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SOLUTIONS

1.[5] (a) The surface is the graph of the function z = 2x2 + 8y + 3 = f(x, y). Hence

fx(x, y) = 4x and fy(x, y) = 8

so √
[fx(x, y)]2 + [fy(x, y)]2 + 1 =

√
16x2 + 64 + 1 =

√
16x2 + 65.

The domain of integration, described by the indicated triangle, is bounded by the lines
y = 0, x = 1 and y = 8x. Hence it is defined by 0 ≤ y ≤ 8x and 0 ≤ x ≤ 1. Thus

A =

∫ 1

0

∫ 8x

0

√
16x2 + 65 dy dx

=

∫ 1

0

[
y
√

16x2 + 65
]y=8x

y=0
dx

= 8

∫ 1

0

x
√

16x2 + 65 dx.

We let u = 16x2 + 65 so 1
32
du = x dx. When x = 0, u = 65 and when x = 1, u = 81.

The integral becomes

A =
1

4

∫ 81

65

√
u du

=
1

4

[
2

3
u

3
2

]81
65

=
1

6
(729− 65

3
2 ).

[6] (b) We have f(x, y) = x2 + y2 so

fx(x, y) = 2x and fy(x, y) = 2y

so √
[fx(x, y)]2 + [fy(x, y)]2 + 1 =

√
4x2 + 4y2 + 1.

The domain of integration is determined by the projection of the cylinder onto the xy-
plane, namely the circle x2 +y2 = 2. This suggests that we should use polar coordinates,
for which the circle has the equation r =

√
2. Thus 0 ≤ r ≤

√
2 and 0 ≤ θ ≤ 2π.

Furthermore,√
[fx(x, y)]2 + [fy(x, y)]2 + 1 =

√
4r2 cos2(θ) + 4r2 sin2(θ) + 1 =

√
4r2 + 1.



Recalling that dA = r dr dθ in polar coordinates, we have

A =

∫ 2π

0

∫ √2
0

√
4r2 + 1r dr dθ.

We let u = 4r2 + 1 so 1
8
du = r dr. When r = 0, u = 1 and when r =

√
2, u = 9. Thus

the integral becomes

A =
1

8

∫ 2π

0

∫ 9

1

√
u du dθ

=
1

8

∫ 2π

0

[
2

3
u

3
2

]u=9

u=1

dθ

=
13

6

∫ 2π

0

dθ

=
13

6

[
θ
]2π
0

=
13π

3
.

[6] (c) We have

Ru(u, v) = 〈cos(v), sin(v), 0〉 and Rv(u, v) = 〈−u sin(v), u cos(v), 1〉.

Thus
Ru ×Rv = 〈sin(v), − cos(v), u〉

and so

‖Ru ×Rv‖ =
√

sin2(v) + cos2(v) + u2 =
√

1 + u2.

Hence

A =

∫ 1

0

∫ π

0

√
1 + u2 dv du

=

∫ 1

0

[
v
√

1 + u2
]v=π
v=0

du

= π

∫ 1

0

√
1 + u2 du.

We let u = tan(θ) so du = sec2(θ) dθ. Then

√
1 + u2 =

√
1 + tan2(θ) =

√
sec2(θ) = sec(θ).

When u = 0, θ = 0 and when u = 1, θ = π
4
. Hence the integral becomes

A = π

∫ π
4

0

sec(θ) sec2(θ) dθ

= π

∫ π
4

0

sec3(θ) dθ.



Using integration by parts, we find that

A =
π

2
[sec(θ) tan(θ) + ln|sec(θ) + tan(θ)|]

π
4
0

=
π

2

[√
2 + ln(

√
2 + 1)

]
.

2.[5] (a) Since z = 2x+ 2y − 4 = f(x, y), we have

fx(x, y) = fy(x, y) = 2 and
√

[fx(x, y)]2 + [fy(x, y)]2 + 1 =
√

4 + 4 + 1 = 3.

Furthermore, the integrand becomes

yz = y(2x+ 2y − 4) = 2xy + 2y2 − 4y.

The projection of the indicated plane onto the xy-plane is the line with equation 2x+2y =
4 so y = 2− x. Since we are interested only in the part of the plane in the first octant,
x = 0 and y = 0 also bound this region. Hence it is defined by 0 ≤ y ≤ 2 − x and
0 ≤ x ≤ 2, and so the surface integral can be written∫∫

S

xz dS =

∫ 2

0

∫ 2−x

0

(2xy + 2y2 − 4y) · 3 dy dx

= 3

∫ 2

0

[
xy2 +

2

3
y3 − 2y2

]y=2−x

y=0

dx

=

∫ 2

0

(x3 − 6x2 + 12x− 8) dx

=

[
1

4
x4 − 2x3 + 6x2 − 8x

]2
0

= −4.

[4] (b) We have already found that

‖Ru(u, v)×Rv(u, v)‖ =
√

1 + u2.

Furthermore, the integrand can be written xz = uv cos(v). Hence∫∫
S

yz dS =

∫ 1

0

∫ π

0

uv sin(v)
√

1 + u2 dv du.

The integral with respect to v can be evaluated by parts, giving∫∫
S

xz dS = π

∫ 1

0

u
√

1 + u2 du.



Now let w = 1 + u2 so 1
2
dw = u du. When u = 0, w = 1 and when u = 1, w = 2. The

integral becomes ∫∫
S

xz dS =
π

2

∫ 2

1

√
w dw

=
π

2

[
2

3
w

3
2

]2
1

=
π

3
(2
√

2− 1).

3.[5] (a) In the xy-plane, the plane x + y + z = 1 becomes the line x + y = 1, while the plane
x+ 2y+ z = 1 becomes the line x+ 2y = 1. Furthermore, x = 0 and y = 0 are boundary
curves because we are only interested in the first octant. The projection of E in the
xy-plane is then most easily viewed as a Type 1 region (that is, with boundary curves
that are functions of x) so we can rewrite the lines as y = 1− x and y = 1

2
− 1

2
x. Then

the projection is bounded by 1
2
− 1

2
x ≤ y ≤ 1 − x and 0 ≤ x ≤ 1. Furthermore, since

E itself is bounded by the surfaces z = 1 − x − y and z = 1 − x − 2y, it is defined by
1− x− 2y ≤ z ≤ 1− x− y. Thus

V =

∫∫∫
E

dV =

∫ 1

0

∫ 1−x

1
2
− 1

2
x

∫ 1−x−y

1−x−2y
dz dy dx

=

∫ 1

0

∫ 1−x

1
2
− 1

2
x

[
z
]z=1−x−y

z=1−x−2y
dy dx

=

∫ 1

0

∫ 1−x

1
2
− 1

2
x

y dy dx

=

∫ 1

0

[
1

2
y2
]y=1−x

y= 1
2
− 1

2
x

dx

=
1

8

∫ 1

0

(3x2 − 6x+ 3) dx

=
1

8

[
x3 − 3x2 + 3x

]1
0

=
1

8
.

[4] (b) We can set up the iterated version of this triple integral exactly as in part (a), since the



change of integrand does not affect the geometry of the problem. Thus∫∫∫
E

(x+ y) dV =

∫ 1

0

∫ 1−x

1
2
− 1

2
x

∫ 1−x−y

1−x−2y
(x+ y) dz dy dx

=

∫ 1

0

∫ 1−x

1
2
− 1

2
x

[
(x+ y)z

]z=1−x−y

z=1−x−2y
dy dx

=

∫ 1

0

∫ 1−x

1
2
− 1

2
x

(xy + y2) dy dx

=

∫ 1

0

[
1

2
x2y + xy2

]x=1−x

x= 1
2
− 1

2
x

dx

=
1

24

∫ 1

0

(2x3 + 3x2 − 12x+ 7) dx

=
1

24

[
1

2
x4 + x3 − 6x2 + 7x

]1
0

=
5

48
.

[5] 4. The projection of E onto the xy-plane consists of the unit circle, which in Cartesian coor-
dinates can be defined by −

√
1− x2 ≤ y ≤

√
1− x2 and −1 ≤ x ≤ 1. (Alternatively, we

could also use −
√

1− y2 ≤ x ≤
√

1− y2 and −1 ≤ y ≤ 1.) Since E itself is bounded by
0 ≤ z ≤ y we have∫∫∫

E

(x+ y)z dV =

∫ 1

−1

∫ √1−x2
−
√
1−x2

∫ y

0

(x+ y)z dz dy dx

=

∫ 1

−1

∫ √1−x2
−
√
1−x2

[
1

2
(x+ y)z2

]z=y
z=0

dy dx

=
1

2

∫ 1

−1

∫ √1−x2
−
√
1−x2

(xy2 + y3) dy dx

=
1

2

∫ 1

−1

[
1

3
xy3 +

1

4
y4
]y=√1−x2
y=−

√
1−x2

dx

=
1

3

∫ 1

−1
x(1− x2)

3
2 dx.

Let u = 1 − x2 so −1
2
du = x dx. When x = −1, u = 0 and when x = 1, u = 0. Since the

bounds of integration are now the same, we immediately have∫∫∫
E

(x+ y)z dV = 0.


