MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[2]
(b) The speed function is

$$
\begin{aligned}
v(t)=\|\mathbf{v}(t)\| & =\sqrt{\left[e^{t} \sin (t)+e^{t} \cos (t)\right]^{2}+\left[e^{t} \cos (t)-e^{t} \sin (t)\right]^{2}+0^{2}} \\
& =\sqrt{2 e^{2 t} \sin ^{2}(t)+2 e^{2 t} \cos ^{2}(t)} \\
& =\sqrt{2 e^{2 t}} \\
& =\sqrt{2} e^{t}
\end{aligned}
$$

[2]
(c) The acceleration vector function is

$$
\begin{aligned}
\mathbf{a}(t)= & \left\langle e^{t} \sin (t)+e^{t} \cos (t)+e^{t} \cos (t)-e^{t} \sin (t),\right. \\
& \left.e^{t} \cos (t)-e^{t} \sin (t)-e^{t} \sin (t)-e^{t} \cos (t), 0\right\rangle \\
= & \left\langle 2 e^{t} \cos (t),-2 e^{t} \sin (t), 0\right\rangle .
\end{aligned}
$$

[2]
(d) The tangential component of the acceleration is given by

$$
\begin{aligned}
a_{T}(t)=\frac{\mathbf{a}(t) \cdot \mathbf{v}(t)}{\|\mathbf{v}(t)\|} & =\frac{-2 e^{2 t} \cos (t) \sin (t)+2 e^{2 t} \sin ^{2}(t)+2 e^{2 t} \cos ^{2}(t)+2 e^{2 t} \cos (t) \sin (t)}{\sqrt{2} e^{t}} \\
& =\frac{2 e^{2 t}}{\sqrt{2} e^{t}} \\
& =\sqrt{2} e^{t} .
\end{aligned}
$$

[2]
(e) We have

$$
\mathbf{a} \times \mathbf{v}=\left\langle 0,0,-2 e^{2 t}\right\rangle
$$

Thus the normal component of the acceleration is given by

$$
\begin{aligned}
a_{N}(t)=\frac{\|\mathbf{a}(t) \times \mathbf{v}(t)\|}{\|\mathbf{v}(t)\|} & =\frac{2 e^{2 t}}{\sqrt{2} e^{t}} \\
& =\sqrt{2} e^{t}
\end{aligned}
$$

Thus we have the unusual case that $a_{T}(t)=a_{N}(t)$.
[7] 2. We suppose that Peter is at a point with coordinates $(x, y)=(0,5)$ so that $\mathbf{r}(0)=\langle 0,5\rangle$. Since the angle of the shot is 30°, a corresponding unit vector is $\left\langle\cos \left(30^{\circ}\right), \sin \left(30^{\circ}\right)\right\rangle=$ $\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle$. Thus, since the initial speed of the paintball is $20 \mathrm{~m} / \mathrm{sec}$, we have that

$$
\mathbf{v}(0)=20\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle=\langle 10 \sqrt{3}, 10\rangle
$$

We want to find the x-coordinate of the point where the paintball lands, and determine whether this is less than, greater than, or equal to 50 .
Assuming that gravity is the only force acting on the paintball, we have

$$
\mathbf{a}(t)=\langle 0,-9.8\rangle
$$

Thus

$$
\mathbf{v}(t)=\int \mathbf{a}(t) d t=\left\langle C_{1},-9.8 t+C_{2}\right\rangle
$$

Substituting $t=0$ we get

$$
\mathbf{v}(0)=\left\langle C_{1}, C_{2}\right\rangle
$$

and so $C_{1}=10 \sqrt{3}$ and $C_{2}=10$. Hence

$$
\mathbf{v}(t)=\langle 10 \sqrt{3},-9.8 t+10\rangle
$$

Next,

$$
\mathbf{r}(t)=\int \mathbf{v}(t) d t=\left\langle 10 \sqrt{3} t+D_{1},-4.9 t^{2}+10 t+D_{2}\right\rangle
$$

Again substituting $t=0$ we obtain

$$
\mathbf{r}(0)=\left\langle D_{1}, D_{2}\right\rangle
$$

so $D_{1}=0$ and $D_{2}=5$. Now we know that

$$
\mathbf{r}(t)=\left\langle 10 \sqrt{3} t,-4.9 t^{2}+10 t+5\right\rangle
$$

Finally, we need to determine when the paintball will strike the ground - that is, when $y=0$. Thus we set

$$
-4.9 t^{2}+10 t+5=0
$$

and find that $t \approx-0.42$ or $t \approx 2.46$. By convention, we neglect the negative option and find that, in the latter case,

$$
x \approx 10 \sqrt{3}(2.46)=42.54
$$

Hence the paintball travels only about 42.5 metres along the ground, making this an undershoot and missing Jodie.
[3] 3. Since the two planes are parallel, they must share the same normal $\langle 9,2,6\rangle$. Hence the equation of the desired plane is given by

$$
\begin{aligned}
\langle 9,2,6\rangle \cdot\langle x-2, y-0, z+1\rangle & =0 \\
9(x-2)+2 y+6(z+1) & =0 \\
9 x+2 y+6 z & =12 .
\end{aligned}
$$

[3] 4. The $x=0$ trace is

$$
-4 y+9 z^{2}=1 \quad \Longrightarrow \quad y=\frac{9}{4} z^{2}-\frac{1}{4}
$$

which is a parabola.
The $y=0$ trace is

$$
x^{2}+9 z^{2}=1
$$

which is an ellipse.
The $z=0$ trace is

$$
x^{2}-4 y=1 \quad \Longrightarrow \quad y=\frac{1}{4} x^{2}-\frac{1}{4}
$$

which is also a parabola.
5. (a) The standard form of an ellipsoid centred at $(0,0,0)$ is given by

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

so this is an ellipsoid with $a=\sqrt{5}, b=\sqrt{6}$ and $c=\sqrt{7}$.
(b) We can rearrange the given expression as

$$
\begin{equation*}
z^{2}=1-x^{2}-3 y^{2} \quad \Longrightarrow \quad x^{2}+3 y^{2}+z^{2}=1 \tag{2}
\end{equation*}
$$

so this is a semi-ellipsoid (since $z \geq 0$ only) with $a=c=1$ and $b=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$.
(c) This is not an ellipsoid, but rather an elliptic paraboloid with vertex at $(0,0)$, of the form

$$
\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

for $a=1$ and $b=\frac{\sqrt{3}}{3}$. (We might also note that, unlike an ellipsoid for which all the traces are ellipses, in this curve only the $z=k$ traces are ellipses. The $x=k$ and $y=k$ traces are parabolas.)
(d) Since this expression has both quadratic and linear terms, we should complete the square as necessary. First,

$$
6 x^{2}+48 x=6\left(x^{2}+8 x\right)=6(x+4)^{2}-96
$$

There is no linear term in y, so we next consider

$$
4 z^{2}-4 z=4\left(z^{2}-z\right)=4\left(z-\frac{1}{2}\right)^{2}-1
$$

Thus this expression can be rewritten

$$
\begin{aligned}
{\left[6(x+4)^{2}-96\right]+12 y^{2}+\left[4\left(z-\frac{1}{2}\right)^{2}-1\right]+85 } & =0 \\
6(x+4)^{2}+12 y^{2}+4\left(z-\frac{1}{2}\right)^{2} & =12 \\
\frac{(x+4)^{2}}{2}+y^{2}+\frac{\left(z-\frac{1}{2}\right)^{2}}{3} & =1
\end{aligned}
$$

This is the equation of an ellipsoid centred at $\left(-4,0, \frac{1}{2}\right)$ with $a=\sqrt{2}, b=1$ and $c=\sqrt{3}$.
(e) This is a surface with parametric equations

$$
\begin{equation*}
x=3 \cos (u) \sin (v), \quad y=\frac{1}{2} \sin (u) \sin (v), \quad z=2 \cos (v) . \tag{3}
\end{equation*}
$$

Then observe that

$$
\begin{aligned}
\left(\frac{x}{3}\right)^{2}+(2 y)^{2}+\left(\frac{z}{2}\right)^{2} & =\cos ^{2}(u) \sin ^{2}(v)+\sin ^{2}(u) \sin ^{2}(v)+\cos ^{2}(v) \\
& =\sin ^{2}(v)+\cos ^{2}(v) \\
& =1
\end{aligned}
$$

Hence this is an ellipsoid with $a=3, b=\frac{1}{2}$ and $c=2$.
[4] 6. First note that, at the given point,

$$
z=f(3,1)=9-\frac{1}{2}=\frac{17}{2}
$$

Next we have

$$
f_{x}(x, y)=2 x \sqrt{y} \quad \Longrightarrow \quad f_{x}(3,1)=6
$$

and

$$
f_{y}(x, y)=\frac{x^{2}}{2 \sqrt{y}}+\frac{5}{2 y^{6}} \quad \Longrightarrow \quad f_{y}(3,1)=\frac{9}{2}+\frac{5}{2}=7
$$

Thus a normal to the tangent plane is $\mathbf{n}=\langle 6,7,-1\rangle$ and so an equation of the tangent plane is

$$
\begin{aligned}
\langle 6,7,-1\rangle \cdot\left\langle x-3, y-1, z-\frac{17}{2}\right\rangle & =0 \\
6 x-18+7 y-7-z+\frac{17}{2} & =0 \\
6 x+7 y-z & =\frac{33}{2} \\
12 x+14 y-2 z & =33
\end{aligned}
$$

