MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 6

Math 3202
Spring 2019

Due: Friday, July 12th, 2019 at 1:00pm. SHOW ALL WORK.
Note: The following textbook problems are useful practice for the topics covered on this assignment:

- Section 15.5, \#s 1-12
- Section 16.6, \#s 39-50
- Section 16.7, \#s 5-20

1. Find the surface area of each of the following surfaces S.
(a) S is the portion of the surface $2 x^{2}+8 y-z+3=0$ which lies above the triangle in the $x y$-plane with vertices $(0,0),(1,0)$ and $(1,8)$
(b) S is the portion of the elliptic paraboloid $z=x^{2}+y^{2}$ that lies inside the cylinder $x^{2}+y^{2}=2$
(c) S is the portion of the helicoid parametrised by $\mathbf{R}(u, v)=\langle u \cos (v), u \sin (v), v\rangle$ for $0 \leq u \leq 1$ and $0 \leq v \leq \pi$
2. Evaluate the surface integral $\iint_{S} y z d S$ over each of the following surfaces S.
(a) S is the part of the plane $2 x+2 y-z=4$ which lies in the first octant
(b) S is the portion of the helicoid described in $\# 1$ (c)
3. Consider the solid E in the first octant which lies between the planes $x+y+z=1$ and $x+2 y+z=1$.
(a) Use a triple integral to find the volume of E.
(b) Evaluate $\iiint_{E}(x+y) d V$.
4. Let E be the solid which lies between the planes $z=0$ and $z=y$ and inside the cylinder $x^{2}+y^{2}=1$. Evaluate

$$
\iiint_{E}(x+y) z d V
$$

in Cartesian coordinates.

