MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[4] 1. (a) We have

$$
\nabla f(x, y)=\left\langle 2 x y^{3}, 3 x^{2} y^{2}\right\rangle \quad \text { and } \quad \nabla f(2,-1)=\langle-4,12\rangle
$$

A unit vector in the direction of \mathbf{v} is

$$
\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}=\left\langle-\frac{3}{5}, \frac{4}{5}\right\rangle .
$$

Hence

$$
\begin{aligned}
D_{\mathbf{u}} f(2,-1) & =\nabla f(2,-1) \cdot \mathbf{u} \\
& =\langle-4,12\rangle \cdot\left\langle-\frac{3}{5}, \frac{4}{5}\right\rangle \\
& =\frac{12}{5}+\frac{48}{5} \\
& =12 .
\end{aligned}
$$

[4]
(b) We have

$$
\nabla f(x, y, z)=\left\langle e^{-y z},-x z e^{-y z},-x y e^{-y z}\right\rangle \quad \Longrightarrow \quad \nabla f(1,0,-3)=\langle 1,3,0\rangle
$$

A unit vector in the direction of \mathbf{v} is

$$
\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}=\left\langle\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}}\right\rangle=\left\langle\frac{\sqrt{6}}{6},-\frac{\sqrt{6}}{6},-\frac{\sqrt{6}}{3}\right\rangle .
$$

Hence

$$
\begin{aligned}
D_{\mathbf{u}} f(1,0,-3) & =\nabla f(1,0,-3) \cdot \mathbf{u} \\
& =\langle 1,3,0\rangle \cdot\left\langle\frac{\sqrt{6}}{6},-\frac{\sqrt{6}}{6},-\frac{\sqrt{6}}{3}\right\rangle \\
& =\frac{\sqrt{6}}{6}-\frac{\sqrt{6}}{2} \\
& =-\frac{\sqrt{6}}{3} .
\end{aligned}
$$

[3]
2. (a) We have

$$
\nabla T(x, y, z)=\left\langle\frac{\cos (x) \cos (y)}{z^{2}+1}, \frac{-\sin (x) \sin (y)}{z^{2}+1},-\frac{2 z \sin (x) \cos (y)}{\left(z^{2}+1\right)^{2}}\right\rangle
$$

so

$$
\nabla T(0,0,0)=\langle 1,0,0\rangle=\mathbf{i}
$$

Hence this is the direction in which the maximum rate of change occurs, and its magnitude is

$$
\|\nabla T(0,0,0)\|=1
$$

that is, the temperature increases by at most $1^{\circ} \mathrm{C}$ per metre.
[2] (b) The drone's direction is described by the vector $\mathbf{v}=\langle 10,5,10\rangle$ with corresponding unit vector

$$
\mathbf{u}=\frac{\mathbf{v}}{\|\mathbf{v}\|}=\left\langle\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right\rangle
$$

Hence the rate of change of the temperature in this direction is given by

$$
\begin{aligned}
D_{\mathbf{u}} T(0,0,0) & =\nabla T(0,0,0) \cdot \mathbf{u} \\
& =\langle 1,0,0\rangle \cdot\left\langle\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right\rangle \\
& =\frac{2}{3},
\end{aligned}
$$

that is, the temperature increases at a rate of $\frac{2^{\circ}}{}{ }^{\circ} \mathrm{C}$ per metre.
3. We have

$$
\nabla f(x, y)=\langle 2 x+y \cos (x y), x \cos (x y)\rangle \quad \Longrightarrow \quad \nabla f(1,0)=\langle 2,1\rangle
$$

Given an arbitrary unit vector $\mathbf{u}=\langle a, b\rangle$ we then have

$$
\begin{aligned}
D_{\mathbf{u}} f(1,0) & =\nabla f(1,0) \cdot \mathbf{u} \\
& =\langle 2,1\rangle \cdot\langle a, b\rangle \\
& =2 a+b .
\end{aligned}
$$

We set $2 a+b=0$ so then $b=-2 a$. Thus any such vector will have the form

$$
\mathbf{u}=\langle a,-2 a\rangle .
$$

This will be a unit vector if

$$
a^{2}+(-2 a)^{2}=1 \quad \Longrightarrow \quad 5 a^{2}=1 \quad \Longrightarrow \quad a= \pm \frac{\sqrt{5}}{5}
$$

Thus the two desired unit vectors are

$$
\left\langle\frac{\sqrt{5}}{5},-\frac{2 \sqrt{5}}{5}\right\rangle \quad \text { and } \quad\left\langle-\frac{\sqrt{5}}{5}, \frac{2 \sqrt{5}}{5}\right\rangle .
$$

[4] 4. On the lefthand side, we have

$$
\nabla(f g)=\left\langle\frac{d}{d x}[f g], \frac{d}{d y}[f g]\right\rangle=\left\langle f_{x} g+g_{x} f, f_{y} g+g_{y} f\right\rangle
$$

On the righthand side, we have

$$
\begin{aligned}
f \nabla g+g \nabla f & =f\left\langle g_{x}, g_{y}\right\rangle+g\left\langle f_{x}, f_{y}\right\rangle \\
& =\left\langle f g_{x}, f g_{y}\right\rangle+\left\langle g f_{x}, g f_{y}\right\rangle \\
& =\left\langle f g_{x}+g f_{x}, f g_{y}+g f_{y}\right\rangle \\
& =\left\langle f_{x} g+g_{x} f, f_{y} g+g_{y} f\right\rangle \\
& =\nabla(f g)
\end{aligned}
$$

as required.
5. (a) We can treat the ellipsoid as a level surface $f(x, y, z)=1$ where

$$
f(x, y, z)=5 x^{2}+y^{2}+3 z^{2}
$$

Thus

$$
\nabla f(x, y, z)=\langle 10 x, 2 y, 6 z\rangle
$$

and so a normal to the tangent plane is

$$
\mathbf{n}=\nabla f(1,4,-1)=\langle 10,8,-6\rangle
$$

The equation of the tangent plane is therefore

$$
\begin{aligned}
\mathbf{n} \cdot\left(\mathbf{x}-\mathbf{x}_{0}\right) & =0 \\
\langle 10,8,-6\rangle \cdot\langle x-1, y-4, z+1\rangle & =0 \\
10(x-1)+8(y-4)-6(z+1) & =0 \\
10 x+8 y-6 z & =48 \\
5 x+4 y-3 z & =24 .
\end{aligned}
$$

[2] (b) The normal vector $\mathbf{n}=\langle 10,8,-6\rangle$ to the tangent plane will also serve as a direction vector for the normal line. Thus its equation is

$$
\langle x, y, z\rangle=\langle 1,4,-1\rangle+t\langle 10,8,-6\rangle=\langle 1+10 t, 4+8 t,-1-6 t\rangle .
$$

[6] 6. We can treat the hyperbolic paraboloid as a level surface $f(x, y, z)=0$ where

$$
f(x, y, z)=\frac{x^{2}}{4}-\frac{y^{2}}{3}-z
$$

Thus

$$
\nabla f(x, y, z)=\left\langle\frac{1}{2} x,-\frac{2}{3} y,-1\right\rangle
$$

and so a normal vector to the tangent plane at the point $P\left(x_{0}, y_{0}, z_{0}\right)$ will be

$$
\mathbf{n}=\left\langle\frac{1}{2} x_{0},-\frac{2}{3} y_{0},-1\right\rangle
$$

In order for a tangent plane to be parallel to the indicated plane, its normal vector must be parallel to the vector $\langle 1,4,6\rangle$. Thus there must exist a constant k for which

$$
\frac{1}{2} x_{0}=k, \quad-\frac{2}{3} y_{0}=4 k, \quad-1=6 k .
$$

From the latter equation $k=-\frac{1}{6}$ and therefore $x_{0}=-\frac{1}{3}$ and $y_{0}=1$. Since P must lie on the hyperbolic paraboloid, then,

$$
z_{0}=\frac{\left(-\frac{1}{3}\right)^{2}}{4}-\frac{1^{2}}{3}=-\frac{11}{36}
$$

Therefore the equation of the tangent plane must be

$$
\begin{aligned}
\left\langle-\frac{1}{6},-\frac{2}{3},-1\right\rangle \cdot\left\langle x+\frac{1}{3}, y-1, z+\frac{11}{36}\right\rangle & =0 \\
-\frac{1}{6} x-\frac{1}{18}-\frac{2}{3} y+\frac{2}{3}-z-\frac{11}{36} & =0 \\
-\frac{1}{6} x-\frac{2}{3} y-z & =-\frac{11}{36} \\
x+4 y+6 z & =\frac{11}{6} \\
6 x+24 y+36 z & =11 .
\end{aligned}
$$

[5] 7. We can treat the sphere as a level surface $f(x, y, z)=R^{2}$ where

$$
f(x, y, z)=(x-a)^{2}+(y-b)^{2}+(z-c)^{2}
$$

Hence

$$
\nabla f(x, y, z)=\langle 2(x-a), 2(y-b), 2(z-c)\rangle
$$

At any point $P\left(x_{0}, y_{0}, z_{0}\right)$, a direction vector for the normal line will be

$$
\nabla f\left(x_{0}, y_{0}, z_{0}\right)=\left\langle 2 x_{0}-2 a, 2 y_{0}-2 b, 2 z_{0}-2 c\right\rangle
$$

and therefore the equation of the normal line will be

$$
\begin{aligned}
\langle x, y, z\rangle & =\left\langle x_{0}, y_{0}, z_{0}\right\rangle+t\left\langle 2 x_{0}-2 a, 2 y_{0}-2 b, 2 z_{0}-2 c\right\rangle \\
& =\left\langle x_{0}+2 t x_{0}-2 a t, y_{0}+2 t y_{0}-2 b t, z_{0}+2 t z_{0}-2 c t\right\rangle \\
& =\left\langle(2 t+1) x_{0}-2 a t,(2 t+1) y_{0}-2 b t,(2 t+1) z_{0}-2 c t\right\rangle .
\end{aligned}
$$

The centre of the sphere is the point (a, b, c) and we can see that the point lies on the normal line when $t=-\frac{1}{2}$. Hence the centre of the sphere lies on every normal line.

