∂z
= −y ln(x)

z2
−
(
−y ln(x)

z2

)
= 0

∂P

∂z
− ∂R

∂x
= − y

xz2
−
(
− y2

2xz2

)
=
y2 − 2y

2xz2

∂Q

∂x
− ∂P

∂y
=

y

xz
− 1

xz
=
y − 1

xz
.

Thus

curl(F) =

〈
0,

y2 − 2y

2xz2
,
y − 1

xz

〉
.

Since curl(F) 6= 0, F is not conservative. Furthermore,

∂P

∂x
= − y

x2z
,

∂Q

∂y
=

ln(x)

z
,

∂R

∂z
=
y2 ln(x)

z3

so

div(F) = − y

x2z
+

ln(x)

z
+
y2 ln(x)

z3
=
x2z2 ln(x) + x2y2 ln(x)− yz2

x2z3
.

2. Omitting the dependences on x, y and z for clarity, we assume that F = 〈P, Q, R〉 and so

gF = 〈gP, gQ, gR〉.

Thus

div(gF)− g div(F) =
∂

∂x
(gP ) +

∂

∂y
(gQ) +

∂

∂z
(gR)− g

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
= g

∂P

∂x
+ P

∂g

∂x
+ g

∂Q

∂y
+Q

∂g

∂y
+ g

∂R

∂z
+R

∂g

∂z
− g∂P

∂x
− g∂Q

∂y
− g∂R

∂z

= P
∂g

∂x
+Q

∂g

∂y
+R

∂g

∂z
.

Futhermore, we observe that

F · div(g) = 〈P, Q, R〉 ·
〈
∂g

∂x
,
∂g

∂y
,
∂g

∂z

〉
= P

∂g

∂x
+Q

∂g

∂y
+R

∂g

∂z

as well. Hence
div(gF)− g div(F) = F · ∇g,

as required.
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3. To evaluate the line integral directly, we first observe that S is shaped like a triangle with
vertices (4, 0, 0), (0, 1, 0) amd (0, 0, 8). Thus its boundary consists of the three lines joining
each pair of vertices.

First consider C1 from (4, 0, 0) to (0, 1, 0). The line is described by the function

r(t) = 〈4− 4t, t, 0〉

for 0 ≤ t ≤ 1. Thus
F(r(t)) = 〈4t− 4t2, −t, 8t− 8〉

and
r′(t) = 〈−4, 1, 0〉

so
F(r(t)) · r′(t) = −16t+ 16t2 − t = 16t2 − 17t.

Thus ∫
C1

F · dr =

∫ 1

0

(16t2 − 17t) dt = −19

6
.

Next consider C2 from (0, 1, 0) to (0, 0, 8). The line is described by the function

r(t) = 〈0, 1− t, 8t〉

for 0 ≤ t ≤ 1. Thus
F(r(t)) = 〈0, 9t− 1, 0〉

and
r′(t) = 〈0, −1, 8〉

so
F(r(t)) · r′(t) = 1− 9t.

Thus ∫
C2

F · dr =

∫ 1

0

(1− 9t) dt = −7

2
.

Lastly consider C3 from (0, 0, 8) to (4, 0, 0). The line is described by the function

r(t) = 〈4t, 0, 8− 8t〉

for 0 ≤ t ≤ 1. Thus
F(r(t)) = 〈0, 8− 8t, −8t〉

and
r′(t) = 〈4, 0, −8〉

so
F(r(t)) · r′(t) = 64t.

Thus ∫
C3

F · dr =

∫ 1

0

(64t) dt = 32.
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Hence ∮
∂S

F · dr =

∫
C1

F · dr +

∫
C2

F · dr +

∫
C3

F · dr =
76

3
.

Alternatively, we have
curl(F) = 〈−1, 2, −x〉

and we observe that the plane can be written as the function

z = 8− 2x− 8y.

Thus ∫∫
S

curl(F) · dS =

∫∫
D

[2(−1) + 8(2) + (−x)] dA =

∫∫
D

(14− x) dA

where D is the region of integration. The projection of 2x+ 8y+ z = 8 onto the xy-plane is
the line 2x+ 8y = 8 or y = 1− 1

4
x. Since we are only interested in the first octant, then, D

is bounded by 0 ≤ y ≤ 1− 1
4
x and 0 ≤ x ≤ 4. We can therefore write∫∫

S

curl(F) · dS =

∫ 4

0

∫ 1− 1
4
x

0

(14− x) dy dx

=

∫ 4

0

[
y(14− x)

]y=1− 1
4
x

y=0
dx

=

∫ 4

0

(
1

4
x2 − 9

2
x+ 14

)
dx

=
76

3
.

4. In order to evaluate the circulation directly, we would have to compute four individual line
integrals to represent each side of the rectangle. Instead, we can observe that the surface S
bounded by C is part of the plane z = 4 for 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2. Furthermore,

curl(F) = 〈0, −3, 2x〉

so, since an upward-pointing normal to S is given by the vector 〈0, 0, 1〉 we have∮
C

F · dr =

∫∫
S

curl(F) · dS =

∫ 3

0

∫ 2

0

2x dy dx

=

∫ 3

0

[
x2
]y=2

y=0
dx

= 4

∫ 3

0

dx

= 4
[
x
]3
0

= 12.
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5. The hemisphere is bounded by the curve ∂S comprising the circle (x − 2)2 + y2 = 4. Thus
it can be parametrised by the function

r(t) = 〈2 cos(t) + 2, 2 sin(t), 0〉

for 0 ≤ t ≤ 2π. Then
F(r(t)) = 〈0, 2 sin(t), 2 cos(t) + 2〉

and
r′(t) = 〈−2 sin(t), 2 cos(t), 0〉

so
F(r(t)) · r′(t) = 4 sin(t) cos(t).

Hence ∫∫
S

curl(F) · dS =

∮
∂S

F · dr =

∫ 2π

0

4 sin(t) cos(t) dt

=
[
2 sin2(t)

]2π
0

= 0.

6. The boundary of E consists of the paraboloid, which we will call S1, together with the disc
x2 + y2 = 1, which we will call S2. Given the circular nature of S2, we will work in polar
coordinates.

Thus S1 can be parametrised by the function

R(r, θ) = 〈r cos(θ), r sin(θ), r2 cos2(θ) + r2 sin2(θ)〉 = 〈r cos(θ), r sin(θ), r2〉

where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. Then

Rr = 〈cos(θ), sin(θ), 2r〉

and
Rθ = 〈−r sin(θ), r cos(θ), 0〉

so
Rθ ×Rr = 〈2r2 cos(θ), 2r2 sin(θ), −r〉.

(Note that we need this normal rather than Rr×Rθ to ensure that it points outward which,
given the bowl-like shape of the paraboloid, would require a negative z-component.) Next,

F = 〈r cos(θ), r sin(θ), r4 cos(θ) sin(θ)〉

so

F · (Rr ×Rθ) = 2r3 cos2(θ) + 2r3 sin2(θ)− r5 cos(θ) sin(θ) = 2r3 − r5 cos(θ) sin(θ).
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Now we have ∫∫
S1

F · dS =

∫ 2π

0

∫ 1

0

[2r3 − r5 cos(θ) sin(θ)] dr dθ

=

∫ 2π

0

[
1

2
r4 − 1

6
r6 cos(θ) sin(θ)

]r=1

r=0

dθ

=

∫ 2π

0

[
1

2
− 1

6
cos(θ) sin(θ)

]
dθ

=

[
1

2
θ − 1

12
sin2(θ)

]2π
0

= π.

Next, S2 can be parametrised by the function

R(r, θ) = 〈r cos(θ), r sin(θ), 1〉

where 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. Then

Rr = 〈cos(θ), sin(θ), 0〉

and
Rθ = 〈−r sin(θ), r cos(θ), 0〉

so
Rr ×Rθ = 〈0, 0, r〉.

Furthermore,
F = 〈r cos(θ), r sin(θ), r2 cos(θ) sin(θ)〉

so
F · (Rr ×Rθ) = r2 cos(θ) sin(θ).

Now we have ∫∫
S2

F · dS =

∫ 2π

0

∫ 1

0

[r2 cos(θ) sin(θ)] dr dθ

=

∫ 2π

0

[
1

3
r3 cos(θ) sin(θ)

]r=1

r=0

dθ

=

∫ 2π

0

[
1

3
cos(θ) sin(θ)

]
dθ

=

[
1

6
sin2(θ)

]2π
0

= 0.
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Hence ∫∫
∂EF · dS =

∫∫
S1

F · dS +

∫∫
S2

F · dS = π + 0 = π.

Alternatively, we have
div(F) = 1 + 1 + xy = xy + 2.

In cylindrical coordinates, this becomes

div(F) = r2 cos(θ) sin(θ) + 2.

The region of integration is defined by 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π, and because the paraboloid
becomes the curve z = r2, we also have r2 ≤ z ≤ 1. Hence∫∫∫

E

div(F) dV =

∫ 2π

0

∫ 1

0

∫ 1

r2
[r2 cos(θ) sin(θ) + 2] · r dz dr dθ

=

∫ 2π

0

∫ 1

0

∫ 1

r2
[r3 cos(θ) sin(θ) + 2r] dz dr dθ

=

∫ 2π

0

∫ 1

0

[
r3z cos(θ) sin(θ) + 2rz

]z=1

z=r2
dr dθ

=

∫ 2π

0

∫ 1

0

[r3 cos(θ) sin(θ) + 2r − r5 cos(t) sin(t)− 2r3] dr dθ

=

∫ 2π

0

[
1

4
r4 cos(θ) sin(θ) + r2 − 1

6
r6 cos(θ) sin(θ)− 1

2
r4
]r=1

r=0

dθ

=

∫ 2π

0

[
1

12
cos(θ) sin(θ) +

1

2

]
dθ

=

[
1

24
sin2(θ) +

1

2
θ

]2π
0

= π.

7. In order to evaluate the surface integral directly, we would have to recognise that S is
the union of six surfaces, each of which would have to be separately parametrised and the
corresponding surface integral evaluated. Instead, we simply compute

div(F) = 3y2z

and observe that S bounds the cube for which 0 ≤ x ≤ 2, 0 ≤ y ≤ 3 and 0 ≤ z ≤ 4. Hence,
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by the Divergence Theorem,∫∫
S

F · dS =

∫∫∫
E

3y2z dV

=

∫ 2

0

∫ 3

0

∫ 4

0

3y2z dz dy dx

=

∫ 2

0

∫ 3

0

[
3

2
y2z2

]z=4

z=0

dy dx

=

∫ 2

0

∫ 3

0

24y2 dy dx

=

∫ 2

0

[
8y3
]y=3

y=0
dx

=

∫ 2

0

216 dx

=
[
216x

]2
0

= 432.

8. By the Divergence Theorem, we can write∫∫
S

F · dS =

∫∫∫
E

div(F) dV.

But
div(F) = div(curl(G)) = 0.

Hence ∫∫
S

F · dS =

∫∫∫
E

0 dV = 0.

9. The constraint is described by the function g(x, y) = 3x2 + 4y2 so

∇f = 〈1, 2〉 and ∇g = 〈6x, 8y〉.

Hence we require
〈1, 2〉 = λ〈6x, 8y〉

and so 1 = 6λx and 2 = 8λy. From the first equation,

λ =
1

6x

and therefore, substituting into the second equation, we have

2 = 8

(
1

6x

)
y =⇒ y =

3

2
x.
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Thus the constraint can be written

3x2 + 4

(
3

2
x

)2

= 3

12x2 = 3

x2 =
1

4

x = ±1

2
.

When x = 1
2
, y = 3

4
and so f

(
1
2
, 3
4

)
= 2. When x = −1

2
, y = −3

4
and thus f

(
−1

2
,−3

4

)
= −2.

Hence we conclude that the minimum value of the function is −2.

10. Since we want to minimise the distance from the desired point P (x, y, z) to the origin, we
wish to minimise the function

f(x, y, z) =
√

(x− 0)2 + (y − 0)2 + (z − 0)2 =
√
x2 + y2 + z2.

However, we can make our work simpler by recognising that this is tantamount to minimising
the function

F (x, y, z) = [f(x, y, z)]2 = x2 + y2 + z2.

Either way, the constraint is described by the function

g(x, y, z) = x+ 2y + 3z.

Thus
∇F = 〈2x, 2y, 2z〉 and ∇g = 〈1, 2, 3〉.

Now we have
〈2x, 2y, 2z〉 = λ〈1, 2, 3〉.

Thus 2x = λ, 2y = 2λ so y = λ, and 2z = 3λ. This means that x = 1
2
y and z = 3

2
y.

Substituting back into the constraint, we find

1

2
y + 2y +

9

2
y = 7

7y = −14

y = −2.

Thus x = −1 and z = −3 and so the point P has coordinates (−1,−2,−3).

11. Let `, w and h be the length, width and height of the box. We wish to maximise the function
f(`, w, h) = 2`h+ 2wh+ `w where the constraint is described by g(`, w, h) = 2`+ 2w + 2h.
Thus

∇f = 〈2h+ w, 2h+ `, 2`+ 2w〉 and ∇g = 〈2, 2, 2〉.
We therefore require

〈2h+ w, 2h+ `, 2`+ 2w〉 = λ〈2, 2, 2〉
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and so 2h+w = 2λ, 2h+ ` = 2λ and 2`+ 2w = 2λ so `+w = λ. The first equation tells us
that w = 2λ − 2h and the second equation likewise yields ` = 2λ − 2h. Substituting these
into the third equation, we obtain

(2λ− 2h) + (2λ− 2h) = λ

3λ = 4h

h =
3

4
λ

and therefore w = ` = 1
2
λ. The constraint can now be written

2

(
1

2
λ

)
+ 2

(
1

2
λ

)
+ 2

(
3

4
λ

)
= 35

7

2
λ = 35

λ = 10.

Thus w = ` = 5 cm and h = 15
2

cm, which means that the maximum surface area is
575
2

= 287.5 cm2.


