MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 6
MATH 3202
Spring 2019

SOLUTIONS

[5] 1. (a) The surface is the graph of the function $z=2 x^{2}+8 y+3=f(x, y)$. Hence

$$
f_{x}(x, y)=4 x \quad \text { and } \quad f_{y}(x, y)=8
$$

so

$$
\sqrt{\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}+1}=\sqrt{16 x^{2}+64+1}=\sqrt{16 x^{2}+65}
$$

The domain of integration, described by the indicated triangle, is bounded by the lines $y=0, x=1$ and $y=8 x$. Hence it is defined by $0 \leq y \leq 8 x$ and $0 \leq x \leq 1$. Thus

$$
\begin{aligned}
A & =\int_{0}^{1} \int_{0}^{8 x} \sqrt{16 x^{2}+65} d y d x \\
& =\int_{0}^{1}\left[y \sqrt{16 x^{2}+65}\right]_{y=0}^{y=8 x} d x \\
& =8 \int_{0}^{1} x \sqrt{16 x^{2}+65} d x
\end{aligned}
$$

We let $u=16 x^{2}+65$ so $\frac{1}{32} d u=x d x$. When $x=0, u=65$ and when $x=1, u=81$. The integral becomes

$$
\begin{aligned}
A & =\frac{1}{4} \int_{65}^{81} \sqrt{u} d u \\
& =\frac{1}{4}\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{65}^{81} \\
& =\frac{1}{6}\left(729-65^{\frac{3}{2}}\right) .
\end{aligned}
$$

[6] (b) We have $f(x, y)=x^{2}+y^{2}$ so

$$
f_{x}(x, y)=2 x \quad \text { and } \quad f_{y}(x, y)=2 y
$$

so

$$
\sqrt{\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}+1}=\sqrt{4 x^{2}+4 y^{2}+1}
$$

The domain of integration is determined by the projection of the cylinder onto the $x y$ plane, namely the circle $x^{2}+y^{2}=2$. This suggests that we should use polar coordinates, for which the circle has the equation $r=\sqrt{2}$. Thus $0 \leq r \leq \sqrt{2}$ and $0 \leq \theta \leq 2 \pi$. Furthermore,

$$
\sqrt{\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}+1}=\sqrt{4 r^{2} \cos ^{2}(\theta)+4 r^{2} \sin ^{2}(\theta)+1}=\sqrt{4 r^{2}+1}
$$

Recalling that $d A=r d r d \theta$ in polar coordinates, we have

$$
A=\int_{0}^{2 \pi} \int_{0}^{\sqrt{2}} \sqrt{4 r^{2}+1} r d r d \theta
$$

We let $u=4 r^{2}+1$ so $\frac{1}{8} d u=r d r$. When $r=0, u=1$ and when $r=\sqrt{2}, u=9$. Thus the integral becomes

$$
\begin{aligned}
A & =\frac{1}{8} \int_{0}^{2 \pi} \int_{1}^{9} \sqrt{u} d u d \theta \\
& =\frac{1}{8} \int_{0}^{2 \pi}\left[\frac{2}{3} u^{\frac{3}{2}}\right]_{u=1}^{u=9} d \theta \\
& =\frac{13}{6} \int_{0}^{2 \pi} d \theta \\
& =\frac{13}{6}[\theta]_{0}^{2 \pi} \\
& =\frac{13 \pi}{3}
\end{aligned}
$$

[6] (c) We have

$$
\mathbf{R}_{u}(u, v)=\langle\cos (v), \sin (v), 0\rangle \quad \text { and } \quad \mathbf{R}_{v}(u, v)=\langle-u \sin (v), u \cos (v), 1\rangle
$$

Thus

$$
\mathbf{R}_{u} \times \mathbf{R}_{v}=\langle\sin (v),-\cos (v), u\rangle
$$

and so

$$
\left\|\mathbf{R}_{u} \times \mathbf{R}_{v}\right\|=\sqrt{\sin ^{2}(v)+\cos ^{2}(v)+u^{2}}=\sqrt{1+u^{2}}
$$

Hence

$$
\begin{aligned}
A & =\int_{0}^{1} \int_{0}^{\pi} \sqrt{1+u^{2}} d v d u \\
& =\int_{0}^{1}\left[v \sqrt{1+u^{2}}\right]_{v=0}^{v=\pi} d u \\
& =\pi \int_{0}^{1} \sqrt{1+u^{2}} d u
\end{aligned}
$$

We let $u=\tan (\theta)$ so $d u=\sec ^{2}(\theta) d \theta$. Then

$$
\sqrt{1+u^{2}}=\sqrt{1+\tan ^{2}(\theta)}=\sqrt{\sec ^{2}(\theta)}=\sec (\theta)
$$

When $u=0, \theta=0$ and when $u=1, \theta=\frac{\pi}{4}$. Hence the integral becomes

$$
\begin{aligned}
A & =\pi \int_{0}^{\frac{\pi}{4}} \sec (\theta) \sec ^{2}(\theta) d \theta \\
& =\pi \int_{0}^{\frac{\pi}{4}} \sec ^{3}(\theta) d \theta
\end{aligned}
$$

Using integration by parts, we find that

$$
\begin{aligned}
A & =\frac{\pi}{2}\left[\sec (\theta) \tan (\theta)+\left.\ln |\sec (\theta)+\tan (\theta)|\right|_{0} ^{\frac{\pi}{4}}\right. \\
& =\frac{\pi}{2}[\sqrt{2}+\ln (\sqrt{2}+1)] .
\end{aligned}
$$

[5] 2. (a) Since $z=2 x+2 y-4=f(x, y)$, we have

$$
f_{x}(x, y)=f_{y}(x, y)=2 \quad \text { and } \quad \sqrt{\left[f_{x}(x, y)\right]^{2}+\left[f_{y}(x, y)\right]^{2}+1}=\sqrt{4+4+1}=3
$$

Furthermore, the integrand becomes

$$
y z=y(2 x+2 y-4)=2 x y+2 y^{2}-4 y .
$$

The projection of the indicated plane onto the $x y$-plane is the line with equation $2 x+2 y=$ 4 so $y=2-x$. Since we are interested only in the part of the plane in the first octant, $x=0$ and $y=0$ also bound this region. Hence it is defined by $0 \leq y \leq 2-x$ and $0 \leq x \leq 2$, and so the surface integral can be written

$$
\begin{aligned}
\iint_{S} x z d S & =\int_{0}^{2} \int_{0}^{2-x}\left(2 x y+2 y^{2}-4 y\right) \cdot 3 d y d x \\
& =3 \int_{0}^{2}\left[x y^{2}+\frac{2}{3} y^{3}-2 y^{2}\right]_{y=0}^{y=2-x} d x \\
& =\int_{0}^{2}\left(x^{3}-6 x^{2}+12 x-8\right) d x \\
& =\left[\frac{1}{4} x^{4}-2 x^{3}+6 x^{2}-8 x\right]_{0}^{2} \\
& =-4
\end{aligned}
$$

[4] (b) We have already found that

$$
\left\|\mathbf{R}_{u}(u, v) \times \mathbf{R}_{v}(u, v)\right\|=\sqrt{1+u^{2}}
$$

Furthermore, the integrand can be written $x z=u v \cos (v)$. Hence

$$
\iint_{S} y z d S=\int_{0}^{1} \int_{0}^{\pi} u v \sin (v) \sqrt{1+u^{2}} d v d u
$$

The integral with respect to v can be evaluated by parts, giving

$$
\iint_{S} x z d S=\pi \int_{0}^{1} u \sqrt{1+u^{2}} d u
$$

Now let $w=1+u^{2}$ so $\frac{1}{2} d w=u d u$. When $u=0, w=1$ and when $u=1, w=2$. The integral becomes

$$
\begin{aligned}
\iint_{S} x z d S & =\frac{\pi}{2} \int_{1}^{2} \sqrt{w} d w \\
& =\frac{\pi}{2}\left[\frac{2}{3} w^{\frac{3}{2}}\right]_{1}^{2} \\
& =\frac{\pi}{3}(2 \sqrt{2}-1)
\end{aligned}
$$

[5] 3. (a) In the $x y$-plane, the plane $x+y+z=1$ becomes the line $x+y=1$, while the plane $x+2 y+z=1$ becomes the line $x+2 y=1$. Furthermore, $x=0$ and $y=0$ are boundary curves because we are only interested in the first octant. The projection of E in the $x y$-plane is then most easily viewed as a Type 1 region (that is, with boundary curves that are functions of x) so we can rewrite the lines as $y=1-x$ and $y=\frac{1}{2}-\frac{1}{2} x$. Then the projection is bounded by $\frac{1}{2}-\frac{1}{2} x \leq y \leq 1-x$ and $0 \leq x \leq 1$. Furthermore, since E itself is bounded by the surfaces $z=1-x-y$ and $z=1-x-2 y$, it is defined by $1-x-2 y \leq z \leq 1-x-y$. Thus

$$
\begin{aligned}
V=\iiint_{E} d V & =\int_{0}^{1} \int_{\frac{1}{2}-\frac{1}{2} x}^{1-x} \int_{1-x-2 y}^{1-x-y} d z d y d x \\
& =\int_{0}^{1} \int_{\frac{1}{2}-\frac{1}{2} x}^{1-x}[z]_{z=1-x-2 y}^{z=1-x-y} d y d x \\
& =\int_{0}^{1} \int_{\frac{1}{2}-\frac{1}{2} x}^{1-x} y d y d x \\
& =\int_{0}^{1}\left[\frac{1}{2} y^{2}\right]_{y=\frac{1}{2}-\frac{1}{2} x}^{y=1-x} d x \\
& =\frac{1}{8} \int_{0}^{1}\left(3 x^{2}-6 x+3\right) d x \\
& =\frac{1}{8}\left[x^{3}-3 x^{2}+3 x\right]_{0}^{1} \\
& =\frac{1}{8}
\end{aligned}
$$

[4] (b) We can set up the iterated version of this triple integral exactly as in part (a), since the
change of integrand does not affect the geometry of the problem. Thus

$$
\begin{aligned}
\iiint_{E}(x+y) d V & =\int_{0}^{1} \int_{\frac{1}{2}-\frac{1}{2} x}^{1-x} \int_{1-x-2 y}^{1-x-y}(x+y) d z d y d x \\
& =\int_{0}^{1} \int_{\frac{1}{2}-\frac{1}{2} x}^{1-x}[(x+y) z]_{z=1-x-2 y}^{z=1-x-y} d y d x \\
& =\int_{0}^{1} \int_{\frac{1}{2}-\frac{1}{2} x}^{1-x}\left(x y+y^{2}\right) d y d x \\
& =\int_{0}^{1}\left[\frac{1}{2} x^{2} y+x y^{2}\right]_{x=\frac{1}{2}-\frac{1}{2} x}^{x=1-x} d x \\
& =\frac{1}{24} \int_{0}^{1}\left(2 x^{3}+3 x^{2}-12 x+7\right) d x \\
& =\frac{1}{24}\left[\frac{1}{2} x^{4}+x^{3}-6 x^{2}+7 x\right]_{0}^{1} \\
& =\frac{5}{48}
\end{aligned}
$$

[5] 4. The projection of E onto the $x y$-plane consists of the unit circle, which in Cartesian coordinates can be defined by $-\sqrt{1-x^{2}} \leq y \leq \sqrt{1-x^{2}}$ and $-1 \leq x \leq 1$. (Alternatively, we could also use $-\sqrt{1-y^{2}} \leq x \leq \sqrt{1-y^{2}}$ and $-1 \leq y \leq 1$.) Since E itself is bounded by $0 \leq z \leq y$ we have

$$
\begin{aligned}
\iiint_{E}(x+y) z d V & =\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}} \int_{0}^{y}(x+y) z d z d y d x \\
& =\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\left[\frac{1}{2}(x+y) z^{2}\right]_{z=0}^{z=y} d y d x \\
& =\frac{1}{2} \int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{\sqrt{1-x^{2}}}\left(x y^{2}+y^{3}\right) d y d x \\
& =\frac{1}{2} \int_{-1}^{1}\left[\frac{1}{3} x y^{3}+\frac{1}{4} y^{4}\right]_{y=-\sqrt{1-x^{2}}}^{y=\sqrt{1-x^{2}}} d x \\
& =\frac{1}{3} \int_{-1}^{1} x\left(1-x^{2}\right)^{\frac{3}{2}} d x
\end{aligned}
$$

Let $u=1-x^{2}$ so $-\frac{1}{2} d u=x d x$. When $x=-1, u=0$ and when $x=1, u=0$. Since the bounds of integration are now the same, we immediately have

$$
\iiint_{E}(x+y) z d V=0
$$

