MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[3] 1. (a) Here,

$$
M(x, y)=4 x y^{3}-5 \quad \text { and } \quad N(x, y)=6 x^{2} y^{2}
$$

so

$$
\frac{\partial M}{\partial y}=12 x y^{2} \quad \text { and } \quad \frac{\partial N}{\partial x}=12 x y^{2}
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}, \mathbf{F}$ is conservative.
Next we must have

$$
f(x, y)=\int\left(4 x y^{3}-5\right) d x=2 x^{2} y^{3}-5 x+C(y)
$$

where C is an arbitrary function of y. Then

$$
f_{y}(x, y)=6 x^{2} y^{2}+C^{\prime}(y)=6 x^{2} y^{2}
$$

and so

$$
C^{\prime}(y)=0 \quad \Longrightarrow \quad C(y)=C
$$

Hence the potential function takes the form

$$
f(x, y)=2 x^{2} y^{3}-5 x+C
$$

[1] (b) Here,

$$
M(x, y)=x \ln (y)+1 \quad \text { and } \quad N(x, y)=y \ln (x)+y^{2}
$$

So

$$
\frac{\partial M}{\partial y}=\frac{x}{y} \quad \text { and } \quad \frac{\partial N}{\partial x}=\frac{y}{x}
$$

Since $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}, \mathbf{F}$ is $\underline{\text { not }}$ conservative.
[4]
(c) Here,

$$
M(x, y)=\sin (y)-\sin (x) \quad \text { and } \quad N(x, y)=x \cos (y)-\sin (y)
$$

so

$$
\frac{\partial M}{\partial y}=\cos (y) \quad \text { and } \quad \frac{\partial N}{\partial x}=\cos (y)
$$

Since $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}, \mathbf{F}$ is conservative.
Next we must have

$$
f(x, y)=\int[\sin (y)-\sin (x)] d x=x \sin (y)+\cos (x)+C(y)
$$

Then

$$
f_{y}(x, y)=x \cos (y)+C^{\prime}(y)=x \cos (y)-\sin (y)
$$

and so

$$
C^{\prime}(y)=-\sin (y) \quad \Longrightarrow \quad C(y)=\cos (y)+C .
$$

Hence the potential function takes the form

$$
f(x, y)=x \sin (y)+\cos (x)+\cos (y)+C
$$

[1] (d) We have

$$
P(x, y, z)=x y^{2} z^{3}, \quad Q(x, y, z)=x^{2} y z^{3}, \quad R(x, y, z)=x^{2} y^{2} z^{2} .
$$

Hence

$$
P_{y}(x, y, z)=2 x y z^{3} \quad \text { and } \quad Q_{x}(x, y, z)=2 x y z^{3}
$$

and so $P_{y}=Q_{x}$. Next,

$$
P_{z}(x, y, z)=3 x y^{2} z^{2} \quad \text { and } \quad R_{x}(x, y, z)=2 x y^{2} z^{2}
$$

Since $P_{z} \neq R_{x}$, we can immediately conclude that \mathbf{F} is not conservative. Note that we could observe that

$$
Q_{z}(x, y, z)=3 x^{2} y z^{2} \quad \text { and } \quad R_{y}(x, y, z)=2 x^{2} y z^{2}
$$

so, again, since $Q_{z} \neq R_{y}$, we have another reason to deduce that \mathbf{F} is not conservative.
[5] (e) We have

$$
P(x, y, z)=x y^{2} z^{2}+2, \quad Q(x, y, z)=x^{2} y z^{2}+3, \quad R(x, y, z)=x^{2} y^{2} z+4
$$

Thus

$$
P_{y}(x, y, z)=2 x y z^{2} \quad \text { and } \quad Q_{x}(x, y, z)=2 x y z^{2}
$$

so $P_{y}=Q_{x}$. Next,

$$
P_{z}(x, y, z)=2 x y^{2} z \quad \text { and } \quad R_{x}(x, y, z)=2 x y^{2} z
$$

so $P_{z}=R_{x}$. Finally,

$$
Q_{z}(x, y, z)=2 x^{2} y z \quad \text { and } \quad R_{y}(x, y, z)=2 x^{2} y z
$$

so $Q_{z}=R_{y}$. Since all three conditions are met, it must be that \mathbf{F} is conservative.
Now we have

$$
f(x, y, z)=\int\left(x y^{2} z^{2}+2\right) d x=\frac{1}{2} x^{2} y^{2} z^{2}+2 x+C(y, z)
$$

where $C(y, z)$ is an arbitrary function of y and z. Then

$$
f_{y}(x, y, z)=x^{2} y z^{2}+C_{y}(y, z)=x^{2} y z^{2}+3 \quad \Longrightarrow \quad C_{y}(y, z)=3
$$

This means that

$$
C(y, z)=\int 3 d y=3 y+C(z)
$$

and so

$$
f(x, y, z)=\frac{1}{2} x^{2} y^{2} z^{2}+2 x+3 y+C(z)
$$

Finally,

$$
f_{z}(x, y, z)=x^{2} y^{2} z+C^{\prime}(z)=x^{2} y^{2} z+4 \quad \Longrightarrow \quad C^{\prime}(z)=4 \quad \Longrightarrow \quad C(z)=4 z+C
$$

Hence the potential function has the form

$$
f(x, y, z)=\frac{1}{2} x^{2} y^{2} z^{2}+2 x+3 y+4 z+C
$$

[1] 2. We immediately have that

$$
\int_{C} \nabla f \cdot d \mathbf{r}=f(2,0)-f(0,2)=0-0=0
$$

This agrees with our result (obtained from first principles) on Assignment 7, Question \#5(b).
[7] 3. We are given that \mathbf{F} is conservative (although this could easily be checked) so we must first find its potential function. We have

$$
f(x, y, z)=\int(2 x-3 z) d x=x^{2}-3 x z+C(y, z)
$$

so

$$
f_{y}(x, y, z)=C_{y}(y, z)=3 y^{2} \quad \Longrightarrow \quad C(y, z)=y^{3}+C(z)
$$

Now

$$
f(x, y, z)=x^{2}-3 x z+y^{3}+C(z)
$$

so

$$
f_{z}(x, y, z)=-3 x+C^{\prime}(z)=-3 x \quad \Longrightarrow \quad C^{\prime}(z)=0 \quad \Longrightarrow \quad C(z)=C .
$$

Hence the potential function has the form

$$
f(x, y, z)=x^{2}-3 x z+y^{3}+C
$$

and since any function from this family will satisfy the Fundamental Theorem of Line Integrals, we will choose $C=0$. Thus

$$
f(x, y, z)=x^{2}-3 x z+y^{3} .
$$

(a) The endpoints of C are $(3,0,0)$ when $t=0$ and $(0,3,2 \pi)$ when $t=\frac{\pi}{2}$. Thus

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(0,3,2 \pi)-f(3,0,0)=27-9=18
$$

(b) We immediately have

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f(8,4,4)-f(2,-1,-3)=32-21=11
$$

(c) We simply have to observe that C starts at $(0,0,0)$ and ends at $\left(e, 2 e, e^{2}\right)$ so

$$
\int_{C} \mathbf{F} \cdot d \mathbf{r}=f\left(e, 2 e, e^{2}\right)-f(0,0,0)=\left(5 e^{3}+e^{2}\right)-0=5 e^{3}+e^{2} .
$$

[6] 4. (a) The curve C encloses a region D bounded above by the line $y=2 x$ and below by the line $y=0$ on the interval from $x=0$ to $x=4$. Furthermore,

$$
M(x, y)=y \sqrt{x^{2}+9} \quad \text { and } \quad N(x, y)=e^{y}
$$

So

$$
\frac{\partial M}{\partial y}=\sqrt{x^{2}+9} \quad \text { and } \quad \frac{\partial N}{\partial x}=0
$$

Thus, by Green's Theorem,

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{D}\left(0-\sqrt{x^{2}+9}\right) d A \\
& =-\int_{0}^{4} \int_{0}^{2 x} \sqrt{x^{2}+9} d y d x \\
& =-\int_{0}^{4}\left[y \sqrt{x^{2}+9}\right]_{y=0}^{y=2 x} d x \\
& =-\int_{0}^{4} 2 x \sqrt{x^{2}+9} d x
\end{aligned}
$$

Let $u=x^{2}+9$ so $d u=2 x d x$. When $x=0, u=9$ and when $x=4, u=25$. The integral becomes

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =-\int_{9}^{25} \sqrt{u} d u \\
& =-\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{9}^{25} \\
& =-\frac{196}{3}
\end{aligned}
$$

[6] (b) Given the circular symmetry of the curve C, we will work in polar coordinates, in which the unit circle corresponds to the equation $r=1$. Thus the region D bounded by C is defined by $0 \leq r \leq 1$ and $0 \leq \theta \leq 2 \pi$. Furthermore,

$$
M(x, y)=-x^{2} y \quad \text { and } \quad N(x, y)=x y^{2}
$$

so

$$
\frac{\partial M}{\partial y}=-x^{2} \quad \text { and } \quad \frac{\partial N}{\partial x}=y^{2}
$$

Thus, by Green's Theorem,

$$
\begin{aligned}
\oint_{C} \mathbf{F} \cdot d \mathbf{r} & =\iint_{D}\left[y^{2}-\left(-x^{2}\right)\right] d A \\
& =\iint_{D}\left(x^{2}+y^{2}\right) d A \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r^{2} \cdot r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r^{3} d r d \theta \\
& =\int_{0}^{2 \pi}\left[\frac{1}{4} r^{4}\right]_{r=0}^{r=1} d \theta \\
& =\frac{1}{4} \int_{0}^{2 \pi} d \theta \\
& =\frac{1}{4}[\theta]_{0}^{2 \pi} \\
& =\frac{\pi}{2}
\end{aligned}
$$

[6] (c) The region D is bounded above by $y=\sqrt{x}$ and below by $y=x^{2}$ on the interval from $x=0$ to $x=1$. Furthermore,

$$
M(x, y)=x+y^{2} \quad \text { and } \quad N(x, y)=x^{2}+3 x y
$$

so

$$
\frac{\partial M}{\partial y}=2 y \quad \text { and } \quad \frac{\partial N}{\partial x}=2 x+3 y
$$

Thus, by Green's Theorem,

$$
\begin{aligned}
\oint_{\partial D} \mathbf{F} \cdot d \mathbf{r} & =\iint_{D}[(2 x+3 y)-2 y] d A \\
& =\iint_{D}(2 x+y) d A \\
& =\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}}(2 x+y) d y d x \\
& =\int_{0}^{1}\left[2 x y+\frac{1}{2} y^{2}\right]_{y=x^{2}}^{y=\sqrt{x}} d x \\
& =\int_{0}^{1}\left[2 x^{\frac{3}{2}}+\frac{1}{2} x-2 x^{3}-\frac{1}{2} x^{4}\right] d x \\
& =\left[\frac{4}{5} x^{\frac{5}{2}}+\frac{1}{4} x^{2}-\frac{1}{2} x^{4}-\frac{1}{10} x^{5}\right]_{0}^{1} \\
& =\frac{4}{5}+\frac{1}{4}-\frac{1}{2}-\frac{1}{10} \\
& =\frac{9}{20} .
\end{aligned}
$$

[2] 5. (a) Setting

$$
x=\frac{3 t}{1+t^{3}} \quad \text { and } \quad y=\frac{3 t^{2}}{1+t^{3}}
$$

the left-hand side of the equation of the folium becomes

$$
\begin{aligned}
x^{3}+y^{3} & =\left(\frac{3 t}{1+t^{3}}\right)^{3}+\left(\frac{3 t^{2}}{1+t^{3}}\right)^{3} \\
& =\frac{27 t^{3}}{\left(1+t^{3}\right)^{3}}+\frac{27 t^{6}}{\left(1+t^{3}\right)^{3}} \\
& =\frac{27 t^{3}\left(1+t^{3}\right)}{\left(1+t^{3}\right)^{3}} \\
& =\frac{27 t^{2}}{\left(1+t^{3}\right)^{2}}
\end{aligned}
$$

The right-hand side becomes

$$
\begin{aligned}
3 x y & =3\left(\frac{3 t}{1+t^{3}}\right)\left(\frac{3 t^{2}}{1+t^{3}}\right) \\
& =\frac{27 t^{3}}{\left(1+t^{3}\right)^{2}}
\end{aligned}
$$

Hence the equation is satisfied under the parametrisation.
[8] (b) We cannot use a double integral to find the area A because the top and bottom branches of the loop are not (easily) written as functions. Instead, we apply Green's Theorem to write

$$
A=\frac{1}{2} \oint_{C} \mathbf{F} \cdot d \mathbf{r}
$$

for $\mathbf{F}=\langle-y, x\rangle$ and C defined by $\mathbf{r}(t)$ for $0 \leq t<\infty$. Then

$$
\mathbf{F}(\mathbf{r}(t))=\left\langle-\frac{3 t^{2}}{1+t^{3}}, \frac{3 t}{1+t^{3}}\right\rangle
$$

and

$$
\mathbf{r}^{\prime}(t)=\left\langle\frac{3-6 t^{3}}{\left(1+t^{3}\right)^{2}}, \frac{6 t-3 t^{4}}{\left(1+t^{3}\right)^{2}}\right\rangle
$$

Now we can write

$$
\begin{aligned}
\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) & =\left\langle-\frac{3 t^{2}}{1+t^{3}}, \frac{3 t}{1+t^{3}}\right\rangle \cdot\left\langle\frac{3-6 t^{3}}{\left(1+t^{3}\right)^{2}}, \frac{6 t-3 t^{4}}{\left(1+t^{3}\right)^{2}}\right\rangle \\
& =\frac{18 t^{5}-9 t^{2}}{\left(1+t^{3}\right)^{3}}+\frac{18 t^{2}-9 t^{5}}{\left(1+t^{3}\right)^{3}} \\
& =\frac{9 t^{2}+9 t^{5}}{\left(1+t^{3}\right)^{3}} \\
& =\frac{9 t^{2}\left(1+t^{3}\right)}{\left(1+t^{3}\right)^{3}} \\
& =\frac{9 t^{2}}{\left(1+t^{3}\right)^{2}}
\end{aligned}
$$

Finally,

$$
A=\frac{1}{2} \int_{0}^{\infty} \frac{9 t^{2}}{\left(1+t^{3}\right)^{2}} d t=\frac{9}{2} \lim _{T \rightarrow \infty} \int_{0}^{T} \frac{t^{2}}{\left(1+t^{3}\right)^{2}} d t
$$

Let $u=1+t^{3}$ so $\frac{1}{3} d u=t^{2} d t$. When $t=0, u=1$. When $t=T, u=1+T^{3}$. The integral becomes

$$
\begin{aligned}
A & =\frac{3}{2} \lim _{T \rightarrow \infty} \int_{1}^{1+T^{3}} \frac{1}{u^{2}} d u \\
& =\frac{3}{2} \lim _{T \rightarrow \infty}\left[-\frac{1}{u}\right]_{1}^{1+T^{3}} \\
& =\frac{3}{2} \lim _{T \rightarrow \infty}\left[-\frac{1}{1+T^{3}}+1\right] \\
& =\frac{3}{2}[0+1] \\
& =\frac{3}{2} .
\end{aligned}
$$

