MEMORIAL UNIVERSITY OF NEWFOUNDLAND
 DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 1
МАТН 3202
Spring 2019

SOLUTIONS

[3] 1. We must consider the domains of each of the component functions. The function $\arcsin (t)$ requires $-1 \leq t \leq 1$. The function $\ln (3 t)$ requires $3 t>0$ so $t>0$. The function $\frac{1}{4 t-3}$ requires $t \neq \frac{3}{4}$. Thus the domain of $\mathbf{r}(t)$ is given by $\left\{t \mid 0<t \leq 1, t \neq \frac{3}{4}\right\}$.
[2] 2. We let $\mathbf{r}_{0}=\langle 4,-2,5\rangle$ and $\mathbf{v}=\langle 1,0,-3\rangle$ so a direction vector is given by

$$
\mathbf{v}-\mathbf{r}_{0}=\langle-3,2,-8\rangle
$$

Hence the line is the graph of the function

$$
\mathbf{r}(t)=\mathbf{r}_{0}+t\left(\mathbf{v}-\mathbf{r}_{0}\right)=\langle 4,-2,5\rangle+t\langle-3,2,-8\rangle=\langle 4-3 t,-2+2 t, 5-8 t\rangle
$$

[2] 3. (a) From the second component of $\mathbf{r}(t)$, we see that we must have $t-4=-2$ so $t=2$. Substituting this into the first component, $t^{2}=4$ as required. But substituting it into the third component, we have $2 t^{3}=16 \neq 4$. Thus the point $(4,-2,16)$ lies on the space curve, but the point P does not.
(b) Again the second component of $\mathbf{r}(t)$ indicates that $t-4=-5$ so $t=-1$. The first component becomes $t^{2}=1$ and the third component becomes $2 t^{3}=-2$, as required. Hence the point $Q \underline{\text { does lie on the space curve. }}$
4. (a) The parametric equations are

$$
x=1+4 \sin (5 t), \quad y=4 \cos (5 t)-7 .
$$

So observe that

$$
(x-1)^{2}=[4 \sin (5 t)]^{2}=16 \sin ^{2}(5 t)
$$

and likewise

$$
(y+7)^{2}=[4 \cos (5 t)]^{2}=16 \cos ^{2}(5 t)
$$

so

$$
(x-1)^{2}+(y+7)^{2}=16 \sin ^{2}(5 t)+16 \cos ^{2}(5 t)=16
$$

Hence the circle has radius $\sqrt{16}=4$ and centre $(1,-7)$.
(b) We can consider, say, $t=0$ at which $\mathbf{r}(0)=\langle 1,-3\rangle$. If we allow t to slightly increase, we can see that $4 \sin (5 t)$ will increase and so x increases. On the other hand, $4 \cos (5 t)$ will decrease and so y decreases as well. Thus the circle is being traced out in a clockwise direction.
(c) At $t=\frac{\pi}{5}$ we have $\mathbf{r}\left(\frac{\pi}{5}\right)=\langle 1,-11\rangle$. Thus we have moved from the top point of the circle at $t=0$ to the bottom point at $t=\frac{\pi}{5}$, moving clockwise. Hence, under this restriction, the righthand semi-circle is traced out.
[3] 5. (a) The parametric equations are

$$
x=3 \cos (t), \quad y=4 \cos (t)
$$

Thus $\cos (t)=\frac{1}{3} x$ and so

$$
y=4\left(\frac{1}{3} x\right)=\frac{4}{3} x .
$$

The corresponding graph is a line.
[3]
(b) The parametric equations are

$$
x=3 \cos (t), \quad y=4 \sin (t)=4 \sqrt{1-\cos ^{2}(t)} .
$$

Thus $\cos (t)=\frac{1}{3} x$ and so

$$
y=4 \sqrt{1-\left(\frac{1}{3} x\right)^{2}}=4 \sqrt{1-\frac{x^{2}}{9}}
$$

To make it easier to classify the corresponding curve, we can rewrite this as

$$
y^{2}=16\left(1-\frac{x^{2}}{9}\right) \quad \Longrightarrow \quad \frac{x^{2}}{9}+\frac{y^{2}}{16}=1
$$

so the corresponding graph is an ellipse.
(c) The parametric equations are

$$
x=3 \cos (t), \quad y=4 \sin ^{2}(t)=4\left[1-\cos ^{2}(t)\right] .
$$

Thus $\cos (t)=\frac{1}{3} x$ and so

$$
y=4\left[1-\left(\frac{1}{3} x\right)^{2}\right]=4-\frac{4}{9} x^{2}
$$

Hence the corresponding graph is a parabola.
[3] (d) The parametric equations are

$$
x=3 \sec (t), \quad y=4 \tan (t)=4 \sqrt{\sec ^{2}(t)-1}
$$

Thus $\sec (t)=\frac{1}{3} x$ and so

$$
y=4 \sqrt{\left(\frac{1}{3} x\right)^{2}-1}=4 \sqrt{\frac{x^{2}}{9}-1}
$$

We can rewrite this as

$$
y^{2}=16\left(\frac{x^{2}}{9}-1\right) \quad \Longrightarrow \quad \frac{x^{2}}{9}-\frac{y^{2}}{16}=1
$$

so the corresponding graph is a hyperbola.
[3] 6. (a) To allow for the possibility that Glaaki and Hastur may occupy the same space at different times, we will use s as the parameter for Hastur's trajectory, so

$$
\mathbf{r}_{H}=\left\langle 4 s-6,4 s^{2},-8 s^{-1}\right\rangle
$$

We set $\mathbf{r}_{G}(t)=\mathbf{r}_{H}(s)$ so

$$
t=4 s-6, \quad t^{2}=4 s^{2}, \quad t^{3}=-8 s^{-1}
$$

Substituting the first equation into the second, we obtain

$$
\begin{aligned}
(4 s-6)^{2} & =4 s^{2} \\
12 s^{2}-48 s+36 & =0 \\
12(s-3)(s-1) & =0,
\end{aligned}
$$

so $s=3$ or $s=1$.
When $s=3$, the first equation indicates that $t=6$. However, these values do not satisfy the third equation because $t^{3}=216$ but $-8 s^{-1}=-\frac{8}{3}$.
When $s=1$, we have $t=-2$. Now $t^{3}=-8=-8 s^{-1}$. Hence Glaaki and Hastur occupy the same point - the point represented by the vector $\langle-2,4,-8\rangle$ - but at two different times. We conclude that they are intersecting.
[3] (b) Proceeding as before, we have the system of equations

$$
t=2 s-1, \quad t^{2}=2 s^{2}-s, \quad t^{3}=\sqrt{s}
$$

Substituting the first equation into the second, we obtain

$$
\begin{aligned}
(2 s-1)^{2} & =2 s^{2}-s \\
2 s^{2}-3 s+1 & =0 \\
(2 s-1)(s-1) & =0
\end{aligned}
$$

and so $s=\frac{1}{2}$ or $s=1$.
When $s=\frac{1}{2}$, the first equation indicates that $t=0$. However, these values do not satisfy the third equation because $t^{3}=0$ but $\sqrt{s}=\frac{\sqrt{2}}{2}$.
When $s=1$, we have $t=1$. Now $t^{3}=1=\sqrt{s}$. Hence Glaaki and Hastur occupy the same point - the point represented by the vector $\langle 1,1,1\rangle$ - at $t=1$. We conclude that they are now colliding.
7. (a) We consider the limits of each component function:

$$
\lim _{t \rightarrow 0} \frac{1}{e^{t}}=1, \quad \lim _{t \rightarrow 0} \frac{6 t^{2}}{t-t^{2}}=\lim _{t \rightarrow 0} \frac{6 t}{1-t}=0, \quad \lim _{t \rightarrow 0} \cos \left(\frac{\pi}{t+1}\right)=\cos (\pi)=-1
$$

Hence

$$
\lim _{t \rightarrow 0} \mathbf{r}(t)=\langle 1,0,-1\rangle
$$

[2] (b) This time, observe that the limit of the second component function is

$$
\lim _{t \rightarrow 1} \frac{6 t^{2}}{t-t^{2}}
$$

which produces a $\frac{6}{0}$ form. Hence this limit does not exist, and so regardless of the limits of the other component functions, we can immediately conclude that $\lim _{t \rightarrow 1} \mathbf{r}(t)$ does not exist.
(c) The limits at infinity of the component functions are

$$
\lim _{t \rightarrow \infty} \frac{1}{e^{t}}=0, \quad \lim _{t \rightarrow \infty} \frac{6 t^{2}}{t-t^{2}}=\lim _{t \rightarrow \infty} \frac{6}{\frac{1}{t}-1}=-6, \quad \lim _{t \rightarrow \infty} \cos \left(\frac{\pi}{t+1}\right)=\cos (0)=1 .
$$

Hence

$$
\lim _{t \rightarrow \infty} \mathbf{r}(t)=\langle 0,-6,1\rangle .
$$

