MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[5] 1. In cylindrical coordinates, the two paraboloids become $z=r^{2}$ and $z=2-r^{2}$. They intersect when

$$
r^{2}=2-r^{2} \quad \Longrightarrow \quad 2 r^{2}=2 \quad \Longrightarrow \quad r= \pm 1
$$

Neglecting the negative option (since it will be handled by our choice of θ) we therefore have $0 \leq r \leq 1$ and $0 \leq \theta \leq 2 \pi$. Finally, $r^{2} \leq z \leq 2-r^{2}$. Thus

$$
\begin{aligned}
V & =\iiint_{E} d V \\
& =\int_{0}^{2 \pi} \int_{0}^{1} \int_{r^{2}}^{2-r^{2}} r d z d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}[r z]_{z=r^{2}}^{z=2-r^{2}} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(2 r-2 r^{3}\right) d r d \theta \\
& =\int_{0}^{2 \pi}\left[r^{2}-\frac{1}{2} r^{4}\right]_{r=0}^{r=1} d \theta \\
& =\frac{1}{2} \int_{0}^{2 \pi} d \theta \\
& =\frac{1}{2}[\theta]_{0}^{2 \pi} \\
& =\pi
\end{aligned}
$$

[6] 2. In the $x y$-plane, the region of integration is bounded by $0 \leq x \leq 2$ and $0 \leq y \leq \sqrt{2 x-x^{2}}$. The last of these bounds is equivalent to the upper branch of the graph with equation

$$
y=\sqrt{2 x-x^{2}} \quad \Longrightarrow \quad x^{2}-2 x+y^{2}=0 \quad \Longrightarrow \quad(x-1)^{2}+y^{2}=1
$$

namely a circle of radius 1 centred at the point $(1,0)$. In cylindrical coordinates, it becomes

$$
r \sin (\theta)=\sqrt{2 r \cos (\theta)-r^{2} \cos ^{2}(\theta)}
$$

so squaring both sides and rearranging yields

$$
r^{2} \cos ^{2}(\theta)+r^{2} \sin ^{2}(\theta)=2 r \cos (\theta) \quad \Longrightarrow \quad r^{2}=2 r \cos (\theta) \quad \Longrightarrow \quad r=2 \cos (\theta) .
$$

Hence $0 \leq r \leq 2 \cos (\theta)$. To traverse the upper semi-circle, we require only $0 \leq \theta \leq \frac{\pi}{2}$, since $r(0)=2$ and $r\left(\frac{\pi}{2}\right)=0$. Finally, we have $0 \leq z \leq \sqrt{x^{2}+y^{2}}$ which, in cylindrical coordinates, becomes $0 \leq z \leq r$. Since the integrand $\sqrt{x^{2}+y^{2}}=r$ we obtain

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \int_{0}^{\sqrt{x^{2}+y^{2}}} \sqrt{x^{2}+y^{2}} d z d y d x & =\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \cos (\theta)} \int_{0}^{r} r \cdot r d z d r d \theta \\
& =\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \cos (\theta)} \int_{0}^{r} r^{2} d z d r d \theta \\
& =\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \cos (\theta)}\left[r^{2} z\right]_{z=0}^{z=r} d r d \theta \\
& =\int_{0}^{\frac{\pi}{2}} \int_{0}^{2 \cos (\theta)} r^{3} d r d \theta \\
& =\int_{0}^{\frac{\pi}{2}}\left[\frac{1}{4} r^{4}\right]_{r=0}^{r=2 \cos (\theta)} d \theta \\
& =4 \int_{0}^{\frac{\pi}{2}} \cos ^{4}(\theta) d \theta \\
& =4 \int_{0}^{\frac{\pi}{2}}\left[\frac{1+\cos (2 \theta)}{2}\right]^{2} d \theta \\
& =\int_{0}^{\frac{\pi}{2}}\left[1+2 \cos (2 \theta)+\cos ^{2}(2 \theta)\right] d \theta \\
& =\int_{0}^{\frac{\pi}{2}}\left[\frac{3}{2}+2 \cos (2 \theta)+\frac{1}{2} \cos (4 \theta)\right] d \theta \\
& =\left[\frac{3}{2} \theta+\sin (2 \theta)+\frac{1}{8} \sin (4 \theta)\right]_{0}^{\frac{\pi}{2}} \\
& =\frac{3 \pi}{4}
\end{aligned}
$$

[6] 3. In spherical coordinates, the hemisphere becomes $\rho=1$ while the cone becomes

$$
\rho^{2} \sin ^{2}(\phi) \cos ^{2}(\theta)+\rho^{2} \sin ^{2}(\phi) \sin ^{2}(\theta)=\rho^{2} \cos ^{2}(\phi) \quad \Longrightarrow \quad \sin ^{2}(\phi)=\cos ^{2}(\phi) .
$$

Thus we must have $\tan ^{2}(\phi)=1$ and so $\tan (\phi)= \pm 1$. Since must have $0 \leq \phi \leq \pi$, the solutions are $\phi=\frac{\pi}{4}$ (the upper branch of the cone) and $\phi=\frac{3 \pi}{4}$ (the lower branch of the cone). However, only the upper branch of the cone can intersect with the upper hemisphere. Hence $0 \leq \rho \leq 1,0 \leq \phi \leq \frac{\pi}{4}$ and, because both surfaces project onto complete circles in the
$x y$-plane, $0 \leq \theta \leq 2 \pi$. Finally, the integrand $z^{3}=\rho^{3} \cos ^{3}(\phi)$ so

$$
\begin{aligned}
\iiint_{E} z^{3} d V & =\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{1} \rho^{3} \cos ^{3}(\phi) \cdot \rho^{2} \sin (\phi) d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{1} \rho^{5} \cos ^{3}(\phi) \sin (\phi) d \rho d \phi d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{1}\left[\frac{1}{6} \rho^{6} \cos ^{3}(\phi) \sin (\phi)\right]_{\rho=0}^{\rho=1} d \phi d \theta \\
& =\frac{1}{6} \int_{0}^{2 \pi} \int_{0}^{\frac{\pi}{4}} \cos ^{3}(\phi) \sin (\phi) d \phi d \theta
\end{aligned}
$$

Let $u=\cos (\phi)$ so $-d u=\sin (\phi) d \phi$. When $\phi=0, u=1$ and when $\phi=\frac{\pi}{4}, u=\frac{\sqrt{2}}{2}$. The integral becomes

$$
\begin{aligned}
\iiint_{E} z^{3} d V & =-\frac{1}{6} \int_{0}^{2 \pi} \int_{1}^{\frac{\sqrt{2}}{2}} u^{3} d u d \theta \\
& =-\frac{1}{6} \int_{0}^{2 \pi}\left[\frac{1}{4} u^{4}\right]_{u=1}^{u=\frac{\sqrt{2}}{2}} d \theta \\
& =\frac{1}{32} \int_{0}^{2 \pi} d \theta \\
& =\frac{1}{32}[\theta]_{0}^{2 \pi} \\
& =\frac{\pi}{16}
\end{aligned}
$$

[6] 4. In the $x y$-plane, the region is bounded by $-2 \leq x \leq 2$ and $0 \leq y \leq \sqrt{4-x^{2}}$. The last of these bounds is equivalent to the upper branch of the graph with equation

$$
y=\sqrt{4-x^{2}} \quad \Longrightarrow \quad x^{2}+y^{2}=4
$$

that is, a circle of radius 2 centred at the origin. Furthermore, we have $-\sqrt{4-x^{2}-y^{2}} \leq$ $z \leq \sqrt{4-x^{2}-y^{2}}$, and these bounds correspond to the upper and lower branches of the graph of the equation

$$
z^{2}=4-x^{2}-y^{2} \quad \Longrightarrow \quad x^{2}+y^{2}+z^{2}=4
$$

a sphere of radius 2 centred at the origin. Hence $0 \leq \rho \leq 2,0 \leq \phi \leq \pi$, and because we are only interested in the upper semicircle in the $x y$-plane, $0 \leq \theta \leq \pi$. Lastly, the integrand becomes

$$
\sqrt{x^{2}+y^{2}}=\sqrt{\rho^{2} \sin ^{2}(\phi) \cos ^{2}(\theta)+\rho^{2} \sin ^{2}(\phi) \cos ^{2}(\theta)}=\sqrt{\rho^{2} \sin ^{2}(\phi)}=\rho \sin (\phi)
$$

Thus

$$
\begin{aligned}
\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}} d z d y d x & =\int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{2} \rho \sin (\phi) \cdot \rho^{2} \sin (\phi) d r d \phi d \theta \\
& =\int_{0}^{\pi} \int_{0}^{\pi} \int_{0}^{2} \rho^{3} \sin ^{2}(\phi) d r d \phi d \theta \\
& =\int_{0}^{\pi} \int_{0}^{\pi}\left[\frac{1}{4} \rho^{4} \sin ^{2}(\phi)\right]_{\rho=0}^{\rho=2} d \phi d \theta \\
& =4 \int_{0}^{\pi} \int_{0}^{\pi} \sin ^{2}(\phi) d \phi d \theta \\
& =2 \int_{0}^{\pi} \int_{0}^{\pi}[1-\cos (2 \phi)] d \phi d \theta \\
& =2 \int_{0}^{\pi}\left[\phi-\frac{1}{2} \sin (2 \phi)\right]_{\phi=0}^{\phi=\pi} d \theta \\
& =2 \pi \int_{0}^{\pi} d \theta \\
& =2 \pi[\theta]_{0}^{\pi} \\
& =2 \pi^{2}
\end{aligned}
$$

[3] 5. (a) Since a direction vector for the line segment is given by $\langle 2,0,6\rangle$ and $(0,1,-3)$ is a point on the line, the curve C can be parametrised by the function

$$
\mathbf{r}(t)=\langle 2 t, 1,-3+6 t\rangle
$$

for $0 \leq t \leq 1$. Observe that

$$
\mathbf{r}^{\prime}(t)=\langle 2,0,6\rangle
$$

and

$$
\mathbf{F}(\mathbf{r}(t))=\langle 2(2 t)-1,-(-3+6 t), 2 t+3+(-3+6 t)\rangle=\langle 4 t-1,3-6 t, 8 t\rangle
$$

Thus

$$
\mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=(4 t-1)(2)+(3-6 t)(0)+(8 t)(6)=56 t-2
$$

and so

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{1}(56 t-2) d t \\
& =\left[28 t^{2}-2 t\right]_{0}^{1} \\
& =26
\end{aligned}
$$

[5] (b) We have

$$
\nabla f=\left\langle y^{2}, 2 x y\right\rangle
$$

The curve C can be parametrised by the function

$$
\mathbf{r}(t)=\langle 2 \cos (t), 2 \sin (t)\rangle
$$

for $0 \leq t \leq \frac{\pi}{2}$ so

$$
\mathbf{r}^{\prime}(t)=\langle-2 \sin (t), 2 \cos (t)\rangle
$$

Hence

$$
\nabla f=\left\langle 4 \sin ^{2}(t), 8 \cos (t) \sin (t)\right\rangle
$$

and

$$
\nabla f \cdot \mathbf{r}^{\prime}(t)=4 \sin ^{2}(t)[-2 \sin (t)]+8 \cos (t) \sin (t)[2 \cos (t)]=-8 \sin ^{3}(t)+16 \cos ^{2}(t) \sin (t)
$$

The line integral can then be written

$$
\begin{aligned}
\int_{C} \nabla f \cdot d \mathbf{s} & =\int_{0}^{\frac{\pi}{2}}\left[-8 \sin ^{3}(t)+16 \cos ^{2}(t) \sin (t)\right] d t \\
& =\int_{0}^{\frac{\pi}{2}}\left[-8 \sin (t)\left(1-\cos ^{2}(t)\right)+16 \cos ^{2}(t) \sin (t)\right] d t \\
& =\int_{0}^{\frac{\pi}{2}}\left[-8 \sin (t)+24 \cos ^{2}(t) \sin (t)\right] d t \\
& =\left[8 \cos (t)-8 \cos ^{3}(t)\right]_{0}^{\frac{\pi}{2}} \\
& =0
\end{aligned}
$$

[4] 6. (a) The projection of S onto the $x y$-plane is the line $2 x+y=6$ or $y=6-2 x$, and because we are interested only in the first octant, $x=0$ and $y=0$ are also boundary curves. Thus the region of integration is defined by $0 \leq y \leq 6-2 x$ and $0 \leq x \leq 3$. Since S is the graph of $z=6-2 x-y$, a normal to S is given by the vector $\langle 2,1,1\rangle$. Hence

$$
\mathbf{F} \cdot\langle 2,1,1\rangle=4 y-x y
$$

and so

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\int_{0}^{3} \int_{0}^{6-2 x}(4 y-x y) d y d x \\
& =\int_{0}^{3}\left[2 y^{2}-\frac{1}{2} x y^{2}\right]_{y=0}^{y=6-2 x} d x \\
& =\int_{0}^{3}\left(-2 x^{3}+20 x^{2}-66 x+72\right) d x \\
& =\left[-\frac{1}{2} x^{4}+\frac{20}{3} x^{3}-33 x^{2}+72 x\right]_{0}^{3} \\
& =\frac{117}{2}
\end{aligned}
$$

[5] (b) We will parametrise S using cylindrical coordinates. The equation of the cylinder becomes

$$
r^{2} \cos ^{2}(\theta)+r^{2} \sin ^{2}(\theta)=4 \quad \Longrightarrow \quad r^{2}=4 \quad \Longrightarrow \quad r=2 .
$$

Thus an appropriate parametrisation is via the function

$$
\mathbf{R}(\theta, z)=\langle 2 \cos (\theta), 2 \sin (\theta), z\rangle
$$

where $0 \leq \theta \leq 2 \pi$ and $0 \leq z \leq 3$. Now we have

$$
\mathbf{R}_{\theta}=\langle-2 \sin (\theta), 2 \cos (\theta), 0\rangle
$$

and

$$
\mathbf{R}_{z}=\langle 0,0,1\rangle
$$

so

$$
\mathbf{R}_{\theta} \times \mathbf{R}_{z}=\langle 2 \cos (\theta), 2 \sin (\theta), 0\rangle
$$

We can see that this is oriented outward because, for instance, when $\theta=0-$ which would be true of any point $(2,0, z)$ on the cylinder $-\mathbf{R}_{\theta} \times \mathbf{R}_{z}$ becomes the vector $\langle 2,0,0\rangle$ which points away from the origin. Since

$$
\mathbf{F}=\left\langle 2 \cos (\theta), 2 \sin (\theta), e^{z}\right\rangle
$$

we have

$$
\mathbf{F} \cdot\left(\mathbf{R}_{\theta} \times \mathbf{R}_{z}\right)=4 \cos ^{2}(\theta)+4 \sin ^{2}(\theta)+0=4
$$

and so

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S} & =\int_{0}^{2 \pi} \int_{0}^{3} 4 d z d \theta \\
& =\int_{0}^{2 \pi}[4 z]_{z=0}^{z=3} d \theta \\
& =12 \int_{0}^{2 \pi} d \theta \\
& =12[\theta]_{0}^{2 \pi} \\
& =24 \pi
\end{aligned}
$$

