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[5] 1. In cylindrical coordinates, the two paraboloids become z = r? and 2z = 2 —r?. They intersect
when

P?=2—-r = 2r’=2 = r==l.

Neglecting the negative option (since it will be handled by our choice of #) we therefore have
0<r<1land0<#<2nr Finally, 7> < 2 <2 — 2. Thus
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[6] 2. In the xy-plane, the region of integration is bounded by 0 < z <2 and 0 < y < /2x — z2.
The last of these bounds is equivalent to the upper branch of the graph with equation

y=V2r—22 = 2*-20+13°=0 = (r—1>%+4 =1,

namely a circle of radius 1 centred at the point (1,0). In cylindrical coordinates, it becomes

rsin(f) = \/2r cos(f) — r2 cos?(h)
so squaring both sides and rearranging yields

r?cos®(0) + r’sin®(0) = 2rcos(f) = r*=2rcos(d) = 1 =2cos(h).



Hence 0 < 7 < 2cos(f). To traverse the upper semi-circle, we require only 0 < 6 < 7, since
7(0) = 2 and r(%) = 0. Finally, we have 0 < z < /22 4 y? which, in cylindrical coordinates,
becomes 0 < z < r. Since the integrand /x? + y?> = r we obtain
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[6] 3. In spherical coordinates, the hemisphere becomes p = 1 while the cone becomes

p? sin®(p) cos?(0) + p? sin®(p) sin®(0) = p® cos®(¢) =  sin®(¢) = cos*(¢).

Thus we must have tan?(¢) = 1 and so tan(¢) = +1. Since must have 0 < ¢ < m, the
solutions are ¢ = I (the upper branch of the cone) and ¢ = 2 (the lower branch of the
cone). However, only the upper branch of the cone can intersect with the upper hemisphere.
Hence 0 < p <1, 0 < ¢ < 7 and, because both surfaces project onto complete circles in the



[6]

ry-plane, 0 < § < 27. Finally, the integrand 2% = p? cos3(¢) so
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Let u = cos(¢) so —du = sin(¢) d¢. When ¢ = 0, v = 1 and when ¢ = 7, u = \/75 The
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4. In the xy-plane, the region is bounded by —2 < z < 2 and 0 < y < /4 — 22. The last of

these bounds is equivalent to the upper branch of the graph with equation
y=V4—12 — 2*+y°=4,

that is, a circle of radius 2 centred at the origin. Furthermore, we have —y/4 — 22 — 3?2 <
z < /4 — 2% — y?, and these bounds correspond to the upper and lower branches of the
graph of the equation

P=d—a® -y = 2Py +2 =4,

a sphere of radius 2 centred at the origin. Hence 0 < p < 2, 0 < ¢ < 7, and because we
are only interested in the upper semicircle in the xy-plane, 0 < # < 7. Lastly, the integrand
becomes

Vaz+y? = \/p2 sin?(¢) cos2(6) + p? sin®(¢) cos2(f) = \/p2 sin?(¢) = psin(¢).




Thus
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[3] 5. (a) Since a direction vector for the line segment is given by (2, 0, 6) and (0,1, —3) is a point
on the line, the curve C' can be parametrised by the function

r(t) = (2, 1, —3 + 6t)

for 0 <t < 1. Observe that

r'(t) = (2, 0, 6)
and
F(r(t)) = (2(2t) =1, —(=3+6t), 2t +3 4+ (=3 +6t)) = (4t — 1, 3 —6t, 8t).
Thus
F(r(t))-r'(t) = (4t — 1)(2) + (3 — 6t)(0) + (8¢)(6) = 56t — 2
and so
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5] (b) We have
V=" 2xy).
The curve C' can be parametrised by the function

r(t) = (2cos(t), 2sin(t))

for0<t< 7 80
r'(t) = (—2sin(t), 2cos(t)).
Hence
Vf = (4sin*(t), 8cos(t)sin(t))
and
Vf-r'(t) = 4sin®(t)[—2sin(t)] + 8 cos(t) sin(t)[2 cos(t)] = —8sin®(t) + 16 cos(t) sin(t).
The line integral can then be written
/ Vf-ds= /2 [—8sin®(t) + 16 cos?(t) sin(t)] dt
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= [8cos(t) — 80083(t)]§
= 0.
[4] 6. (a) The projection of S onto the zy-plane is the line 2z +y = 6 or y = 6 — 2z, and because
we are interested only in the first octant, z = 0 and y = 0 are also boundary curves.

Thus the region of integration is defined by 0 <y <6 — 2z and 0 < z < 3. Since S is
the graph of 2 = 6 — 2z — y, a normal to S is given by the vector (2, 1, 1). Hence

F-(2, 1, 1) =4y —zy
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[5] (b) We will parametrise S using cylindrical coordinates. The equation of the cylinder be-

comes

r?cos’(f) + r?sin®(f) =4 = 1r?*=4 — r=2

Thus an appropriate parametrisation is via the function
R(0,z) = (2cos(d), 2sin(d), z)
where 0 < 0§ < 27 and 0 < z < 3. Now we have
Ry = (—2sin(0), 2cos(f), 0)

and
R, =10, 0, 1)

S0
Ry x R, = (2cos(f), 2sin(d), 0).

We can see that this is oriented outward because, for instance, when § = 0 — which
would be true of any point (2,0, z) on the cylinder — Ry x R, becomes the vector
(2, 0, 0) which points away from the origin. Since

F = (2cos(0),2sin(0), €*)

we have

F-(Ry x R,) = 4cos*(0) + 4sin*(0) + 0 = 4
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and so



