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SOLUTIONS

1. (a) All of the traces are ellipses, so this is an ellipsoid.

(b) Two of the traces are hyperbolas and the other is an ellipse, so this is a hyperboloid (of
one sheet).

(¢) Again, two of the traces and hyperbolas and the other is an ellipse, so this is also a
hyperboloid. Furthermore, the constant term is zero so this is specifically a cone.

(d) Two of the traces are parabolas and the third is an ellipse, so this is an elliptic paraboloid.

(e) Two of the traces are parabolas and the third is a hyperbola, so this is a hyperbolic
paraboloid.

(f) All of the traces are lines, so this is a plane.

2. We can treat the surface as a level surface of the function

f(xayaz) = l’2 _ny +ZQ
where f(x,y,z) = 13. Note that when x = 3 and y = —2, we have
9-12+2°=13 = 2*=16

and so z = 4 since we are given that P is located above the zy-plane (that is, for z > 0).
Thus P is the point (3, —2,4). Since

Vf={2r—vy* —2xy, 22)
a normal to the tangent plane must be
n=Vf(3-24)=(2 12, 8).
The equation of the tangent plane is therefore

n-(x—x9) =0

(2,12, 8) - (=3, y+2, z—4) =0
20 + 12y + 82 =14

x+6y+42="7.
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3. A unit vector in the direction of v is given by
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Furthermore,
Vf=(sin(2y — x), —2sin(2y — x))
SO |
T
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4. The given surface can be written

2
e=3-Ze-2=f(ay)

so an increment of surface area is given by

\/[fac(:v,y)]2 + (@, y)? +1dA = \/(—g) +(-2)2+1dA = \/%dA = gdA.

In the zy-plane, the surface becomes
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The region of integration is bounded by this diagonal line, as well as the lines x = 0 and

y = 0 (because we are told that S lies in the first octant). Since the diagonal line has x = 2

2
as its z-intercept, the region of integration is given by
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Thus
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Note that we could instead treat the region of integration as being bounded by

3
—3y and 0<y<

0<z < e
ST = =35
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in which case the iterated integral would be
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. We have
R,=(2,0, 3vy) and R, = (0, 20, 3u).
Thus
R, x R, = (—6v?, —6u, 4v)
and so

IR, x R, || = V360t + 36u2 + 1602 = 2v9v* + Ju? + v2.

Thus an increment of surface area is given by

dS = 2v/9vt + 9u2 + v2 dA.
Under the given parametrisation, the integrand becomes
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Hence
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:/ / =2Vt + 9u2 + w2 dudv
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4 2 u
= 6/ V9% + 9u2 + v2 du dv.
1 Jo U

Since the limits of integration are all constants, we could equivalently write this as

zZ 2 4u
//—d5:6/ / V9% + 9u2 + 02 dv du.
g Yy o J1 U

. In the zy-plane, the surface z = x — y becomes 0 = x — y so y = x. Thus the region of

integration is bounded by y = x and y = x?, which meet at the points (0,0) and (1, 1). Since
the diagonal line is above the the parabola on the interval [0, 1], we have

x2§y§x and 0<zx <1.

Furthermore,
0<z<>r—y

since the solid E is bounded by the zy-plane (that is, the plane z = 0). Thus
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Note that, since the diagonal line lies to the left of the positive branch of the parabola, we
could instead treat the region of integration as being determined by

y<z<,y and 0<y<lL

Hence the iterated integral could also be written

/E//dV:/Ol/yﬂ/ow_ydzdxdy.

. Since

Vz= (2, 2)

we can write

= (n2""'z,, nz""'z,)
=nz""Nz 2,)
=nz""'Vz,

as required.



