MEMORIAL UNIVERSITY OF NEWFOUNDLAND DEPARTMENT OF MATHEMATICS AND STATISTICS

Assignment 3

Math 3202
Spring 2019

Due: Friday, June 7th, 2019 at 1:00pm. SHOW ALL WORK.
Note: The following textbook problems are useful practice for the topics covered on this assignment:

- Section 16.2, \#s 1-4, 9-12
- Section 13.3, \#s 17-25, 27-31, 47-50

1. Find the area under the curve $f(x, y)=x^{-1} y$ and above the curve C traced out by $\mathbf{r}(t)=$ $\left\langle t^{3}, \frac{1}{4} t^{4}\right\rangle$ for $3 \leq t \leq 4$.
2. Consider the curve C which consists of the portion of the unit circle measured counterclockwise from $(1,0)$ to $(0,1)$, together with the portion of the parabola $y=x^{2}+1$ from $(0,1)$ to $(2,5)$. Determine $\int_{C} x d s$.
3. Evaluate the line integral $\int_{C}(x-y z) d s$ over each of the following curves C.
(a) C is the line segment from $(2,-3,0)$ to $(8,0,-2)$
(b) C is the portion of the helix traced out by $\mathbf{r}(t)=\langle\sin (2 t), 2 t, \cos (2 t)\rangle$ for $0 \leq t \leq \frac{\pi}{4}$
4. For the curve traced out by $\mathbf{r}(t)=\langle 3 \sin (t), 5 \cos (t),-4 \sin (t)\rangle$, determine each of the following.
(a) the unit tangent vector $\mathbf{T}(t)$
(b) the curvature $\kappa(t)$
(c) the unit normal vector $\mathbf{N}(t)$
(d) the binormal vector $\mathbf{B}(t)$
(e) the equation of the osculating plane at $t=0$
5. Given $\mathbf{r}(t)=\left\langle t^{2}, 2 \sqrt{2} t^{2}, t\right\rangle$ find $\mathbf{r}^{\prime}(t)$ and $\mathbf{r}^{\prime \prime}(t)$ and use them to determine the curvature of the corresponding space curve.
6. Find the curvature of the graph of $f(x)=e^{3 x}$. Determine the value of x at which the curvature is a maximum.
