MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

SOLUTIONS

[3] 1. (a) First,

$$
\left[\frac{1}{\sqrt{9-t^{2}}}\right]^{\prime}=\left[\left(9-t^{2}\right)^{-\frac{1}{2}}\right]^{\prime}=t\left(9-t^{2}\right)^{-\frac{3}{2}}=\frac{t}{\left(9-t^{2}\right)^{\frac{3}{2}}}
$$

Next,

$$
\left[\frac{t}{\sqrt{16+t^{2}}}\right]^{\prime}=\frac{\sqrt{16+t^{2}}-t^{2}\left(16+t^{2}\right)^{-\frac{1}{2}}}{16+t^{2}}=\frac{16}{\left(16+t^{2}\right)^{\frac{3}{2}}}
$$

Finally,

$$
[t \cos (\pi t)]^{\prime}=\cos (\pi t)-\pi t \sin (\pi t)
$$

Hence

$$
\mathbf{r}^{\prime}(t)=\left\langle\frac{t}{\left(9-t^{2}\right)^{\frac{3}{2}}}, \frac{16}{\left(16+t^{2}\right)^{\frac{3}{2}}}, \cos (\pi t)-\pi t \sin (\pi t)\right\rangle
$$

[5] (b) First,

$$
\int \frac{1}{\sqrt{9-t^{2}}} d t=\arcsin \left(\frac{t}{3}\right)+C_{1}
$$

Second, if we let $u=16+t^{2}$ so $\frac{1}{2} d u=t d t$ then

$$
\int \frac{t}{\sqrt{16+t^{2}}} d t=\frac{1}{2} \int u^{-\frac{1}{2}} d u=\sqrt{u}+C_{2}=\sqrt{16+t^{2}}+C_{2}
$$

Third, using integration by parts,

$$
\int t \cos (\pi t) d t=\frac{1}{\pi} t \sin (\pi t)-\frac{1}{\pi} \int \sin (\pi t) d t=\frac{1}{\pi} t \sin (\pi t)+\frac{1}{\pi^{2}} \cos (\pi t)+C_{3}
$$

Hence

$$
\int \mathbf{r}(t) d t=\left\langle\arcsin \left(\frac{t}{3}\right)+C_{1}, \sqrt{16+t^{2}}+C_{2}, \frac{1}{\pi} t \sin (\pi t)+\frac{1}{\pi^{2}} \cos (\pi t)+C_{3}\right\rangle
$$

(c) Using the results from part (b), we have

$$
\begin{aligned}
\int_{0}^{3} \frac{1}{\sqrt{9-t^{2}}} d t & =\left[\arcsin \left(\frac{t}{3}\right)\right]_{0}^{3}=\arcsin (1)-\arcsin (0)=\frac{\pi}{2}-0=\frac{\pi}{2} \\
\int_{0}^{3} \frac{t}{\sqrt{16+t^{2}}} d t & =\left[\sqrt{16+t^{2}}\right]_{0}^{3}=5-4=1 \\
\int_{0}^{3} t \cos (\pi t) d t & =\left[\frac{1}{\pi} t \sin (\pi t)+\frac{1}{\pi^{2}} \cos (\pi t)\right]_{0}^{3}=0-\frac{1}{\pi^{2}}-0-\frac{1}{\pi^{2}}=-\frac{2}{\pi^{2}}
\end{aligned}
$$

Thus

$$
\int_{0}^{3} \mathbf{r}(t) d t=\left\langle\frac{\pi}{2}, 1,-\frac{2}{\pi^{2}}\right\rangle
$$

[3] 2. We have

$$
z(t) \mathbf{v}(t)=z(t)\langle f(t), g(t)\rangle=\langle z(t) f(t), z(t) g(t)\rangle
$$

so the lefthand side becomes

$$
[z(t) \mathbf{v}(t)]^{\prime}=[\langle z(t) f(t), z(t) g(t)\rangle]^{\prime}=\left\langle z^{\prime}(t) f(t)+z(t) f^{\prime}(t), z^{\prime}(t) g(t)+z(t) g^{\prime}(t)\right\rangle
$$

On the righthand side, we have

$$
z^{\prime}(t) \mathbf{v}(t)=z^{\prime}(t)\langle f(t), g(t)\rangle=\left\langle z^{\prime}(t) f(t), z^{\prime}(t) g(t)\right\rangle
$$

and

$$
z(t) \mathbf{v}^{\prime}(t)=z(t)\left\langle f^{\prime}(t), g^{\prime}(t)\right\rangle=\left\langle z(t) f^{\prime}(t), z(t) g^{\prime}(t)\right\rangle
$$

Hence

$$
z^{\prime}(t) \mathbf{v}(t)+z(t) \mathbf{v}^{\prime}(t)=\left\langle z^{\prime}(t) f(t)+z(t) f^{\prime}(t), z^{\prime}(t) g(t)+z(t) g^{\prime}(t)\right\rangle=[z(t) \mathbf{v}(t)]^{\prime}
$$

as required.
3. (a) We have $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}-5,2 t,-4\right\rangle$ so $\mathbf{r}^{\prime}(2)=\langle 7,4,-4\rangle$ and

$$
\left\|\mathbf{r}^{\prime}(2)\right\|=\sqrt{7^{2}+4^{2}+(-4)^{2}}=9
$$

Hence

$$
\begin{equation*}
\mathbf{T}(2)=\frac{\mathbf{r}^{\prime}(2)}{\left\|\mathbf{r}^{\prime}(2)\right\|}=\left\langle\frac{7}{9}, \frac{4}{9},-\frac{4}{9}\right\rangle \tag{2}
\end{equation*}
$$

(b) We know that both $\mathbf{r}^{\prime}(2)$ and $\mathbf{T}^{\prime}(2)$ are vectors pointing in the direction of the tangent line, and since $\mathbf{r}(2)=\langle-2,4,-8\rangle$ the point $(-2,4,-8)$ lies on the tangent line. Thus two possible parametrisations are

$$
\mathbf{r}(t)=\langle-2+7 t, 4+4 t,-8-4 t\rangle \quad \text { and } \quad \mathbf{r}(t)=\left\langle-2+\frac{7}{9} t, 4+\frac{4}{9} t,-8-\frac{4}{9} t\right\rangle .
$$

[3] 4. (a) We have $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}-3,2 t-2,4 t^{3}-4 t\right\rangle$ and this is continuous for all t. We need to determine whether there is any value of t for which $\mathbf{r}^{\prime}(t)=\mathbf{0}$ so first we set

$$
3 t^{2}-3=0 \quad \Longrightarrow \quad t^{2}=1 \quad \Longrightarrow \quad t= \pm 1
$$

For $t=1$,

$$
2 t-2=0 \quad \text { and } \quad 4 t^{3}-4 t=0
$$

Hence $\mathbf{r}(t)$ is not smooth. (We could also observe that $\mathbf{r}^{\prime}(-1) \neq \mathbf{0}$, but this does not alter our conclusion.)
[3] (b) We have $\mathbf{r}^{\prime}(t)=\left\langle 3 t^{2}-3,2 t+2,4 t^{3}+4 t\right\rangle$ which is also continuous for all t. Again we set

$$
3 t^{2}-3=0 \quad \Longrightarrow \quad t= \pm 1
$$

as before. This time, when $t=1$,

$$
2 t+2=4 \quad \text { and } \quad 4 t^{3}+4 t=8
$$

Furthermore, when $t=-1$,

$$
2 t+2=0 \quad \text { but } \quad 4 t^{3}+4 t=-8
$$

Since there is no value of t for which $\mathbf{r}^{\prime}(t)=\mathbf{0}$, we conclude that $\mathbf{r}(t)$ is smooth.
[4] 5. In order for the two curves to intersect, we must have $t=t^{2}, 1-2 t=-t^{2}$, and $2 t=t^{2}+1$. Thus we solve

$$
t=t^{2} \quad \Longrightarrow \quad t^{2}-t=0 \quad \Longrightarrow \quad t(t-1)=0
$$

and so $t=0$ or $t=1$. If $t=0$, the other two equations are inconsistent. However, when $t=1$ we have $1-2 t=-t^{2}=-1$ and $2 t=t^{2}+1=2$. Hence the curves intersect at $t=1$. The angle of intersection θ will be determined by the angle between the tangent lines - or, equivalently, the tangent vectors - to the two curves at $t=1$. The tangent vectors are

$$
\mathbf{r}_{1}^{\prime}(t)=\langle 1,-2,2\rangle=\mathbf{r}_{1}^{\prime}(1) \quad \text { and } \quad \mathbf{r}_{2}^{\prime}=\langle 2 t,-2 t, 2 t\rangle \quad \Longrightarrow \quad \mathbf{r}_{2}^{\prime}(1)=\langle 2,-2,2\rangle .
$$

We know that

$$
\mathbf{r}_{1}^{\prime} \cdot \mathbf{r}_{2}^{\prime}=\left\|\mathbf{r}_{1}^{\prime}\right\|\left\|\mathbf{r}_{2}^{\prime}\right\| \cos (\theta)
$$

and so

$$
10=3 \sqrt{12} \cos (\theta) \quad \Longrightarrow \quad \cos (\theta)=\frac{10}{3 \sqrt{12}}=\frac{5 \sqrt{3}}{9} .
$$

[5] 6. We have

$$
\mathbf{r}^{\prime}(t)=\left\langle 4 t, 3 t, 3 t^{2}\right\rangle \quad \Longrightarrow \quad\left\|\mathbf{r}^{\prime}(t)\right\|=\sqrt{16 t^{2}+9 t^{2}+9 t^{4}}=t \sqrt{25+9 t^{2}}
$$

Thus, if we let $u=25+9 t^{2}$ so $\frac{1}{18} d u=t d t$,

$$
\begin{aligned}
L & =\int_{0}^{4} t \sqrt{25+9 t^{2}} d t \\
& =\frac{1}{18} \int_{25}^{169} \sqrt{u} d u \\
& =\frac{1}{27}\left[u^{\frac{3}{2}}\right]_{25}^{169} \\
& =\frac{2072}{27}
\end{aligned}
$$

[5] 7. (a) We have $\mathbf{r}^{\prime}(t)=\left\langle e^{t} \cos (t)-e^{t} \sin (t), e^{t} \sin (t)+e^{t} \cos (t), e^{t}\right\rangle=e^{t}\langle\cos (t)-\sin (t), \sin (t)+\cos (t), 1\rangle$ so

$$
\left\|\mathbf{r}^{\prime}(t)\right\|=e^{t} \sqrt{[\cos (t)-\sin (t)]^{2}+[\sin (t)+\cos (t)]^{2}+1^{2}}=e^{t} \sqrt{2 \cos ^{2}(t)+2 \sin ^{2}(t)+1}=e^{t} \sqrt{3} .
$$

Hence

$$
\begin{aligned}
s(t) & =\int_{0}^{t} e^{u} \sqrt{3} d u \\
& =\sqrt{3}\left[e^{u}\right]_{0}^{t} \\
& =\sqrt{3}\left(e^{t}-1\right) .
\end{aligned}
$$

[2] (b) From part (a) we have

$$
e^{t}=\frac{\sqrt{3}}{3} s+1 \quad \Longrightarrow \quad t=\ln \left(\frac{\sqrt{3}}{3} s+1\right)
$$

Thus

$$
\left.\left.\mathbf{r}(s)=\left\langle\left(\frac{\sqrt{3}}{3} s+1\right)\right) \cos \left(\ln \left(\frac{\sqrt{3}}{3} s+1\right)\right),\left(\frac{\sqrt{3}}{3} s+1\right)\right) \sin \left(\ln \left(\frac{\sqrt{3}}{3} s+1\right)\right), \frac{\sqrt{3}}{3} s+1\right\rangle
$$

