MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 8
Math 3202
Spring 2019

Due: Friday, August 2nd, 2019 at 1:00pm. SHOW ALL WORK.
Note: The following textbook problems are useful practice for the topics covered on this assignment:

- Section 16.3, \#s 3-10, 12-18
- Section 16.4, \#s 1-14, 19

1. Determine whether each of the following vector fields is conservative. If so, find the potential function f such that $\mathbf{F}=\nabla f$.
(a) $\mathbf{F}(x, y)=\left\langle 4 x y^{3}-5,6 x^{2} y^{2}\right\rangle$
(b) $\mathbf{F}(x, y)=\left\langle x \ln (y)+1, y \ln (x)+y^{2}\right\rangle$
(c) $\mathbf{F}(x, y)=\langle\sin (y)-\sin (x), x \cos (y)-\sin (y)\rangle$
(d) $\mathbf{F}(x, y, z)=\left\langle x y^{2} z^{3}, x^{2} y z^{3}, x^{2} y^{2} z^{2}\right\rangle$
(e) $\mathbf{F}(x, y, z)=\left\langle x y^{2} z^{2}+2, x^{2} y z^{2}+3, x^{2} y^{2} z+4\right\rangle$
2. Use the Fundamental Theorem of Line Integrals to evaluate $\int_{C} \nabla f \cdot d \mathbf{r}$ where $f(x, y)=x y^{2}$ and C is the quarter-circle $x^{2}+y^{2}=4$ from $(2,0)$ to $(0,2)$.
3. Use the Fundamental Theorem of Line Integrals to evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where

$$
\mathbf{F}=\left\langle 2 x-3 z, 3 y^{2},-3 x\right\rangle
$$

is a conservative vector field and C is the indicated smooth curve.
(a) C is the portion of the helix defined by $\mathbf{r}(t)=\langle 3 \cos (t), 3 \sin (t), 4 t\rangle$ for $0 \leq t \leq \frac{\pi}{2}$
(b) C is the line joining the point $(2,-1,-3)$ to the point $(8,4,4)$
(c) C is the union of the curves C_{1}, C_{2} and C_{3}, where C_{1} is the plane curve consisting of the parabola $y=2 x^{2}$ from $(0,0,0)$ to $(1,2,0), C_{2}$ is the line joining $(1,2,0)$ to $(1,2,1)$, and C_{3} is the curve defined by $\mathbf{r}(t)=\left\langle e^{t}, 2 e^{t}, e^{2 t}\right\rangle$ for $0 \leq t \leq 1$
4. Use Green's Theorem to evaluate $\oint_{C} \mathbf{F} \cdot d \mathbf{r}$ in each case.
(a) $\mathbf{F}=\left\langle y \sqrt{x^{2}+9}, e^{y}\right\rangle$ where C is the triangle with vertices $(0,0),(4,0)$ and $(4,8)$
(b) $\mathbf{F}=\left\langle-x^{2} y, x y^{2}\right\rangle$ where C is the unit circle $x^{2}+y^{2}=1$
(c) $\mathbf{F}=\left\langle x+y^{2}, x^{2}+3 x y\right\rangle$ where $C=\partial D$, the boundary of the region D which lies between the curves $y=x^{2}$ and $y=\sqrt{x}$
5. [BONUS] The folium of Descartes (depicted in Figure 1) is one of many curves which is not the graph of a function, but is instead defined implicitly, in this case by the equation

$$
x^{3}+y^{3}=3 x y
$$

As such, it is not possible to use a double integral to find the area of the region inside the loop of the graph.
(a) Show that the folium of Descartes can be parametrised by the function

$$
\mathbf{r}(t)=\left\langle\frac{3 t}{1+t^{3}}, \frac{3 t^{2}}{1+t^{3}}\right\rangle
$$

(b) Use Green's Theorem to find the area of the loop in the folium of Descartes. (Note that the full graph is traced by $-\infty<t<\infty, t \neq-1$, but the loop itself is traced out by $0 \leq t<\infty$.)

Figure 1: The folium of Descartes.

