MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 7

Math 3202
Spring 2019

Due: Friday, July 26th, 2019 at 1:00pm. SHOW ALL WORK.
Note: The following textbook problems are useful practice for the topics covered on this assignment:

- Section 15.7, \#s 1-10, 17-26, 29-30
- Section 15.8, \#s 1-10, 21-27, 35, 36, 41-43
- Section 16.2, \#s 19-22
- Section 16.7, \#s 21-32

1. Let E be the solid which lies between the elliptic paraboloid $z=x^{2}+y^{2}$ and the hyperbolic paraboloid $z=2-x^{2}-y^{2}$. Use cylindrical coordinates to find the volume of E.
2. Evaluate the triple integral

$$
\int_{0}^{2} \int_{0}^{\sqrt{2 x-x^{2}}} \int_{0}^{\sqrt{x^{2}+y^{2}}} \sqrt{x^{2}+y^{2}} d z d y d x
$$

by rewriting it in cylindrical coordinates.
3. Let E be the solid which lies between the upper hemisphere $x^{2}+y^{2}+z^{2}=1$ and the cone $x^{2}+y^{2}=z^{2}$. Use spherical coordinates to evaluate the triple integral

$$
\iiint_{E} z^{3} d V
$$

4. Evaluate the triple integral

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} \sqrt{x^{2}+y^{2}} d z d y d x
$$

by rewriting it in spherical coordinates.
5. For each of the following, evaluate the line integral directly (without using the Fundamental Theorem of Line Integrals or any other such result).
(a) $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where $\mathbf{F}=\langle 2 x-y,-z, x+3 y+z\rangle$ and C is the line segment from $(0,1,-3)$ to $(2,1,3)$
(b) $\int_{C} \nabla f \cdot d \mathbf{r}$ where $f(x, y)=x y^{2}$ and C is the quarter-circle $x^{2}+y^{2}=4$ from $(2,0)$ to $(0,2)$
6. For each of the following, evaluate the surface integral directly.
(a) $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}=\langle y,-x y, 2 y\rangle$ and S is the portion of the plane $2 x+y+z=6$ in the first octant (oriented upward)
(b) $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$ where $\mathbf{F}=\left\langle x, y, e^{z}\right\rangle$ and S is the portion of the cylinder $x^{2}+y^{2}=4$ between the planes $z=0$ and $z=3$ (oriented outward)

