MEMORIAL UNIVERSITY OF NEWFOUNDLAND

DEPARTMENT OF MATHEMATICS AND STATISTICS

Test 1 MATH 3202 Spring 2019

SOLUTIONS

$$\lim_{t \to \frac{\pi}{4}} 2\cos(t) = 2\left(\frac{\sqrt{2}}{2}\right) = \sqrt{2}$$

and

$$\lim_{t \to \frac{\pi}{4}} 5 \sec^2(t) = \frac{5}{\left(\frac{\sqrt{2}}{2}\right)^2} = 10.$$

Hence

$$\lim_{t \to \frac{\pi}{4}} \mathbf{r}(t) = \left\langle \sqrt{2}, \ 10 \right\rangle.$$

$$[2\cos(t)]' = -2\sin(t)$$

and

$$[5 \sec^2(t)]' = 10 \sec(t) \cdot \sec(t) \tan(t) = 10 \sec^2(t) \tan(t).$$

Hence

$$\mathbf{r}'(t) = \langle -2\sin(t), 10\sec^2(t)\tan(t)\rangle.$$

[2] (c) We have

$$\int 2\cos(t) dt = 2\sin(t) + C_1$$

and

$$\int 5\sec^2(t) dt = 5\tan(t) + C_2.$$

Hence

$$\int \mathbf{r}(t) dt = \langle 2\sin(t) + C_1, 5\tan(t) + C_2 \rangle.$$

[3] (d) The parametric equations are

$$x = 2\cos(t)$$
 and $y = 5\sec^2(t)$.

Thus $\cos(t) = \frac{1}{2}x$ and hence

$$y = \frac{5}{\cos^2(t)} = \frac{5}{\left(\frac{1}{2}x\right)^2} = \frac{20}{x^2}.$$

However, only part of the curve with this equation is traced out because if $x = 2\cos(t)$ then $-2 \le x \le 2$. Thus $\mathbf{r}(t)$ only traces out of the portion of the curve which lies on this domain.

[6] 2. (a) We have

$$\mathbf{r}'(t) = \left\langle t^{\frac{1}{2}}, 1, \sqrt{2}t^{\frac{1}{2}} \right\rangle$$
$$\|\mathbf{r}'(t)\| = \sqrt{t+1+2t} = \sqrt{3t+1}.$$

SO

Then

$$s(t) = \int_0^t \|\mathbf{r}'(u)\| du$$

$$= \int_0^t \sqrt{3u + 1} du$$

$$= \left[\frac{2}{9}(3u + 1)^{\frac{3}{2}}\right]_0^t$$

$$= \frac{2}{9}(3t + 1)^{\frac{3}{2}} - \frac{2}{9}.$$

[3] (b) We can rearrange our expression for s to find that

$$t = \frac{1}{3} \left(\frac{9}{2} s + 1 \right)^{\frac{2}{3}} - \frac{1}{3}$$

and therefore

$$\mathbf{r}(s) = \left\langle \frac{2}{3} \left[\frac{1}{3} \left(\frac{9}{2} s + 1 \right)^{\frac{2}{3}} - \frac{1}{3} \right]^{\frac{3}{2}}, \ \frac{1}{3} \left(\frac{9}{2} s + 1 \right)^{\frac{2}{3}} - \frac{1}{3}, \ \frac{2\sqrt{2}}{3} \left[\frac{1}{3} \left(\frac{9}{2} s + 1 \right)^{\frac{2}{3}} - \frac{1}{3} \right]^{\frac{3}{2}} \right\rangle.$$

[5] (c) Since y = t, we can write

$$\int_{C} \frac{3y+1}{3} ds = \int_{0}^{1} \frac{3t+1}{3} \|\mathbf{r}'(t)\| dt$$

$$= \int_{0}^{1} \frac{3t+1}{3} \sqrt{3t+1} dt$$

$$= \frac{1}{3} \int_{0}^{1} (3t+1)^{\frac{3}{2}} dt$$

$$= \frac{1}{3} \left[\frac{2}{15} (3t+1)^{\frac{5}{2}} \right]_{0}^{1}$$

$$= \frac{1}{3} \left[\frac{64}{15} - \frac{2}{15} \right]$$

$$= \frac{62}{45}.$$

[12] 3. (a) We have

$$\mathbf{r}'(t) = \langle 3, 4\cos(t), -4\sin(t) \rangle$$

SO

$$\|\mathbf{r}'(t)\| = \sqrt{9 + 16\cos^2(t) + 16\sin^2(t)} = \sqrt{25} = 5.$$

Thus

$$\mathbf{T}(t) = \frac{\mathbf{r}'(t)}{\|\mathbf{r}'(t)\|} = \left\langle \frac{3}{5}, \frac{4}{5}\cos(t), -\frac{4}{5}\sin(t) \right\rangle.$$

(b) We have

$$\mathbf{T}'(t) = \left\langle 0, -\frac{4}{5}\sin(t), -\frac{4}{5}\cos(t) \right\rangle$$

so

$$\|\mathbf{T}'(t)\| = \sqrt{0 + \frac{16}{25}\sin^2(t) + \frac{16}{25}\cos^2(t)} = \sqrt{\frac{16}{25}} = \frac{4}{5}.$$

Thus

$$\kappa(t) = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|} = \frac{\frac{4}{5}}{5} = \frac{4}{25}.$$

(c) We have

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|} = \langle 0, -\sin(t), -\cos(t) \rangle.$$

(d) We observe that

$$\mathbf{T}(t) \cdot \mathbf{N}(t) = 0 - \frac{4}{5}\cos(t)\sin(t) + \frac{4}{5}\sin(t)\cos(t) = 0.$$

Since their dot product is zero, the two vectors must be orthogonal.

(e) We have

$$\begin{split} \mathbf{B}(t) &= \mathbf{T}(t) \times \mathbf{N}(t) \\ &= \left[-\frac{4}{5} \cos^2(t) - \frac{4}{5} \sin^2(t) \right] \mathbf{i} - \left[-\frac{3}{5} \cos(t) - 0 \right] \mathbf{j} + \left[-\frac{3}{5} \sin(t) - 0 \right] \mathbf{k} \\ &= -\frac{4}{5} \mathbf{i} + \frac{3}{5} \cos(t) \mathbf{j} - \frac{3}{5} \sin(t) \mathbf{k} \\ &= \left\langle -\frac{4}{5}, \ \frac{3}{5} \cos(t), \ -\frac{3}{5} \sin(t) \right\rangle. \end{split}$$

[5] 4. If we consider the unit tangent vector \mathbf{T} written in terms of the arclength s, we can use the fact that s is itself a function of t to apply the Chain Rule:

$$\frac{d\mathbf{T}}{dt} = \frac{d\mathbf{T}}{ds} \cdot \frac{ds}{dt}$$
 or $\mathbf{T}'(t) = \frac{d\mathbf{T}}{ds}s'(t)$.

However, we know that $s'(t) = ||\mathbf{r}'(t)||$ so

$$\mathbf{T}'(t) = \frac{d\mathbf{T}}{ds} \|\mathbf{r}'(t)\| \implies \frac{d\mathbf{T}}{ds} = \frac{\mathbf{T}'(t)}{\|\mathbf{r}'(t)\|}.$$

Next, we use the fact that

$$\mathbf{N}(t) = \frac{\mathbf{T}'(t)}{\|\mathbf{T}'(t)\|} \implies \mathbf{T}'(t) = \|\mathbf{T}'(t)\|\mathbf{N}(t)$$

to obtain

$$\frac{d\mathbf{T}}{ds} = \frac{\|\mathbf{T}'(t)\|\mathbf{N}(t)}{\|\mathbf{r}'(t)\|} = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|}\mathbf{N}(t).$$

Finally, we recall that

$$\kappa(t) = \frac{\|\mathbf{T}'(t)\|}{\|\mathbf{r}'(t)\|}$$

and thus

$$\frac{d\mathbf{T}}{ds} = \kappa(t)\mathbf{N}(t)$$

which is the first Frenet-Serret formula.