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SOLUTIONS

[5] 1. In cylindrical coordinates, the two paraboloids become z = r2 and z = 2−r2. They intersect
when

r2 = 2− r2 =⇒ 2r2 = 2 =⇒ r = ±1.

Neglecting the negative option (since it will be handled by our choice of θ) we therefore have
0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π. Finally, r2 ≤ z ≤ 2− r2. Thus

V =

∫∫∫
E

dV

=

∫ 2π

0

∫ 1

0

∫ 2−r2

r2
r dz dr dθ

=

∫ 2π

0

∫ 1

0

[
rz
]z=2−r2

z=r2
dr dθ

=

∫ 2π

0

∫ 1

0

(2r − 2r3) dr dθ

=

∫ 2π

0

[
r2 − 1

2
r4
]r=1

r=0

dθ

=
1

2

∫ 2π

0

dθ

=
1

2

[
θ
]2π
0

= π.

[6] 2. In the xy-plane, the region of integration is bounded by 0 ≤ x ≤ 2 and 0 ≤ y ≤
√

2x− x2.
The last of these bounds is equivalent to the upper branch of the graph with equation

y =
√

2x− x2 =⇒ x2 − 2x+ y2 = 0 =⇒ (x− 1)2 + y2 = 1,

namely a circle of radius 1 centred at the point (1, 0). In cylindrical coordinates, it becomes

r sin(θ) =
√

2r cos(θ)− r2 cos2(θ)

so squaring both sides and rearranging yields

r2 cos2(θ) + r2 sin2(θ) = 2r cos(θ) =⇒ r2 = 2r cos(θ) =⇒ r = 2 cos(θ).



Hence 0 ≤ r ≤ 2 cos(θ). To traverse the upper semi-circle, we require only 0 ≤ θ ≤ π
2
, since

r(0) = 2 and r(π
2
) = 0. Finally, we have 0 ≤ z ≤

√
x2 + y2 which, in cylindrical coordinates,

becomes 0 ≤ z ≤ r. Since the integrand
√
x2 + y2 = r we obtain

∫ 2

0

∫ √2x−x2
0

∫ √x2+y2

0

√
x2 + y2 dz dy dx =

∫ π
2

0

∫ 2 cos(θ)

0

∫ r

0

r · r dz dr dθ

=

∫ π
2

0

∫ 2 cos(θ)

0

∫ r

0

r2 dz dr dθ

=

∫ π
2

0

∫ 2 cos(θ)

0

[
r2z
]z=r
z=0

dr dθ

=

∫ π
2

0

∫ 2 cos(θ)

0

r3 dr dθ

=

∫ π
2

0

[
1

4
r4
]r=2 cos(θ)

r=0

dθ

= 4

∫ π
2

0

cos4(θ) dθ

= 4

∫ π
2

0

[
1 + cos(2θ)

2

]2
dθ

=

∫ π
2

0

[1 + 2 cos(2θ) + cos2(2θ)] dθ

=

∫ π
2

0

[
3

2
+ 2 cos(2θ) +

1

2
cos(4θ)

]
dθ

=

[
3

2
θ + sin(2θ) +

1

8
sin(4θ)

]π
2

0

=
3π

4
.

[6] 3. In spherical coordinates, the hemisphere becomes ρ = 1 while the cone becomes

ρ2 sin2(φ) cos2(θ) + ρ2 sin2(φ) sin2(θ) = ρ2 cos2(φ) =⇒ sin2(φ) = cos2(φ).

Thus we must have tan2(φ) = 1 and so tan(φ) = ±1. Since must have 0 ≤ φ ≤ π, the
solutions are φ = π

4
(the upper branch of the cone) and φ = 3π

4
(the lower branch of the

cone). However, only the upper branch of the cone can intersect with the upper hemisphere.
Hence 0 ≤ ρ ≤ 1, 0 ≤ φ ≤ π

4
and, because both surfaces project onto complete circles in the



xy-plane, 0 ≤ θ ≤ 2π. Finally, the integrand z3 = ρ3 cos3(φ) so∫∫∫
E

z3 dV =

∫ 2π

0

∫ π
4

0

∫ 1

0

ρ3 cos3(φ) · ρ2 sin(φ) dρ dφ dθ

=

∫ 2π

0

∫ π
4

0

∫ 1

0

ρ5 cos3(φ) sin(φ) dρ dφ dθ

=

∫ 2π

0

∫ π
4

0

∫ 1

0

[
1

6
ρ6 cos3(φ) sin(φ)

]ρ=1

ρ=0

dφ dθ

=
1

6

∫ 2π

0

∫ π
4

0

cos3(φ) sin(φ) dφ dθ.

Let u = cos(φ) so − du = sin(φ) dφ. When φ = 0, u = 1 and when φ = π
4
, u =

√
2
2

. The
integral becomes ∫∫∫

E

z3 dV = −1

6

∫ 2π

0

∫ √
2

2

1

u3 du dθ

= −1

6

∫ 2π

0

[
1

4
u4
]u=√

2
2

u=1

dθ

=
1

32

∫ 2π

0

dθ

=
1

32

[
θ
]2π
0

=
π

16
.

[6] 4. In the xy-plane, the region is bounded by −2 ≤ x ≤ 2 and 0 ≤ y ≤
√

4− x2. The last of
these bounds is equivalent to the upper branch of the graph with equation

y =
√

4− x2 =⇒ x2 + y2 = 4,

that is, a circle of radius 2 centred at the origin. Furthermore, we have −
√

4− x2 − y2 ≤
z ≤

√
4− x2 − y2, and these bounds correspond to the upper and lower branches of the

graph of the equation

z2 = 4− x2 − y2 =⇒ x2 + y2 + z2 = 4,

a sphere of radius 2 centred at the origin. Hence 0 ≤ ρ ≤ 2, 0 ≤ φ ≤ π, and because we
are only interested in the upper semicircle in the xy-plane, 0 ≤ θ ≤ π. Lastly, the integrand
becomes√

x2 + y2 =
√
ρ2 sin2(φ) cos2(θ) + ρ2 sin2(φ) cos2(θ) =

√
ρ2 sin2(φ) = ρ sin(φ).



Thus∫ 2

−2

∫ √4−x2
0

∫ √4−x2−y2

−
√

4−x2−y2

√
x2 + y2 dz dy dx =

∫ π

0

∫ π

0

∫ 2

0

ρ sin(φ) · ρ2 sin(φ) dr dφ dθ

=

∫ π

0

∫ π

0

∫ 2

0

ρ3 sin2(φ) dr dφ dθ

=

∫ π

0

∫ π

0

[
1

4
ρ4 sin2(φ)

]ρ=2

ρ=0

dφ dθ

= 4

∫ π

0

∫ π

0

sin2(φ) dφ dθ

= 2

∫ π

0

∫ π

0

[1− cos(2φ)] dφ dθ

= 2

∫ π

0

[
φ− 1

2
sin(2φ)

]φ=π
φ=0

dθ

= 2π

∫ π

0

dθ

= 2π
[
θ
]π
0

= 2π2.

5.[3] (a) Since a direction vector for the line segment is given by 〈2, 0, 6〉 and (0, 1,−3) is a point
on the line, the curve C can be parametrised by the function

r(t) = 〈2t, 1, −3 + 6t〉

for 0 ≤ t ≤ 1. Observe that
r′(t) = 〈2, 0, 6〉

and

F(r(t)) = 〈2(2t)− 1, −(−3 + 6t), 2t+ 3 + (−3 + 6t)〉 = 〈4t− 1, 3− 6t, 8t〉.

Thus
F(r(t)) · r′(t) = (4t− 1)(2) + (3− 6t)(0) + (8t)(6) = 56t− 2

and so ∫
C

F · dr =

∫ 1

0

(56t− 2) dt

=
[
28t2 − 2t

]1
0

= 26.



[5] (b) We have
∇f = 〈y2, 2xy〉.

The curve C can be parametrised by the function

r(t) = 〈2 cos(t), 2 sin(t)〉

for 0 ≤ t ≤ π
2

so
r′(t) = 〈−2 sin(t), 2 cos(t)〉.

Hence
∇f = 〈4 sin2(t), 8 cos(t) sin(t)〉

and

∇f · r′(t) = 4 sin2(t)[−2 sin(t)] + 8 cos(t) sin(t)[2 cos(t)] = −8 sin3(t) + 16 cos2(t) sin(t).

The line integral can then be written∫
C

∇f · ds =

∫ π
2

0

[−8 sin3(t) + 16 cos2(t) sin(t)] dt

=

∫ π
2

0

[−8 sin(t)(1− cos2(t)) + 16 cos2(t) sin(t)] dt

=

∫ π
2

0

[−8 sin(t) + 24 cos2(t) sin(t)] dt

= [8 cos(t)− 8 cos3(t)]
π
2
0

= 0.

6.[4] (a) The projection of S onto the xy-plane is the line 2x+ y = 6 or y = 6− 2x, and because
we are interested only in the first octant, x = 0 and y = 0 are also boundary curves.
Thus the region of integration is defined by 0 ≤ y ≤ 6 − 2x and 0 ≤ x ≤ 3. Since S is
the graph of z = 6− 2x− y, a normal to S is given by the vector 〈2, 1, 1〉. Hence

F · 〈2, 1, 1〉 = 4y − xy

and so ∫∫
S

F · dS =

∫ 3

0

∫ 6−2x

0

(4y − xy) dy dx

=

∫ 3

0

[
2y2 − 1

2
xy2
]y=6−2x

y=0

dx

=

∫ 3

0

(−2x3 + 20x2 − 66x+ 72) dx

=

[
−1

2
x4 +

20

3
x3 − 33x2 + 72x

]3
0

=
117

2
.



[5] (b) We will parametrise S using cylindrical coordinates. The equation of the cylinder be-
comes

r2 cos2(θ) + r2 sin2(θ) = 4 =⇒ r2 = 4 =⇒ r = 2.

Thus an appropriate parametrisation is via the function

R(θ, z) = 〈2 cos(θ), 2 sin(θ), z〉

where 0 ≤ θ ≤ 2π and 0 ≤ z ≤ 3. Now we have

Rθ = 〈−2 sin(θ), 2 cos(θ), 0〉

and
Rz = 〈0, 0, 1〉

so
Rθ ×Rz = 〈2 cos(θ), 2 sin(θ), 0〉.

We can see that this is oriented outward because, for instance, when θ = 0 — which
would be true of any point (2, 0, z) on the cylinder — Rθ × Rz becomes the vector
〈2, 0, 0〉 which points away from the origin. Since

F = 〈2 cos(θ), 2 sin(θ), ez〉

we have
F · (Rθ ×Rz) = 4 cos2(θ) + 4 sin2(θ) + 0 = 4

and so ∫∫
S

F · dS =

∫ 2π

0

∫ 3

0

4 dz dθ

=

∫ 2π

0

[
4z
]z=3

z=0
dθ

= 12

∫ 2π

0

dθ

= 12
[
θ
]2π
0

= 24π.


